Eric S. Lander

Eric S. Lander

Professor of Biology; Professor of Systems Biology, Harvard Medical School; Founding Director Emeritus, Broad Institute of MIT and Harvard

Eric S. Lander is interested in every aspect of the human genome and its application to medicine.

617-714-7010

Phone

NE30-6013

Office

Broad Institute

Location

Education

  • PhD, 1981, Oxford University
  • AB, 1978, Mathematics, Princeton University

Research Summary

Following the successful completion of the Human Genome Project, the challenge now is to decipher the information encoded within the human genetic code — including genes, regulatory controls and cellular circuitry. Such understanding is fundamental to the study of physiology in both health and disease. At the Broad Institute, my lab collaborates with other to discover and understand the genes responsible for rare genetic diseases, common diseases, and cancer; the genetic variation and evolution of the human genome; the basis of gene regulation via enhancers, long non-coding RNAs, and three-dimensional folding of the genome; the developmental trajectories of cellular differentiation; and the history of the human population.

Awards

  • William Allan Award, American Society of Human Genetics, 2018
  • James R. Killian Jr. Faculty Achievement Award, MIT, 2016
  • Block Memorial Award for Distinguished Achievement in Cancer Research, Ohio State University, 2013
  • AAAS Philip Hauge Abelson Prize, 2015
  • Breakthrough Prize in Life Sciences, 2013
  • Harvey Prize for Human Health, Technion University, Israel, 2012
  • Dan David Prize, 2012
  • Albany Prize in Medicine and Biomedical Research, Albany Medical College, 2010
  • Gairdner Foundation International Award, Canada, 2002
  • Max Delbruck Medal, Berlin, 2001
  • MacArthur Foundation, MacArthur Fellowship, 1987

Key Publications

  1. Genetic screens in human cells using the CRISPR-Cas9 system. Wang, T, Wei, JJ, Sabatini, DM, Lander, ES. 2014. Science 343, 80-4.
    doi: 10.1126/science.1246981PMID:24336569
  2. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Lieberman-Aiden, E, van Berkum, NL, Williams, L, Imakaev, M, Ragoczy, T, Telling, A, Amit, I, Lajoie, BR, Sabo, PJ, Dorschner, MO et al.. 2009. Science 326, 289-93.
    doi: 10.1126/science.1181369PMID:19815776
  3. Initial sequencing and comparative analysis of the mouse genome. Mouse Genome Sequencing Consortium, Waterston, RH, Lindblad-Toh, K, Birney, E, Rogers, J, Abril, JF, Agarwal, P, Agarwala, R, Ainscough, R, Alexandersson, M et al.. 2002. Nature 420, 520-62.
    doi: 10.1038/nature01262PMID:12466850
  4. High-resolution haplotype structure in the human genome. Daly, MJ, Rioux, JD, Schaffner, SF, Hudson, TJ, Lander, ES. 2001. Nat Genet 29, 229-32.
    doi: 10.1038/ng1001-229PMID:11586305
  5. Initial sequencing and analysis of the human genome. Lander, ES, Linton, LM, Birren, B, Nusbaum, C, Zody, MC, Baldwin, J, Devon, K, Dewar, K, Doyle, M, FitzHugh, W et al.. 2001. Nature 409, 860-921.
    doi: 10.1038/35057062PMID:11237011

Recent Publications

  1. Three-dimensional genome architecture persists in a 52,000-year-old woolly mammoth skin sample. Sandoval-Velasco, M, Dudchenko, O, Rodríguez, JA, Pérez Estrada, C, Dehasque, M, Fontsere, C, Mak, SST, Khan, R, Contessoto, VG, Oliveira Junior, AB et al.. 2024. Cell 187, 3541-3562.e51.
    doi: 10.1016/j.cell.2024.06.002PMID:38996487
  2. Functional dissection of complex and molecular trait variants at single nucleotide resolution. Siraj, L, Castro, RI, Dewey, H, Kales, S, Nguyen, TTL, Kanai, M, Berenzy, D, Mouri, K, Wang, QS, McCaw, ZR et al.. 2024. bioRxiv , .
    doi: 10.1101/2024.05.05.592437PMID:38766054
  3. Genome-wide association study identifies human genetic variants associated with fatal outcome from Lassa fever. Kotliar, D, Raju, S, Tabrizi, S, Odia, I, Goba, A, Momoh, M, Sandi, JD, Nair, P, Phelan, E, Tariyal, R et al.. 2024. Nat Microbiol 9, 751-762.
    doi: 10.1038/s41564-023-01589-3PMID:38326571
  4. Neurocognitive trajectory and proteomic signature of inherited risk for Alzheimer's disease. Paranjpe, MD, Chaffin, M, Zahid, S, Ritchie, S, Rotter, JI, Rich, SS, Gerszten, R, Guo, X, Heckbert, S, Tracy, R et al.. 2022. PLoS Genet 18, e1010294.
    doi: 10.1371/journal.pgen.1010294PMID:36048760
  5. Inferring gene regulation from stochastic transcriptional variation across single cells at steady state. Gupta, A, Martin-Rufino, JD, Jones, TR, Subramanian, V, Qiu, X, Grody, EI, Bloemendal, A, Weng, C, Niu, SY, Min, KH et al.. 2022. Proc Natl Acad Sci U S A 119, e2207392119.
    doi: 10.1073/pnas.2207392119PMID:35969771
  6. Mapping transcriptomic vector fields of single cells. Qiu, X, Zhang, Y, Martin-Rufino, JD, Weng, C, Hosseinzadeh, S, Yang, D, Pogson, AN, Hein, MY, Hoi Joseph Min, K, Wang, L et al.. 2022. Cell 185, 690-711.e45.
    doi: 10.1016/j.cell.2021.12.045PMID:35108499
  7. Cross-Sectional Assessment of SARS-CoV-2 Viral Load by Symptom Status in Massachusetts Congregate Living Facilities. Lennon, NJ, Bhattacharyya, RP, Mina, MJ, Rehm, HL, Hung, DT, Smole, S, Woolley, A, Lander, ES, Gabriel, SB. 2021. J Infect Dis 224, 1658-1663.
    doi: 10.1093/infdis/jiab367PMID:34255846
  8. Compressed sensing for highly efficient imaging transcriptomics. Cleary, B, Simonton, B, Bezney, J, Murray, E, Alam, S, Sinha, A, Habibi, E, Marshall, J, Lander, ES, Chen, F et al.. 2021. Nat Biotechnol 39, 936-942.
    doi: 10.1038/s41587-021-00883-xPMID:33859401
  9. Human Molecular Genetics and Genomics - Important Advances and Exciting Possibilities. Collins, FS, Doudna, JA, Lander, ES, Rotimi, CN. 2021. N Engl J Med 384, 1-4.
    doi: 10.1056/NEJMp2030694PMID:33393745
  10. Delivery Mode Affects Stability of Early Infant Gut Microbiota. Mitchell, CM, Mazzoni, C, Hogstrom, L, Bryant, A, Bergerat, A, Cher, A, Pochan, S, Herman, P, Carrigan, M, Sharp, K et al.. 2020. Cell Rep Med 1, 100156.
    doi: 10.1016/j.xcrm.2020.100156PMID:33377127
More Publications

Multimedia

 

>

 

 

 

 

Photo credit: Casey Atkins