David Bartel

David Bartel

Professor of Biology; Core Member, Whitehead Institute; Investigator, Howard Hughes Medical Institute

David Bartel studies molecular pathways that regulate eukaryotic gene expression by affecting the stability or translation of mRNAs.

617-258-5287

Phone

WI-601B

Office

Laura Resteghini

Assistant

617-258-7778

Assistant Phone

Education

  • PhD, 1993, Harvard University
  • BA, 1982, Biology, Goshen College

Research Summary

We study microRNAs and other small RNAs that specify the destruction and/or translational repression of mRNAs. We also study mRNAs, focusing on their untranslated regions and poly(A) tails, and how these regions recruit and mediate regulatory phenomena.

Awards

  • National Academy of Sciences, Member, 2011
  • Howard Hughes Medical Institute, HHMI Investigator, 2005
  • National Academy of Sciences Award in Molecular Biology, 2005
  • AAAS Newcomb Cleveland Prize, 2002

Key Publications

  1. The molecular basis of coupling between poly(A)-tail length and translational efficiency. Xiang, K, Bartel, DP. 2021. Elife 10, .
    doi: 10.7554/eLife.66493PMID:34213414
  2. The ZSWIM8 ubiquitin ligase mediates target-directed microRNA degradation. Shi, CY, Kingston, ER, Kleaveland, B, Lin, DH, Stubna, MW, Bartel, DP. 2020. Science 370, .
    doi: 10.1126/science.abc9359PMID:33184237
  3. The biochemical basis of microRNA targeting efficacy. McGeary, SE, Lin, KS, Shi, CY, Pham, TM, Bisaria, N, Kelley, GM, Bartel, DP. 2019. Science 366, .
    doi: 10.1126/science.aav1741PMID:31806698
  4. Excised linear introns regulate growth in yeast. Morgan, JT, Fink, GR, Bartel, DP. 2019. Nature 565, 606-611.
    doi: 10.1038/s41586-018-0828-1PMID:30651636
  5. A Network of Noncoding Regulatory RNAs Acts in the Mammalian Brain. Kleaveland, B, Shi, CY, Stefano, J, Bartel, DP. 2018. Cell 174, 350-362.e17.
    doi: 10.1016/j.cell.2018.05.022PMID:29887379

Recent Publications

  1. Endogenous transcripts direct microRNA degradation in Drosophila, and this targeted degradation is required for proper embryonic development. Kingston, ER, Blodgett, LW, Bartel, DP. 2022. Mol Cell , .
    doi: 10.1016/j.molcel.2022.08.029PMID:36150386
  2. The Parkinson's disease protein alpha-synuclein is a modulator of processing bodies and mRNA stability. Hallacli, E, Kayatekin, C, Nazeen, S, Wang, XH, Sheinkopf, Z, Sathyakumar, S, Sarkar, S, Jiang, X, Dong, X, Di Maio, R et al.. 2022. Cell 185, 2035-2056.e33.
    doi: 10.1016/j.cell.2022.05.008PMID:35688132
  3. The interplay between translational efficiency, poly(A) tails, microRNAs, and neuronal activation. Eisen, TJ, Li, JJ, Bartel, DP. 2022. RNA 28, 808-831.
    doi: 10.1261/rna.079046.121PMID:35273099
  4. MicroRNA 3'-compensatory pairing occurs through two binding modes, with affinity shaped by nucleotide identity and position. McGeary, SE, Bisaria, N, Pham, TM, Wang, PY, Bartel, DP. 2022. Elife 11, .
    doi: 10.7554/eLife.69803PMID:35191832
  5. Corrigendum: Ago2 protects Drosophila siRNAs and microRNAs from target-directed degradation, even in the absence of 2'-O-methylation. Kingston, ER, Bartel, DP. 2021. RNA 27, 1617.
    doi: 10.1261/rna.078961.121PMID:34785574
  6. The molecular basis of coupling between poly(A)-tail length and translational efficiency. Xiang, K, Bartel, DP. 2021. Elife 10, .
    doi: 10.7554/eLife.66493PMID:34213414
  7. Degradation of host translational machinery drives tRNA acquisition in viruses. Yang, JY, Fang, W, Miranda-Sanchez, F, Brown, JM, Kauffman, KM, Acevero, CM, Bartel, DP, Polz, MF, Kelly, L. 2021. Cell Syst 12, 771-779.e5.
    doi: 10.1016/j.cels.2021.05.019PMID:34143976
  8. Ago2 protects Drosophila siRNAs and microRNAs from target-directed degradation, even in the absence of 2'-O-methylation. Kingston, ER, Bartel, DP. 2021. RNA 27, 710-724.
    doi: 10.1261/rna.078746.121PMID:33853897
  9. The ZSWIM8 ubiquitin ligase mediates target-directed microRNA degradation. Shi, CY, Kingston, ER, Kleaveland, B, Lin, DH, Stubna, MW, Bartel, DP. 2020. Science 370, .
    doi: 10.1126/science.abc9359PMID:33184237
  10. The biochemical basis for the cooperative action of microRNAs. Briskin, D, Wang, PY, Bartel, DP. 2020. Proc Natl Acad Sci U S A 117, 17764-17774.
    doi: 10.1073/pnas.1920404117PMID:32661162
More Publications

Multimedia

 

 

Photo credit: Gretchen Ertl/Whitehead Institute