Iain M. Cheeseman

Iain M. Cheeseman

Professor of Biology; Member, Whitehead Institute; Interim Graduate Officer

Iain Cheeseman analyzes the process by which cells duplicate, focusing on the molecular machinery that segregates the chromosomes.

617-324-2503

Phone

WI-401B

Office

Nicholas Polizzi

Assistant

617-258-9243

Assistant Phone

Education

  • PhD, 2002, University of California, Berkeley
  • BS, 1997, Biology, Duke University

Research Summary 

Our lab analyzes the molecular basis for kinetochore function. We study chromosome segregation during mitosis, which requires the kinetochore to mediate attachments between chromosomal DNA and spindle microtubule polymers. We use a combination of proteomics, biochemistry, cell biology, and functional approaches to examine kinetochore composition, structure, organization and function.

Awards

  • Global Consortium for Reproductive Longevity and Equality (GCRLE) Scholar Award, 2020
  • American Society for Cell Biology (ASCB) Early Career Life Scientist Award, 2012
  • Searle Scholar Award, 2009-2012
Follow on Twitter

Recent Publications

  1. Chromosome Segregation: Evolving a Plastic Chromosome-Microtubule Interface. Navarro, AP, Cheeseman, IM. 2020. Curr. Biol. 30, R174-R177.
    doi: 10.1016/j.cub.2019.12.058PMID:32097646
  2. Quiescent Cells Actively Replenish CENP-A Nucleosomes to Maintain Centromere Identity and Proliferative Potential. Swartz, SZ, McKay, LS, Su, KC, Bury, L, Padeganeh, A, Maddox, PS, Knouse, KA, Cheeseman, IM. 2019. Dev. Cell 51, 35-48.e7.
    doi: 10.1016/j.devcel.2019.07.016PMID:31422918
  3. Dynamic regulation of dynein localization revealed by small molecule inhibitors of ubiquitination enzymes. Monda, JK, Cheeseman, IM. 2018. Open Biol 8, .
    doi: 10.1098/rsob.180095PMID:30257893
  4. CRISPR/Cas9-based gene targeting using synthetic guide RNAs enables robust cell biological analyses. Su, KC, Tsang, MJ, Emans, N, Cheeseman, IM. 2018. Mol. Biol. Cell 29, 2370-2377.
    doi: 10.1091/mbc.E18-04-0214PMID:30091644
  5. Nde1 promotes diverse dynein functions through differential interactions and exhibits an isoform-specific proteasome association. Monda, JK, Cheeseman, IM. 2018. Mol. Biol. Cell 29, 2336-2345.
    doi: 10.1091/mbc.E18-07-0418PMID:30024347
  6. Microtubule Tip Tracking by the Spindle and Kinetochore Protein Ska1 Requires Diverse Tubulin-Interacting Surfaces. Monda, JK, Whitney, IP, Tarasovetc, EV, Wilson-Kubalek, E, Milligan, RA, Grishchuk, EL, Cheeseman, IM. 2017. Curr. Biol. 27, 3666-3675.e6.
    doi: 10.1016/j.cub.2017.10.018PMID:29153323
  7. Astrin-SKAP complex reconstitution reveals its kinetochore interaction with microtubule-bound Ndc80. Kern, DM, Monda, JK, Su, KC, Wilson-Kubalek, EM, Cheeseman, IM. 2017. Elife 6, .
    doi: 10.7554/eLife.26866PMID:28841134
  8. Large-Scale Analysis of CRISPR/Cas9 Cell-Cycle Knockouts Reveals the Diversity of p53-Dependent Responses to Cell-Cycle Defects. McKinley, KL, Cheeseman, IM. 2017. Dev. Cell 40, 405-420.e2.
    doi: 10.1016/j.devcel.2017.01.012PMID:28216383
  9. A Regulatory Switch Alters Chromosome Motions at the Metaphase-to-Anaphase Transition. Su, KC, Barry, Z, Schweizer, N, Maiato, H, Bathe, M, Cheeseman, IM. 2016. Cell Rep 17, 1728-1738.
    doi: 10.1016/j.celrep.2016.10.046PMID:27829144
  10. A mitotic SKAP isoform regulates spindle positioning at astral microtubule plus ends. Kern, DM, Nicholls, PK, Page, DC, Cheeseman, IM. 2016. J. Cell Biol. 213, 315-28.
    doi: 10.1083/jcb.201510117PMID:27138257
More Publications
Photo credit: Gretchen Ertl/Whitehead Institute