Iain M. Cheeseman

Iain M. Cheeseman

Professor of Biology; Member, Whitehead Institute; Interim Graduate Officer

Iain Cheeseman analyzes the process by which cells duplicate, focusing on the molecular machinery that segregates the chromosomes.





Nicholas Polizzi



Assistant Phone


  • PhD, 2002, University of California, Berkeley
  • BS, 1997, Biology, Duke University

Research Summary 

Our lab analyzes the molecular basis for kinetochore function. We study chromosome segregation during mitosis, which requires the kinetochore to mediate attachments between chromosomal DNA and spindle microtubule polymers. We use a combination of proteomics, biochemistry, cell biology, and functional approaches to examine kinetochore composition, structure, organization and function.


  • Global Consortium for Reproductive Longevity and Equality (GCRLE) Scholar Award, 2020
  • American Society for Cell Biology (ASCB) Early Career Life Scientist Award, 2012
  • Searle Scholar Award, 2009-2012
Follow on Twitter

Recent Publications

  1. Kinetochore assembly throughout the cell cycle. Navarro, AP, Cheeseman, IM. 2021. Semin Cell Dev Biol , .
    doi: 10.1016/j.semcdb.2021.03.008PMID:33753005
  2. Differential requirements for the CENP-O complex reveal parallel PLK1 kinetochore recruitment pathways. Nguyen, AL, Fadel, MD, Cheeseman, IM. 2021. Mol Biol Cell 32, 712-721.
    doi: 10.1091/mbc.E20-11-0751PMID:33596090
  3. Alpha-satellite RNA transcripts are repressed by centromere-nucleolus associations. Bury, L, Moodie, B, Ly, J, McKay, LS, Miga, KH, Cheeseman, IM. 2020. Elife 9, .
    doi: 10.7554/eLife.59770PMID:33174837
  4. Cellular Mechanisms and Regulation of Quiescence. Marescal, O, Cheeseman, IM. 2020. Dev Cell 55, 259-271.
    doi: 10.1016/j.devcel.2020.09.029PMID:33171109
  5. Chromosome Segregation: Evolving a Plastic Chromosome-Microtubule Interface. Navarro, AP, Cheeseman, IM. 2020. Curr Biol 30, R174-R177.
    doi: 10.1016/j.cub.2019.12.058PMID:32097646
  6. Quiescent Cells Actively Replenish CENP-A Nucleosomes to Maintain Centromere Identity and Proliferative Potential. Swartz, SZ, McKay, LS, Su, KC, Bury, L, Padeganeh, A, Maddox, PS, Knouse, KA, Cheeseman, IM. 2019. Dev Cell 51, 35-48.e7.
    doi: 10.1016/j.devcel.2019.07.016PMID:31422918
  7. Dynamic regulation of dynein localization revealed by small molecule inhibitors of ubiquitination enzymes. Monda, JK, Cheeseman, IM. 2018. Open Biol 8, .
    doi: 10.1098/rsob.180095PMID:30257893
  8. CRISPR/Cas9-based gene targeting using synthetic guide RNAs enables robust cell biological analyses. Su, KC, Tsang, MJ, Emans, N, Cheeseman, IM. 2018. Mol Biol Cell 29, 2370-2377.
    doi: 10.1091/mbc.E18-04-0214PMID:30091644
  9. Nde1 promotes diverse dynein functions through differential interactions and exhibits an isoform-specific proteasome association. Monda, JK, Cheeseman, IM. 2018. Mol Biol Cell 29, 2336-2345.
    doi: 10.1091/mbc.E18-07-0418PMID:30024347
  10. Microtubule Tip Tracking by the Spindle and Kinetochore Protein Ska1 Requires Diverse Tubulin-Interacting Surfaces. Monda, JK, Whitney, IP, Tarasovetc, EV, Wilson-Kubalek, E, Milligan, RA, Grishchuk, EL, Cheeseman, IM. 2017. Curr Biol 27, 3666-3675.e6.
    doi: 10.1016/j.cub.2017.10.018PMID:29153323
More Publications
Photo credit: Gretchen Ertl/Whitehead Institute