David Bartel

David Bartel

Professor of Biology; Core Member, Whitehead Institute; Investigator, Howard Hughes Medical Institute

David Bartel studies molecular pathways that regulate eukaryotic gene expression by affecting the stability or translation of mRNAs.

617-258-5287

Phone

WI-601B

Office

Laura Resteghini

Assistant

617-258-7778

Assistant Phone

Education

  • PhD, 1993, Harvard University
  • BA, 1982, Biology, Goshen College

Research Summary

We study microRNAs and other small RNAs that specify the destruction and/or translational repression of mRNAs. We also study mRNAs, focusing on their untranslated regions and poly(A) tails, and how these regions recruit and mediate regulatory phenomena.

Awards

  • National Academy of Sciences, Member, 2011
  • Howard Hughes Medical Institute, HHMI Investigator, 2005
  • National Academy of Sciences Award in Molecular Biology, 2005
  • AAAS Newcomb Cleveland Prize, 2002

Key Publications

  1. The molecular basis of coupling between poly(A)-tail length and translational efficiency. Xiang, K, Bartel, DP. 2021. Elife 10, .
    doi: 10.7554/eLife.66493PMID:34213414
  2. The ZSWIM8 ubiquitin ligase mediates target-directed microRNA degradation. Shi, CY, Kingston, ER, Kleaveland, B, Lin, DH, Stubna, MW, Bartel, DP. 2020. Science 370, .
    doi: 10.1126/science.abc9359PMID:33184237
  3. The biochemical basis of microRNA targeting efficacy. McGeary, SE, Lin, KS, Shi, CY, Pham, TM, Bisaria, N, Kelley, GM, Bartel, DP. 2019. Science 366, .
    doi: 10.1126/science.aav1741PMID:31806698
  4. Excised linear introns regulate growth in yeast. Morgan, JT, Fink, GR, Bartel, DP. 2019. Nature 565, 606-611.
    doi: 10.1038/s41586-018-0828-1PMID:30651636
  5. A Network of Noncoding Regulatory RNAs Acts in the Mammalian Brain. Kleaveland, B, Shi, CY, Stefano, J, Bartel, DP. 2018. Cell 174, 350-362.e17.
    doi: 10.1016/j.cell.2018.05.022PMID:29887379

Recent Publications

  1. Endogenous transcripts direct microRNA degradation in Drosophila, and this targeted degradation is required for proper embryonic development. Kingston, ER, Blodgett, LW, Bartel, DP. 2022. Mol Cell 82, 3872-3884.e9.
    doi: 10.1016/j.molcel.2022.08.029PMID:36150386
  2. The Parkinson's disease protein alpha-synuclein is a modulator of processing bodies and mRNA stability. Hallacli, E, Kayatekin, C, Nazeen, S, Wang, XH, Sheinkopf, Z, Sathyakumar, S, Sarkar, S, Jiang, X, Dong, X, Di Maio, R et al.. 2022. Cell 185, 2035-2056.e33.
    doi: 10.1016/j.cell.2022.05.008PMID:35688132
  3. The interplay between translational efficiency, poly(A) tails, microRNAs, and neuronal activation. Eisen, TJ, Li, JJ, Bartel, DP. 2022. RNA 28, 808-831.
    doi: 10.1261/rna.079046.121PMID:35273099
  4. MicroRNA 3'-compensatory pairing occurs through two binding modes, with affinity shaped by nucleotide identity and position. McGeary, SE, Bisaria, N, Pham, TM, Wang, PY, Bartel, DP. 2022. Elife 11, .
    doi: 10.7554/eLife.69803PMID:35191832
  5. Corrigendum: Ago2 protects Drosophila siRNAs and microRNAs from target-directed degradation, even in the absence of 2'-O-methylation. Kingston, ER, Bartel, DP. 2021. RNA 27, 1617.
    doi: 10.1261/rna.078961.121PMID:34785574
  6. The molecular basis of coupling between poly(A)-tail length and translational efficiency. Xiang, K, Bartel, DP. 2021. Elife 10, .
    doi: 10.7554/eLife.66493PMID:34213414
  7. Degradation of host translational machinery drives tRNA acquisition in viruses. Yang, JY, Fang, W, Miranda-Sanchez, F, Brown, JM, Kauffman, KM, Acevero, CM, Bartel, DP, Polz, MF, Kelly, L. 2021. Cell Syst 12, 771-779.e5.
    doi: 10.1016/j.cels.2021.05.019PMID:34143976
  8. Ago2 protects Drosophila siRNAs and microRNAs from target-directed degradation, even in the absence of 2'-O-methylation. Kingston, ER, Bartel, DP. 2021. RNA 27, 710-724.
    doi: 10.1261/rna.078746.121PMID:33853897
  9. The ZSWIM8 ubiquitin ligase mediates target-directed microRNA degradation. Shi, CY, Kingston, ER, Kleaveland, B, Lin, DH, Stubna, MW, Bartel, DP. 2020. Science 370, .
    doi: 10.1126/science.abc9359PMID:33184237
  10. The biochemical basis for the cooperative action of microRNAs. Briskin, D, Wang, PY, Bartel, DP. 2020. Proc Natl Acad Sci U S A 117, 17764-17774.
    doi: 10.1073/pnas.1920404117PMID:32661162
More Publications

Multimedia

 

 

Photo credit: Gretchen Ertl/Whitehead Institute