Education
- PhD, 1994, Baylor College of Medicine; MD, 1997, Baylor College of Medicine
- BS, 1989, Biochemistry, Louisiana State University
Research Summary
Using Drosophila, we study how neurons form synaptic connections, as well as how synapses transmit information and change during learning and memory. We also investigate how alterations in neuronal signaling underlie several neurological diseases, including epilepsy, autism, and Huntington’s Disease. We hope to bridge the gap between the molecular components of the synapse and the physiological responses they mediate.Key Publications
- A synaptotagmin suppressor screen indicates SNARE binding controls the timing and Ca2+ cooperativity of vesicle fusion. Guan, Z, Bykhovskaia, M, Jorquera, RA, Sutton, RB, Akbergenova, Y, Littleton, JT. 2017. Elife 6, .
doi: 10.7554/eLife.28409PMID:28895532 - Phosphorylation of Complexin by PKA Regulates Activity-Dependent Spontaneous Neurotransmitter Release and Structural Synaptic Plasticity. Cho, RW, Buhl, LK, Volfson, D, Tran, A, Li, F, Akbergenova, Y, Littleton, JT. 2015. Neuron 88, 749-61.
doi: 10.1016/j.neuron.2015.10.011PMID:26590346 - Spontaneous and evoked release are independently regulated at individual active zones. Melom, JE, Akbergenova, Y, Gavornik, JP, Littleton, JT. 2013. J Neurosci 33, 17253-63.
doi: 10.1523/JNEUROSCI.3334-13.2013PMID:24174659 - A complexin fusion clamp regulates spontaneous neurotransmitter release and synaptic growth. Huntwork, S, Littleton, JT. 2007. Nat Neurosci 10, 1235-7.
doi: 10.1038/nn1980PMID:17873870 - Retrograde signaling by Syt 4 induces presynaptic release and synapse-specific growth. Yoshihara, M, Adolfsen, B, Galle, KT, Littleton, JT. 2005. Science 310, 858-63.
doi: 10.1126/science.1117541PMID:16272123
Recent Publications
- Mechanisms controlling the trafficking, localization, and abundance of presynaptic Ca2+ channels. Cunningham, KL, Littleton, JT. 2022. Front Mol Neurosci 15, 1116729.
doi: 10.3389/fnmol.2022.1116729PMID:36710932 - Regulation of presynaptic Ca2+ channel abundance at active zones through a balance of delivery and turnover. Cunningham, KL, Sauvola, CW, Tavana, S, Littleton, JT. 2022. Elife 11, .
doi: 10.7554/eLife.78648PMID:35833625 - Regulation of excitation-contraction coupling at the Drosophila neuromuscular junction. Ormerod, KG, Scibelli, AE, Littleton, JT. 2022. J Physiol 600, 349-372.
doi: 10.1113/JP282092PMID:34788476 - The decoy SNARE Tomosyn sets tonic versus phasic release properties and is required for homeostatic synaptic plasticity. Sauvola, CW, Akbergenova, Y, Cunningham, KL, Aponte-Santiago, NA, Littleton, JT. 2021. Elife 10, .
doi: 10.7554/eLife.72841PMID:34713802 - Glial ER and GAP junction mediated Ca2+ waves are crucial to maintain normal brain excitability. Weiss, S, Clamon, LC, Manoim, JE, Ormerod, KG, Parnas, M, Littleton, JT. 2022. Glia 70, 123-144.
doi: 10.1002/glia.24092PMID:34528727 - SNARE Regulatory Proteins in Synaptic Vesicle Fusion and Recycling. Sauvola, CW, Littleton, JT. 2021. Front Mol Neurosci 14, 733138.
doi: 10.3389/fnmol.2021.733138PMID:34421538 - Function of Drosophila Synaptotagmins in membrane trafficking at synapses. Quiñones-Frías, MC, Littleton, JT. 2021. Cell Mol Life Sci 78, 4335-4364.
doi: 10.1007/s00018-021-03788-9PMID:33619613 - Synaptic Properties and Plasticity Mechanisms of Invertebrate Tonic and Phasic Neurons. Aponte-Santiago, NA, Littleton, JT. 2020. Front Physiol 11, 611982.
doi: 10.3389/fphys.2020.611982PMID:33391026 - Synaptic Plasticity Induced by Differential Manipulation of Tonic and Phasic Motoneurons in Drosophila. Aponte-Santiago, NA, Ormerod, KG, Akbergenova, Y, Littleton, JT. 2020. J Neurosci 40, 6270-6288.
doi: 10.1523/JNEUROSCI.0925-20.2020PMID:32631939 - Drosophila Synaptotagmin 7 negatively regulates synaptic vesicle release and replenishment in a dosage-dependent manner. Guan, Z, Quiñones-Frías, MC, Akbergenova, Y, Littleton, JT. 2020. Elife 9, .
doi: 10.7554/eLife.55443PMID:32343229