Francisco J. Sánchez-Rivera

Francisco J. Sánchez-Rivera

Assistant Professor of Biology; Intramural Faculty, Koch Institute

Francisco J. Sánchez-Rivera aims to understand how genetic variation shapes normal physiology and disease, with a focus on cancer.

617-715-3389

Phone

76-361A

Office

fsr@mit.edu

Email

Ryan Hayman

Assistant

617-253-0796

Assistant Phone

Education

  • PhD, 2016, Biology, MIT
  • BS, 2008, Microbiology, University of Puerto Rico at Mayagüez

Research Summary

The overarching goal of the Sánchez-Rivera laboratory is to elucidate the cellular and molecular mechanisms by which genetic variation shapes normal physiology and disease, particularly in the context of cancer. To do so, we develop and apply genome engineering technologies, genetically-engineered mouse models (GEMMs), and single cell lineage tracing and omics approaches to obtain comprehensive biological pictures of disease evolution at single cell resolution. By doing so, we hope to produce actionable discoveries that could pave the way for better therapeutic strategies to treat cancer and other diseases.

Awards

  • Hanna H. Gray Fellowship, Howard Hughes Medical Institute, 2018-2026
  • GMTEC Postdoctoral Researcher Innovation Grant, Memorial Sloan Kettering Cancer Center, 2020-2022
  • 100 inspiring Hispanic/Latinx scientists in America, Cell Mentor/Cell Press, 2020

Key Publications

  1. Base editing sensor libraries for high-throughput engineering and functional analysis of cancer-associated single nucleotide variants. Sánchez-Rivera, FJ, Diaz, BJ, Kastenhuber, ER, Schmidt, H, Katti, A, Kennedy, M, Tem, V, Ho, YJ, Leibold, J, Paffenholz, SV et al.. 2022. Nat Biotechnol 40, 862-873.
    doi: 10.1038/s41587-021-01172-3PMID:35165384
  2. Keap1 mutation renders lung adenocarcinomas dependent on Slc33a1. Romero, R, Sánchez-Rivera, FJ, Westcott, PMK, Mercer, KL, Bhutkar, A, Muir, A, González Robles, TJ, Lamboy Rodríguez, S, Liao, LZ, Ng, SR et al.. 2020. Nat Cancer 1, 589-602.
    doi: 10.1038/s43018-020-0071-1PMID:34414377
  3. Phase and context shape the function of composite oncogenic mutations. Gorelick, AN, Sánchez-Rivera, FJ, Cai, Y, Bielski, CM, Biederstedt, E, Jonsson, P, Richards, AL, Vasan, N, Penson, AV, Friedman, ND et al.. 2020. Nature 582, 100-103.
    doi: 10.1038/s41586-020-2315-8PMID:32461694
  4. Applications of the CRISPR-Cas9 system in cancer biology. Sánchez-Rivera, FJ, Jacks, T. 2015. Nat Rev Cancer 15, 387-95.
    doi: 10.1038/nrc3950PMID:26040603
  5. Rapid modelling of cooperating genetic events in cancer through somatic genome editing. Sánchez-Rivera, FJ, Papagiannakopoulos, T, Romero, R, Tammela, T, Bauer, MR, Bhutkar, A, Joshi, NS, Subbaraj, L, Bronson, RT, Xue, W et al.. 2014. Nature 516, 428-31.
    doi: 10.1038/nature13906PMID:25337879

