BSG-MSRP-Bio Student Profile: Adriana Camacho-Badillow, Calo Lab

Understanding the Role of PARPs and UBF1 in Building Ribosomes

Noah Daly | Department of Biology
September 25, 2024

While pursuing her passion for research, BSG-MSRP-Bio student Adriana Camacho-Badillo made major contributions to research in the Calo Lab in the Department of Biology at MIT.

Growing up in Puerto Rico, Adriana Camacho-Badillo had no explanation for her recurrent multiple fracture injuries. In her teens, she was finally able to see a geneticist who diagnosed her with a genetic syndrome that affects connective tissue throughout the body. 

This awakened an interest in genetics that led her to immerse herself in her genetic panel results, curious about the role of each gene that was tested. 

“I realized I wanted to find out how mutations affect gene expression that could possibly lead to a distinct phenotype or even a genetic syndrome,” she says. 

Within a few years of setting her sights on becoming a scientist, Camacho-Badillo began her first research experience working in the laboratory of Professors Hector Areizaga-Martínez and Elddie Román-Morales. Her work focused on experiments using enzymes to degrade Dichloro-diphenyl-trichloroethane, or DDT, a once-common pesticide known to be highly toxic to humans and other mammals that remains in the environment long after application to crops. 

As she became familiar with the day-to-day routines of designing and executing research experiments, she realized she was drawn to biochemistry and molecular biology. Camacho-Badillo soon applied to the molecular neuroscience lab of Professor Miguel Méndez at the University of Puerto Rico at Aguadilla and joined their team working on the effects of high glucose in the central nervous system of mice.

Expanding Experiences While Narrowing Focus

When Camacho-Badillo was sixteen, alongside Méndez and other students, she participated in the Quantitative Methods Workshop at MIT. The workshop allows undergraduate students from universities around the United States and the Caribbean to come together for a few days in January to learn how to apply computational tools that can help biological research. 

One of the sessions she attended was a talk about machine learning and studying the brain, presented by graduate student Taylor Baum. 

“I loved Taylor’s workshop,” Camacho-Badillo said, “When Taylor asked if anyone would be interested in volunteering to teach Spanish-speaking students in grade school science, I said yes without hesitation.” 

Baum, a neuroscientist and computer scientist working in the Munther Dahleh Research Group at MIT, is also the founder of Sprouting, Inc. The organization equips high-school students and undergraduates in Puerto Rico with STEM skills to help them pursue careers in science and technology.

After participating in QMW, it wasn’t long before Camacho-Badillo was back at MIT. She participated in the Bernard S. and Sophie G. Gould MIT Summer Research Program in Biology in 2023 and worked in the Yamashita Lab, studying two phenotypes of genetic mutations associated with cancer during cell division. 

The BSG-MSRP-Bio program offers lab experience and extracurricular activities such as journal clubs and dinners with professors. At one of these events, she met Associate Professor of Biology Eliezer Calo.

Camacho-Badillo and her mentor Eliezer Calo, Associate Professor of Biology. Photo Credit: Mandana Sassanfar.

“I loved meeting another scientist from Puerto Rico working on molecular biology, so I decided to look further into his research,” Camacho-Badillo recalls. 

In 2024, she was delighted to have the opportunity to return to the BSG-MSRP-Bio Program for a second time, and now to work in Calo’s Lab. 

The Unsolved Mysteries of UBF1

Although BSG-MSRP-Bio students are often mentored by graduate students or postdocs, Calo spent the summer mentoring Camacho-Badillo directly. As an alumnus of the MSRP-Bio program himself, Calo understands firsthand how much of an impact meaningful research can have for an undergraduate student spending a few months experiencing life in the lab at MIT. 

In the Calo Lab, Camacho-Badillo spent the early days of this summer poring over past research papers on genetic transcription, trying to answer a big question in molecular biology. Camacho-Badillo has been helping Calo understand how a particular protein affects the production of ribosomes in cells.

A ribosome is the molecular machinery that synthesizes proteins, and an average cell can produce around 10 million ribosomes to sustain its essential functions. Creating these protein engines requires the transcription of ribosomal DNA, or rDNA. 

In order to synthesize RNA, specific proteins called polymerases must bind to the DNA. Camacho-Badillo’s work focuses on one of those binding proteins called upstream binding factor, or UBF1. UBF1 is essential for the synthesis of the ribosomal RNA. The UBF1 transcription factor is responsible for recruiting the polymerase, RNA polymerase I, to transcribe the rDNA into rRNA.

Despite knowing the importance of UBF1 in ribosomal production, it’s unclear what its full purpose is in this process. Calo and Camacho-Badillo think that clarifying the role of UBF1 in ribosomal biogenesis will help scientists understand how certain neurological diseases occur. UBF1 is known to be associated with diseases such as acute myeloid leukemia and childhood-onset neurodegeneration with brain atrophy, but the mechanism is not yet understood.

UBF1 is a peculiar transcription factor. Before it can transcribe a gene, UBF1 must first dimerize, forming a bond with another UBF1 protein. After binding to the rDNA, UBF1 can recruit the remaining RNA transcription machinery. The dimer is crucial for transcription to occur, yet this protein can make further connections with other UBF1 monomers, a process called oligomerization. 

Nothing is concretely understood about how oligomers of UBF1 form: they could be critical for transcription, forming clusters that can no longer bind with rDNA or inhibit the recruitment of the remaining RNA transcription machinery. These clusters could also be directly contributing to a variety of neurological diseases.

