Faculty

Our more than 60 world-renowned faculty include 3 Nobel laureates; 33 members of the National Academy of Sciences; 16 Howard Hughes Medical Institute (HHMI) investigators; and 4 recipients of the National Medal of Science.

Filter by Research Area

Angelika Amon

(1967 – 2020)

Angelika Amon's lab examines cell growth and division, and how errors in this process contribute to cancer and aging.

David Bartel studies molecular pathways that regulate eukaryotic gene expression by affecting the stability or translation of mRNAs.

Iain Cheeseman analyzes the process by which cells duplicate, focusing on how the molecular machinery that segregates the chromosomes is rewired across diverse physiological contexts.

Olivia Corradin investigates the genetic and epigenetic changes in gene regulatory elements that influence human disease.

Gerald R. Fink investigates how fungal pathogens invade the body, evade the immune system, and establish an infection.

Mary Gehring

Graduate Officer

Mary Gehring researches epigenetic mechanisms of gene regulation in plants.

Alan D. Grossman

Department Head

Alan Grossman studies mechanisms and regulation of DNA replication, gene expression, and horizontal gene transfer in bacteria.

Leonard P. Guarente looks at mammal, mouse, and human brains to understand the genetic underpinning of aging and age-related diseases like Alzheimer’s.

Michael T. Hemann uses mouse models to combat cancers resistant to chemotherapy.

Nancy Hopkins

Professor Emerita

Before closing her lab, Nancy Hopkins worked on the genetics of mouse RNA tumor viruses; on the genetics of early vertebrate development using zebrafish; and on the fish as a cancer model.

H. Robert Horvitz analyzes the roles of genes in animal development and behavior, gaining insight into human disease.

David Housman studies the biological underpinnings of diseases like Huntington’s, cancer, and cardiovascular disease.

Sinisa Hrvatin

(January 2022)

Sinisa Hrvatin studies states of stasis, such as mammalian torpor and hibernation, as a means to harness the potential of these biological adaptations to advance medicine.

Tyler Jacks is interested in the genetic events contributing to the development of cancer, and his group has created a series of mouse strains engineered to carry mutations in genes known to be involved in human cancers.

Before closing his lab, Chris A. Kaiser analyzed protein folding and trafficking in cells.

Kristin Knouse seeks to understand and modulate organ injury and repair by innovating tools for experimentation directly within living organisms.

Eric S. Lander

On Leave

Eric S. Lander is interested in every aspect of the human genome and its application to medicine. He currently serves as Presidential Science Advisor and Director of the Office of Science and Technology Policy.

Michael T. Laub explores how bacterial cells process information and regulate their own growth and proliferation, as well as how these information-processing capabilities have evolved.

Ruth Lehmann studies the biological origins of germ cells, and how they transmit the potential to build a completely new organism to their offspring.

Pulin Li is interested in quantitatively understanding how genetic circuits create multicellular behavior in both natural and synthetically engineered systems.

Troy Littleton is interested in how neuronal connections form and function, and how neurological disease disrupts synaptic communication.

Terry Orr-Weaver

Professor Emerita

Before closing her lab, Terry Orr-Weaver probed the incredibly complex and coordinated process of development from egg to fertilized embryo and ultimately adult.

David C. Page examines the genetic differences between males and females — and how these play out in disease, development, and evolution.

Mary-Lou Pardue

Professor Emerita

Before closing her lab, Mary-Lou Pardue studied fruit fly chromosomes to better understand chromosome replication, cell division, and related cellular structures.

Uttam RajBhandary

Professor Emeritus

Before closing his lab, Uttam RajBhandary studied interactions between RNAs and proteins, focusing on gene expression and gene regulation.

Peter Reddien

Associate Dept. Head

Peter Reddien works to unravel one of the greatest mysteries in biology — how organisms regenerate missing body parts.

Francisco J. Sánchez-Rivera aims to understand how genetic variation shapes normal physiology and disease, with a focus on cancer.

Anthony J. Sinskey explores the principles of metabolic engineering in both bacteria and plants.

Graham C. Walker studies DNA repair, mutagenesis, and cellular responses to DNA damage, as well as the symbiotic relationship between legumes and nitrogen-fixing bacteria.

Jing-Ke Weng studies metabolic evolution in plants and explores the remarkable plant chemodiversity for new commodity chemicals and medicines.

Yukiko Yamashita studies two fundamental aspects of multicellular organisms: how cell fates are diversified via asymmetric cell division, and how genetic information is transmitted through generations via the germline.