David Bartel

David Bartel

Professor of Biology; Member, Whitehead Institute; Investigator, Howard Hughes Medical Institute

David Bartel studies molecular pathways that regulate eukaryotic gene expression by affecting the stability or translation of mRNAs.

617-258-5287

Phone

WI-601B

Office

Laura Resteghini

Assistant

617-258-7778

Assistant Phone

Education

  • PhD, 1993, Harvard University
  • BA, 1982, Biology, Goshen College

Research Summary

We study microRNAs and other small RNAs that specify the destruction and/or translational repression of mRNAs. We also study mRNAs, focusing on their untranslated regions and poly(A) tails, and how these regions recruit and mediate regulatory phenomena.

Awards

  • National Academy of Sciences, Member, 2011
  • Howard Hughes Medical Institute, HHMI Investigator, 2005
  • National Academy of Sciences Award in Molecular Biology, 2005
  • AAAS Newcomb Cleveland Prize, 2002

Subjects Taught

David Bartel has taught classes in:

  • Experimental Biology
  • General Biochemistry
  • Nucleic Acids, Structure, Function, Evolution and Their Interactions with Proteins
  • Evolutionary Biology: Concepts, Models and Computation
For a complete list of subjects taught by the department, visit the Course 7 catalog.

Key Publications

  1. The ZSWIM8 ubiquitin ligase mediates target-directed microRNA degradation. Shi, CY, Kingston, ER, Kleaveland, B, Lin, DH, Stubna, MW, Bartel, DP. 2020. Science 370, .
    doi: 10.1126/science.abc9359PMID:33184237
  2. The biochemical basis of microRNA targeting efficacy. McGeary, SE, Lin, KS, Shi, CY, Pham, TM, Bisaria, N, Kelley, GM, Bartel, DP. 2019. Science 366, .
    doi: 10.1126/science.aav1741PMID:31806698
  3. Excised linear introns regulate growth in yeast. Morgan, JT, Fink, GR, Bartel, DP. 2019. Nature 565, 606-611.
    doi: 10.1038/s41586-018-0828-1PMID:30651636
  4. A Network of Noncoding Regulatory RNAs Acts in the Mammalian Brain. Kleaveland, B, Shi, CY, Stefano, J, Bartel, DP. 2018. Cell 174, 350-362.e17.
    doi: 10.1016/j.cell.2018.05.022PMID:29887379
  5. The molecular basis of coupling between poly(A)-tail length and translational efficiency. Xiang, K. and Bartel, D.P. 2021. bioRxiv.
    doi: https://doi.org/10.1101/2021.01.18.427055

Recent Publications

  1. The molecular basis of coupling between poly(A)-tail length and translational efficiency. Xiang, K, Bartel, DP. 2021. Elife 10, .
    doi: 10.7554/eLife.66493PMID:34213414
  2. Degradation of host translational machinery drives tRNA acquisition in viruses. Yang, JY, Fang, W, Miranda-Sanchez, F, Brown, JM, Kauffman, KM, Acevero, CM, Bartel, DP, Polz, MF, Kelly, L. 2021. Cell Syst , .
    doi: 10.1016/j.cels.2021.05.019PMID:34143976
  3. Ago2 protects Drosophila siRNAs and microRNAs from target-directed degradation, even in the absence of 2'-O-methylation. Kingston, ER, Bartel, DP. 2021. RNA 27, 710-724.
    doi: 10.1261/rna.078746.121PMID:33853897
  4. The ZSWIM8 ubiquitin ligase mediates target-directed microRNA degradation. Shi, CY, Kingston, ER, Kleaveland, B, Lin, DH, Stubna, MW, Bartel, DP. 2020. Science 370, .
    doi: 10.1126/science.abc9359PMID:33184237
  5. The biochemical basis for the cooperative action of microRNAs. Briskin, D, Wang, PY, Bartel, DP. 2020. Proc Natl Acad Sci U S A 117, 17764-17774.
    doi: 10.1073/pnas.1920404117PMID:32661162
  6. Xrn1p acts at multiple steps in the budding-yeast RNAi pathway to enhance the efficiency of silencing. Getz, MA, Weinberg, DE, Drinnenberg, IA, Fink, GR, Bartel, DP. 2020. Nucleic Acids Res 48, 7404-7420.
    doi: 10.1093/nar/gkaa468PMID:32501509
  7. MicroRNA Clustering Assists Processing of Suboptimal MicroRNA Hairpins through the Action of the ERH Protein. Fang, W, Bartel, DP. 2020. Mol Cell 78, 289-302.e6.
    doi: 10.1016/j.molcel.2020.01.026PMID:32302541
  8. The Dynamics of Cytoplasmic mRNA Metabolism. Eisen, TJ, Eichhorn, SW, Subtelny, AO, Lin, KS, McGeary, SE, Gupta, S, Bartel, DP. 2020. Mol Cell 77, 786-799.e10.
    doi: 10.1016/j.molcel.2019.12.005PMID:31902669
  9. MicroRNAs Cause Accelerated Decay of Short-Tailed Target mRNAs. Eisen, TJ, Eichhorn, SW, Subtelny, AO, Bartel, DP. 2020. Mol Cell 77, 775-785.e8.
    doi: 10.1016/j.molcel.2019.12.004PMID:31902668
  10. The biochemical basis of microRNA targeting efficacy. McGeary, SE, Lin, KS, Shi, CY, Pham, TM, Bisaria, N, Kelley, GM, Bartel, DP. 2019. Science 366, .
    doi: 10.1126/science.aav1741PMID:31806698
More Publications

Multimedia

 

 

Photo credit: Gretchen Ertl/Whitehead Institute