Eric S. Lander

Eric S. Lander

Professor of Biology; Professor of Systems Biology, Harvard Medical School; Founding Director, Broad Institute of MIT and Harvard

Eric S. Lander is interested in every aspect of the human genome and its application to medicine.





Nicole Brellenthin



Assistant Phone


  • PhD, 1981, Oxford University
  • AB, 1978, Mathematics, Princeton University

Research Summary

Following the successful completion of the Human Genome Project, the challenge now is to decipher the information encoded within the human genetic code — including genes, regulatory controls and cellular circuitry. Such understanding is fundamental to the study of physiology in both health and disease. At the Broad Institute, my lab collaborates with other to discover and understand the genes responsible for rare genetic diseases, common diseases, and cancer; the genetic variation and evolution of the human genome; the basis of gene regulation via enhancers, long non-coding RNAs, and three-dimensional folding of the genome; the developmental trajectories of cellular differentiation; and the history of the human population.


  • James R. Killian, Jr. Faculty Achievement Award, MIT, 2016
  • Block Memorial Award for Distinguished Achievement in Cancer Research, Ohio State University, 2013
  • AAAS Philip Hauge Abelson Prize, 2015
  • Breakthrough Prize in Life Sciences, 2013
  • Harvey Prize for Human Health, Technion University, Israel, 2012
  • Dan David Prize, 2012
  • Albany Prize in Medicine and Biomedical Research, Albany Medical College, 2010
  • Gairdner Foundation International Award, Canada, 2002
  • Max Delbruck Medal, Berlin, 2001
  • MacArthur Foundation, MacArthur Fellowship, 1987

Key Publications

  1. Genetic screens in human cells using the CRISPR-Cas9 system. Wang, T, Wei, JJ, Sabatini, DM, Lander, ES. 2014. Science 343, 80-4.
    doi: 10.1126/science.1246981PMID:24336569
  2. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Lieberman-Aiden, E, van Berkum, NL, Williams, L, Imakaev, M, Ragoczy, T, Telling, A, Amit, I, Lajoie, BR, Sabo, PJ, Dorschner, MO et al.. 2009. Science 326, 289-93.
    doi: 10.1126/science.1181369PMID:19815776
  3. Initial sequencing and comparative analysis of the mouse genome. Mouse Genome Sequencing Consortium, Waterston, RH, Lindblad-Toh, K, Birney, E, Rogers, J, Abril, JF, Agarwal, P, Agarwala, R, Ainscough, R, Alexandersson, M et al.. 2002. Nature 420, 520-62.
    doi: 10.1038/nature01262PMID:12466850
  4. High-resolution haplotype structure in the human genome. Daly, MJ, Rioux, JD, Schaffner, SF, Hudson, TJ, Lander, ES. 2001. Nat. Genet. 29, 229-32.
    doi: 10.1038/ng1001-229PMID:11586305
  5. Initial sequencing and analysis of the human genome. Lander, ES, Linton, LM, Birren, B, Nusbaum, C, Zody, MC, Baldwin, J, Devon, K, Dewar, K, Doyle, M, FitzHugh, W et al.. 2001. Nature 409, 860-921.
    doi: 10.1038/35057062PMID:11237011

Recent Publications

  1. Defining the core essential genome of Pseudomonas aeruginosa. Poulsen, BE, Yang, R, Clatworthy, AE, White, T, Osmulski, SJ, Li, L, Penaranda, C, Lander, ES, Shoresh, N, Hung, DT et al.. 2019. Proc. Natl. Acad. Sci. U.S.A. 116, 10072-10080.
    doi: 10.1073/pnas.1900570116PMID:31036669
  2. Polygenic Prediction of Weight and Obesity Trajectories from Birth to Adulthood. Khera, AV, Chaffin, M, Wade, KH, Zahid, S, Brancale, J, Xia, R, Distefano, M, Senol-Cosar, O, Haas, ME, Bick, A et al.. 2019. Cell 177, 587-596.e9.
    doi: 10.1016/j.cell.2019.03.028PMID:31002795
  3. 2018 William Allan Award: Discovering the Genes for Common Disease: From Families to Populations. Lander, ES. 2019. Am. J. Hum. Genet. 104, 375-383.
    doi: 10.1016/j.ajhg.2019.01.016PMID:30849323
  4. Optimal-Transport Analysis of Single-Cell Gene Expression Identifies Developmental Trajectories in Reprogramming. Schiebinger, G, Shu, J, Tabaka, M, Cleary, B, Subramanian, V, Solomon, A, Gould, J, Liu, S, Lin, S, Berube, P et al.. 2019. Cell 176, 928-943.e22.
    doi: 10.1016/j.cell.2019.01.006PMID:30712874
  5. Genome-Wide CRISPR/Cas9 Screening for Identification of Cancer Genes in Cell Lines. Adelmann, CH, Wang, T, Sabatini, DM, Lander, ES. 2019. Methods Mol. Biol. 1907, 125-136.
    doi: 10.1007/978-1-4939-8967-6_10PMID:30542996
  6. CRISPR-SURF: discovering regulatory elements by deconvolution of CRISPR tiling screen data. Hsu, JY, Fulco, CP, Cole, MA, Canver, MC, Pellin, D, Sher, F, Farouni, R, Clement, K, Guo, JA, Biasco, L et al.. 2018. Nat. Methods 15, 992-993.
    doi: 10.1038/s41592-018-0225-6PMID:30504875
  7. Deep-coverage whole genome sequences and blood lipids among 16,324 individuals. Natarajan, P, Peloso, GM, Zekavat, SM, Montasser, M, Ganna, A, Chaffin, M, Khera, AV, Zhou, W, Bloom, JM, Engreitz, JM et al.. 2018. Nat Commun 9, 3391.
    doi: 10.1038/s41467-018-05747-8PMID:30140000
  8. Strain-Level Analysis of Mother-to-Child Bacterial Transmission during the First Few Months of Life. Yassour, M, Jason, E, Hogstrom, LJ, Arthur, TD, Tripathi, S, Siljander, H, Selvenius, J, Oikarinen, S, Hyöty, H, Virtanen, SM et al.. 2018. Cell Host Microbe 24, 146-154.e4.
    doi: 10.1016/j.chom.2018.06.007PMID:30001517
  9. Positional specificity of different transcription factor classes within enhancers. Grossman, SR, Engreitz, J, Ray, JP, Nguyen, TH, Hacohen, N, Lander, ES. 2018. Proc. Natl. Acad. Sci. U.S.A. 115, E7222-E7230.
    doi: 10.1073/pnas.1804663115PMID:29987030
  10. Ribosome Levels Selectively Regulate Translation and Lineage Commitment in Human Hematopoiesis. Khajuria, RK, Munschauer, M, Ulirsch, JC, Fiorini, C, Ludwig, LS, McFarland, SK, Abdulhay, NJ, Specht, H, Keshishian, H, Mani, DR et al.. 2018. Cell 173, 90-103.e19.
    doi: 10.1016/j.cell.2018.02.036PMID:29551269
More Publications







Photo credit: Casey Atkins