Recent Publications

  1. A preclinical platform for assessing antitumor effects and systemic toxicities of cancer drug targets. Li, X, Huang, CH, Sánchez-Rivera, FJ, Kennedy, MC, Tschaharganeh, DF, Morris, JP 4th, Montinaro, A, O'Rourke, KP, Banito, A, Wilkinson, JE et al.. 2022. Proc Natl Acad Sci U S A 119, e2110557119.
    doi: 10.1073/pnas.2110557119PMID:35442775
  2. Base editing sensor libraries for high-throughput engineering and functional analysis of cancer-associated single nucleotide variants. Sánchez-Rivera, FJ, Diaz, BJ, Kastenhuber, ER, Schmidt, H, Katti, A, Kennedy, M, Tem, V, Ho, YJ, Leibold, J, Paffenholz, SV et al.. 2022. Nat Biotechnol 40, 862-873.
    doi: 10.1038/s41587-021-01172-3PMID:35165384
  3. TCR signal strength defines distinct mechanisms of T cell dysfunction and cancer evasion. Shakiba, M, Zumbo, P, Espinosa-Carrasco, G, Menocal, L, Dündar, F, Carson, SE, Bruno, EM, Sanchez-Rivera, FJ, Lowe, SW, Camara, S et al.. 2022. J Exp Med 219, .
    doi: 10.1084/jem.20201966PMID:34935874
  4. An autoimmune stem-like CD8 T cell population drives type 1 diabetes. Gearty, SV, Dündar, F, Zumbo, P, Espinosa-Carrasco, G, Shakiba, M, Sanchez-Rivera, FJ, Socci, ND, Trivedi, P, Lowe, SW, Lauer, P et al.. 2022. Nature 602, 156-161.
    doi: 10.1038/s41586-021-04248-xPMID:34847567
  5. Replication and single-cycle delivery of SARS-CoV-2 replicons. Ricardo-Lax, I, Luna, JM, Thao, TTN, Le Pen, J, Yu, Y, Hoffmann, HH, Schneider, WM, Razooky, BS, Fernandez-Martinez, J, Schmidt, F et al.. 2021. Science 374, 1099-1106.
    doi: 10.1126/science.abj8430PMID:34648371
  6. Smarca4 Inactivation Promotes Lineage-Specific Transformation and Early Metastatic Features in the Lung. Concepcion, CP, Ma, S, LaFave, LM, Bhutkar, A, Liu, M, DeAngelo, LP, Kim, JY, Del Priore, I, Schoenfeld, AJ, Miller, M et al.. 2022. Cancer Discov 12, 562-585.
    doi: 10.1158/2159-8290.CD-21-0248PMID:34561242
  7. Rlf-Mycl Gene Fusion Drives Tumorigenesis and Metastasis in a Mouse Model of Small Cell Lung Cancer. Ciampricotti, M, Karakousi, T, Richards, AL, Quintanal-Villalonga, À, Karatza, A, Caeser, R, Costa, EA, Allaj, V, Manoj, P, Spainhower, KB et al.. 2021. Cancer Discov 11, 3214-3229.
    doi: 10.1158/2159-8290.CD-21-0441PMID:34344693
  8. Mitochondrial apoptotic priming is a key determinant of cell fate upon p53 restoration. Sánchez-Rivera, FJ, Ryan, J, Soto-Feliciano, YM, Clare Beytagh, M, Xuan, L, Feldser, DM, Hemann, MT, Zamudio, J, Dimitrova, N, Letai, A et al.. 2021. Proc Natl Acad Sci U S A 118, .
    doi: 10.1073/pnas.2019740118PMID:34074758
  9. Genome-Scale Identification of SARS-CoV-2 and Pan-coronavirus Host Factor Networks. Schneider, WM, Luna, JM, Hoffmann, HH, Sánchez-Rivera, FJ, Leal, AA, Ashbrook, AW, Le Pen, J, Ricardo-Lax, I, Michailidis, E, Peace, A et al.. 2021. Cell 184, 120-132.e14.
    doi: 10.1016/j.cell.2020.12.006PMID:33382968
  10. Functional interrogation of a SARS-CoV-2 host protein interactome identifies unique and shared coronavirus host factors. Hoffmann, HH, Sánchez-Rivera, FJ, Schneider, WM, Luna, JM, Soto-Feliciano, YM, Ashbrook, AW, Le Pen, J, Leal, AA, Ricardo-Lax, I, Michailidis, E et al.. 2021. Cell Host Microbe 29, 267-280.e5.
    doi: 10.1016/j.chom.2020.12.009PMID:33357464
More Publications
Photo credit: Adam Lerner