Francisco J. Sánchez-Rivera

Francisco J. Sánchez-Rivera

Assistant Professor of Biology

Francisco J. Sánchez-Rivera aims to understand how genetic variation shapes normal physiology and disease, with a focus on cancer.

fsr@mit.edu

Email

Education

  • PhD, 2016, Biology, MIT
  • BS, 2008, Microbiology, University of Puerto Rico at Mayagüez

Research Summary

The overarching goal of the Sánchez-Rivera laboratory is to elucidate the cellular and molecular mechanisms by which genetic variation shapes normal physiology and disease, particularly in the context of cancer. To do so, we develop and apply genome engineering technologies, genetically-engineered mouse models (GEMMs), and single cell lineage tracing and omics approaches to obtain comprehensive biological pictures of disease evolution at single cell resolution. By doing so, we hope to produce actionable discoveries that could pave the way for better therapeutic strategies to treat cancer and other diseases.

Francisco J. Sánchez-Rivera will begin his appointment in early 2022.

Awards

  • Hanna H. Gray Fellowship, Howard Hughes Medical Institute, 2018-2026
  • GMTEC Postdoctoral Researcher Innovation Grant, Memorial Sloan Kettering Cancer Center, 2020-2022
  • 100 inspiring Hispanic/Latinx scientists in America, Cell Mentor/Cell Press, 2020

Key Publications

  1. Phase and context shape the function of composite oncogenic mutations. Gorelick, AN, Sánchez-Rivera, FJ, Cai, Y, Bielski, CM, Biederstedt, E, Jonsson, P, Richards, AL, Vasan, N, Penson, AV, Friedman, ND et al.. 2020. Nature 582, 100-103.
    doi: 10.1038/s41586-020-2315-8PMID:32461694
  2. Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis. Romero, R, Sayin, VI, Davidson, SM, Bauer, MR, Singh, SX, LeBoeuf, SE, Karakousi, TR, Ellis, DC, Bhutkar, A, Sánchez-Rivera, FJ et al.. 2017. Nat Med 23, 1362-1368.
    doi: 10.1038/nm.4407PMID:28967920
  3. A Wnt-producing niche drives proliferative potential and progression in lung adenocarcinoma. Tammela, T, Sanchez-Rivera, FJ, Cetinbas, NM, Wu, K, Joshi, NS, Helenius, K, Park, Y, Azimi, R, Kerper, NR, Wesselhoeft, RA et al.. 2017. Nature 545, 355-359.
    doi: 10.1038/nature22334PMID:28489818
  4. Applications of the CRISPR-Cas9 system in cancer biology. Sánchez-Rivera, FJ, Jacks, T. 2015. Nat Rev Cancer 15, 387-95.
    doi: 10.1038/nrc3950PMID:26040603
  5. Rapid modelling of cooperating genetic events in cancer through somatic genome editing. Sánchez-Rivera, FJ, Papagiannakopoulos, T, Romero, R, Tammela, T, Bauer, MR, Bhutkar, A, Joshi, NS, Subbaraj, L, Bronson, RT, Xue, W et al.. 2014. Nature 516, 428-31.
    doi: 10.1038/nature13906PMID:25337879

