Graham C. Walker

Graham C. Walker

American Cancer Society Professor; Howard Hughes Medical Institute Professor

Graham C. Walker studies DNA repair, mutagenesis, and cellular responses to DNA damage, as well as the symbiotic relationship between legumes and nitrogen-fixing bacteria.

617-253-6716

Phone

68-633

Office

Mary Gallagher

Assistant

617-253-6711

Assistant Phone

Education

  • PhD, 1974, University of Illinois
  • BS, 1970, Chemistry, Carleton University

Research Summary

Our research is concentrated in two major areas. First, we aim to understand how the proteins involved in DNA repair, mutagenesis and other cellular responses to DNA damage are regulated. Some of our discoveries have the potential to improve chemotherapy. Second, we probe how nitrogen-fixing nodules develop on legumes, and the relationship between rhizobial functions required for nodule invasion/infection and mammalian pathogenesis.

Awards

  • Revolutionizing Innovative, Visionary Environmental health Research (RIVER), R35 Outstanding Investigator Award, 2017
  • National Academy of Sciences, Member, 2013
  • Howard Hughes Medical Institute, HHMI Professor, 2010
  • University of Guelph, Doctor of Science, honoris causa, 2010
  • American Association for the Advancement of Science, Fellow, 2008
  • Environmental Mutagen Society, EMS Award, 2006
  • American Academy of Arts and Sciences, Fellow, 2004
  • American Cancer Society, Research Professor, 2002
  • Howard Hughes Medical Institute, HHMI Professor, 2002
  • Charles Ross Scholar, 2000-2003
  • American Academy of Microbiology, Fellow, 1994
  • Margaret MacVicar Faculty Fellow, 1992-2002
  • John Simon Guggenheim Memorial Foundation, Guggenheim Fellowship, 1984
  • Massachusetts Institute of Technology, MacVicar Faulty Fellow, 1984
  • Rita Allen Foundation, Career Development Award, 1978

Recent Publications

  1. Molecular mechanism of SbmA, a promiscuous transporter exploited by antimicrobial peptides. Ghilarov, D, Inaba-Inoue, S, Stepien, P, Qu, F, Michalczyk, E, Pakosz, Z, Nomura, N, Ogasawara, S, Walker, GC, Rebuffat, S et al.. 2021. Sci Adv 7, eabj5363.
    doi: 10.1126/sciadv.abj5363PMID:34516884
  2. REV1 inhibitor JH-RE-06 enhances tumor cell response to chemotherapy by triggering senescence hallmarks. Chatterjee, N, Whitman, MA, Harris, CA, Min, SM, Jonas, O, Lien, EC, Luengo, A, Vander Heiden, MG, Hong, J, Zhou, P et al.. 2020. Proc Natl Acad Sci U S A 117, 28918-28921.
    doi: 10.1073/pnas.2016064117PMID:33168727
  3. Rev7 loss alters cisplatin response and increases drug efficacy in chemotherapy-resistant lung cancer. Vassel, FM, Bian, K, Walker, GC, Hemann, MT. 2020. Proc Natl Acad Sci U S A 117, 28922-28924.
    doi: 10.1073/pnas.2016067117PMID:33144509
  4. A stapled POL κ peptide targets REV1 to inhibit mutagenic translesion synthesis. Chatterjee, N, D'Souza, S, Shabab, M, Harris, CA, Hilinski, GJ, Verdine, GL, Walker, GC. 2020. Environ Mol Mutagen 61, 830-836.
    doi: 10.1002/em.22395PMID:32573829
  5. A special issue dedicated to Dr. Bruce N. Ames: Introduction. Walker, GC. 2020. Mutat Res Genet Toxicol Environ Mutagen 849, 503115.
    doi: 10.1016/j.mrgentox.2019.503115PMID:32087846
  6. Sinorhizobium meliloti YbeY is a zinc-dependent single-strand specific endoribonuclease that plays an important role in 16S ribosomal RNA processing. Babu, VMP, Sankari, S, Budnick, JA, Caswell, CC, Walker, GC. 2020. Nucleic Acids Res 48, 332-348.
    doi: 10.1093/nar/gkz1095PMID:31777930
  7. Virtual Pharmacophore Screening Identifies Small-Molecule Inhibitors of the Rev1-CT/RIR Protein-Protein Interaction. Dash, RC, Ozen, Z, McCarthy, KR, Chatterjee, N, Harris, CA, Rizzo, AA, Walker, GC, Korzhnev, DM, Hadden, MK. 2019. ChemMedChem 14, 1610-1617.
    doi: 10.1002/cmdc.201900307PMID:31361935
  8. A Small Molecule Targeting Mutagenic Translesion Synthesis Improves Chemotherapy. Wojtaszek, JL, Chatterjee, N, Najeeb, J, Ramos, A, Lee, M, Bian, K, Xue, JY, Fenton, BA, Park, H, Li, D et al.. 2019. Cell 178, 152-159.e11.
    doi: 10.1016/j.cell.2019.05.028PMID:31178121
  9. A White-Box Machine Learning Approach for Revealing Antibiotic Mechanisms of Action. Yang, JH, Wright, SN, Hamblin, M, McCloskey, D, Alcantar, MA, Schrübbers, L, Lopatkin, AJ, Satish, S, Nili, A, Palsson, BO et al.. 2019. Cell 177, 1649-1661.e9.
    doi: 10.1016/j.cell.2019.04.016PMID:31080069
  10. Incomplete base excision repair contributes to cell death from antibiotics and other stresses. Gruber, CC, Walker, GC. 2018. DNA Repair (Amst) 71, 108-117.
    doi: 10.1016/j.dnarep.2018.08.014PMID:30181041
More Publications

Multimedia

Photo credit: Raleigh McElvery