Iain M. Cheeseman

Iain M. Cheeseman

Professor of Biology; Member, Whitehead Institute; Interim Graduate Officer

Iain Cheeseman analyzes the process by which cells duplicate, focusing on the molecular machinery that segregates the chromosomes.

617-324-2503

Phone

WI-401B

Office

Nicholas Polizzi

Assistant

617-258-9243

Assistant Phone

Education

  • PhD, 2002, University of California, Berkeley
  • BS, 1997, Biology, Duke University

Research Summary 

Our lab analyzes the molecular basis for kinetochore function. We study chromosome segregation during mitosis, which requires the kinetochore to mediate attachments between chromosomal DNA and spindle microtubule polymers. We use a combination of proteomics, biochemistry, cell biology, and functional approaches to examine kinetochore composition, structure, organization and function.

Awards

  • Global Consortium for Reproductive Longevity and Equality (GCRLE) Scholar Award, 2020
  • American Society for Cell Biology (ASCB) Early Career Life Scientist Award, 2012
  • Searle Scholar Award, 2009-2012
Follow on Twitter

Recent Publications

  1. Alpha-satellite RNA transcripts are repressed by centromere-nucleolus associations. Bury, L, Moodie, B, Ly, J, McKay, LS, Miga, KH, Cheeseman, IM. 2020. Elife 9, .
    doi: 10.7554/eLife.59770PMID:33174837
  2. Cellular Mechanisms and Regulation of Quiescence. Marescal, O, Cheeseman, IM. 2020. Dev Cell 55, 259-271.
    doi: 10.1016/j.devcel.2020.09.029PMID:33171109
  3. Chromosome Segregation: Evolving a Plastic Chromosome-Microtubule Interface. Navarro, AP, Cheeseman, IM. 2020. Curr Biol 30, R174-R177.
    doi: 10.1016/j.cub.2019.12.058PMID:32097646
  4. Quiescent Cells Actively Replenish CENP-A Nucleosomes to Maintain Centromere Identity and Proliferative Potential. Swartz, SZ, McKay, LS, Su, KC, Bury, L, Padeganeh, A, Maddox, PS, Knouse, KA, Cheeseman, IM. 2019. Dev Cell 51, 35-48.e7.
    doi: 10.1016/j.devcel.2019.07.016PMID:31422918
  5. Dynamic regulation of dynein localization revealed by small molecule inhibitors of ubiquitination enzymes. Monda, JK, Cheeseman, IM. 2018. Open Biol 8, .
    doi: 10.1098/rsob.180095PMID:30257893
  6. CRISPR/Cas9-based gene targeting using synthetic guide RNAs enables robust cell biological analyses. Su, KC, Tsang, MJ, Emans, N, Cheeseman, IM. 2018. Mol Biol Cell 29, 2370-2377.
    doi: 10.1091/mbc.E18-04-0214PMID:30091644
  7. Nde1 promotes diverse dynein functions through differential interactions and exhibits an isoform-specific proteasome association. Monda, JK, Cheeseman, IM. 2018. Mol Biol Cell 29, 2336-2345.
    doi: 10.1091/mbc.E18-07-0418PMID:30024347
  8. Microtubule Tip Tracking by the Spindle and Kinetochore Protein Ska1 Requires Diverse Tubulin-Interacting Surfaces. Monda, JK, Whitney, IP, Tarasovetc, EV, Wilson-Kubalek, E, Milligan, RA, Grishchuk, EL, Cheeseman, IM. 2017. Curr Biol 27, 3666-3675.e6.
    doi: 10.1016/j.cub.2017.10.018PMID:29153323
  9. Astrin-SKAP complex reconstitution reveals its kinetochore interaction with microtubule-bound Ndc80. Kern, DM, Monda, JK, Su, KC, Wilson-Kubalek, EM, Cheeseman, IM. 2017. Elife 6, .
    doi: 10.7554/eLife.26866PMID:28841134
  10. Large-Scale Analysis of CRISPR/Cas9 Cell-Cycle Knockouts Reveals the Diversity of p53-Dependent Responses to Cell-Cycle Defects. McKinley, KL, Cheeseman, IM. 2017. Dev Cell 40, 405-420.e2.
    doi: 10.1016/j.devcel.2017.01.012PMID:28216383
More Publications
Photo credit: Gretchen Ertl/Whitehead Institute