Recent Publications

  1. Mitochondrial apoptotic priming is a key determinant of cell fate upon p53 restoration. Sánchez-Rivera, FJ, Ryan, J, Soto-Feliciano, YM, Clare Beytagh, M, Xuan, L, Feldser, DM, Hemann, MT, Zamudio, J, Dimitrova, N, Letai, A et al.. 2021. Proc Natl Acad Sci U S A 118, .
    doi: 10.1073/pnas.2019740118PMID:34074758
  2. Genome-Scale Identification of SARS-CoV-2 and Pan-coronavirus Host Factor Networks. Schneider, WM, Luna, JM, Hoffmann, HH, Sánchez-Rivera, FJ, Leal, AA, Ashbrook, AW, Le Pen, J, Ricardo-Lax, I, Michailidis, E, Peace, A et al.. 2021. Cell 184, 120-132.e14.
    doi: 10.1016/j.cell.2020.12.006PMID:33382968
  3. Functional interrogation of a SARS-CoV-2 host protein interactome identifies unique and shared coronavirus host factors. Hoffmann, HH, Sánchez-Rivera, FJ, Schneider, WM, Luna, JM, Soto-Feliciano, YM, Ashbrook, AW, Le Pen, J, Leal, AA, Ricardo-Lax, I, Michailidis, E et al.. 2021. Cell Host Microbe 29, 267-280.e5.
    doi: 10.1016/j.chom.2020.12.009PMID:33357464
  4. Targeting the De Novo Purine Synthesis Pathway Through Adenylosuccinate Lyase Depletion Impairs Liver Cancer Growth by Perturbing Mitochondrial Function. Jiang, T, Sánchez-Rivera, FJ, Soto-Feliciano, YM, Yang, Q, Song, CQ, Bhuatkar, A, Haynes, CM, Hemann, MT, Xue, W. 2021. Hepatology 74, 233-247.
    doi: 10.1002/hep.31685PMID:33336367
  5. Genome-scale identification of SARS-CoV-2 and pan-coronavirus host factor networks. Schneider, WM, Luna, JM, Hoffmann, HH, Sánchez-Rivera, FJ, Leal, AA, Ashbrook, AW, Le Pen, J, Michailidis, E, Ricardo-Lax, I, Peace, A et al.. 2020. bioRxiv , .
    doi: 10.1101/2020.10.07.326462PMID:33052332
  6. Functional interrogation of a SARS-CoV-2 host protein interactome identifies unique and shared coronavirus host factors. Hoffmann, HH, Schneider, WM, Sánchez-Rivera, FJ, Luna, JM, Ashbrook, AW, Soto-Feliciano, YM, Leal, AA, Le Pen, J, Ricardo-Lax, I, Michailidis, E et al.. 2020. bioRxiv , .
    doi: 10.1101/2020.09.11.291716PMID:32935098
  7. BRG1 Loss Predisposes Lung Cancers to Replicative Stress and ATR Dependency. Gupta, M, Concepcion, CP, Fahey, CG, Keshishian, H, Bhutkar, A, Brainson, CF, Sanchez-Rivera, FJ, Pessina, P, Kim, JY, Simoneau, A et al.. 2020. Cancer Res 80, 3841-3854.
    doi: 10.1158/0008-5472.CAN-20-1744PMID:32690724
  8. SOAT1 promotes mevalonate pathway dependency in pancreatic cancer. Oni, TE, Biffi, G, Baker, LA, Hao, Y, Tonelli, C, Somerville, TDD, Deschênes, A, Belleau, P, Hwang, CI, Sánchez-Rivera, FJ et al.. 2020. J Exp Med 217, .
    doi: 10.1084/jem.20192389PMID:32633781
  9. Phase and context shape the function of composite oncogenic mutations. Gorelick, AN, Sánchez-Rivera, FJ, Cai, Y, Bielski, CM, Biederstedt, E, Jonsson, P, Richards, AL, Vasan, N, Penson, AV, Friedman, ND et al.. 2020. Nature 582, 100-103.
    doi: 10.1038/s41586-020-2315-8PMID:32461694
  10. Somatic Tissue Engineering in Mouse Models Reveals an Actionable Role for WNT Pathway Alterations in Prostate Cancer Metastasis. Leibold, J, Ruscetti, M, Cao, Z, Ho, YJ, Baslan, T, Zou, M, Abida, W, Feucht, J, Han, T, Barriga, FM et al.. 2020. Cancer Discov 10, 1038-1057.
    doi: 10.1158/2159-8290.CD-19-1242PMID:32376773
More Publications
Photo credit: Adam Lerner