“The genome contains multiple rDNA copies, but not all are utilized,” Calo explains. “UBF1 must precisely identify the correct copies to activate while avoiding the formation of aggregates that could impair its function.”

The regulation of these dimers is also a mystery. Early in the summer, Camacho-Badillo helped make an important connection: prior research from the Calo Lab showed that enzymes called poly ADP-ribose polymerases, or PARPs, play a role in maintaining chemical properties in the nucleolus, where ribosomes are produced and assembled. The main target of these proteins within the RNA transcriptional machinery before transcription is initiated is UBF1.  

Based on this initial result, Camacho-Badillo’s entire summer project shifted to further characterize PARPs in ribosome biogenesis.

“This observation about the role PARPs plays is a big deal for us,” Calo says. “We do many experiments in my lab, but Adriana’s work this summer has opened a key gateway to understanding the mysteries behind UBF1 regulation, leading to proper ribosome production and allowing the Calo lab to pursue this goal. She’s going to be a superstar.” 

Camacho-Badillo’s work hasn’t ended with the BSG-MSRP-Bio program, however. She’ll spend the fall semester at MIT, continuing to work on understanding how rDNA transcription is regulated as a visiting student in the Calo Lab. Although she still has a year and a half to go in her undergraduate degree, she’s already set her sights on graduate school. 

“This program has meant so much to me and brought so much into my life,” she says. “All I want to do right now is keep this research going.”

Want to know more about our BSG-MSRP-Bio Students? Read more testimonials and stories here.

BSG-MSRP-Bio student profile: Yeongseo Son, Spranger Lab

All It takes to titer: discovering a love of troubleshooting at MIT

Noah Daly | Department of Biology
September 25, 2024

BSG-MSRP-Bio student Yeongseo Son breathed new life into her love of science over the summer in the Spranger Lab studying immune responses in the lung in the Department of Biology at MIT.


When Yeongseo Son was initially invited to join the Spranger Lab as part of the Bernard S. and Sophie G. Gould MIT Research Program in Biology, she thought the email was spam. Having grown up in the South for most of her life, she had never pictured herself at MIT.

Back home at the University of Georgia, Son studies neutrophils, a kind of innate immune cell that serves as the body’s first line of defense against foreign pathogens. After taking a graduate-level course on immunology last semester, Son realized she needed to increase her basic understanding of the broad discipline.

“I knew that coming to work with Professor Spranger would give me a chance to work on cancer immunology and T cell biology, two really cool and important fields I haven’t been exposed to,” Son says.

It took several attempts from the Senior Lecturer and BSG-MSRP-Bio program coordinator Mandana Sassanfar to reach her before Son accepted.  

“Before I arrived, I was worried it would be too intense or that I wouldn’t fit in,” Son says. “I couldn’t have been more wrong: yes, the work is challenging, but everyone is here because they truly love science.”

Vexing Viruses

In the lab of Stefani Spranger, Associate Professor in the Department of Biology and Intramural Faculty of the Koch Institute for Integrative Cancer Research, Son was first tasked with a seemingly simple second project: growing a new strain of influenza to infect mice that had recently recovered from another strain. 

This quest involved multiple steps, such as culturing cells, infecting the cells with the virus, and measuring how lethal it is to host cells, working with a strain that her lab hadn’t used before.   

To test the strength of the virus, the virus is mixed with host cells in order to infect them. Then the host cells are placed on a layer of agar, a gelatinous substance that provides nutrients for the host cells. When a virus-infected cell dies, it creates a hole in the layer of cells called a plaque. The number of plaques is recorded to determine the virus’s titer, or frequency. 

Son excitedly executed her plaque assay after breezing through the first two steps. The next day, to her surprise and disappointment, all her cells — including the negative control — had died. 

“The first time it failed, I was crushed because I had written the protocol over and over,” Son says. 

That initial disappointment, however, turned into excitement to solve the problem. She worked closely with her mentor, Postdoc Taylor Heim, who helped motivate her to keep trying to figure out what had gone wrong.

Son spent weeks designing a process to effectively titer the virus. She laid out a plan of action to assess what could be toxic to the cells and systematically tested each component of the protocol that could affect the growth of her strain of influenza. 

It took Son four attempts before she had a eureka moment: the success of her cell cultures depended on the precise measurement of just one reagent. 

Too much of the reagent meant the cells would all die on arrival, but just a little bit, and they would survive. It took Son three more attempts — seven experiments in total — to fully ensure the success of the assay.

Throughout this process, and despite her many failures, Son realized she finds troubleshooting very enjoyable. Each failure was unique and crucial for her eventual success.  

“I’m making a difference — I’m figuring something out that can really help with future experiments,” Son says. “That moment of success is why I gained such confidence in being a scientist.”

Yeongseo Son and Professor Spranger in the lab at the Koch Institute. Photo credit: Mandana Sassanfar.

Lighting Up the Lungs

In the Spranger Lab, Son’s other summer project focused on the respiratory system. She was examining a type of specialized cell called resident memory CD8+ T cells in the lungs and lymph nodes of mice infected with influenza. These specialized T cells gain a kind of memory of how to fight off a virus and remain in the lungs and lung-draining lymph node tissues long after the tissues have overcome the immune challenge of something like influenza. 

Son’s postdoctoral student mentor Taylor Heim is especially interested in the potential of these cells for cancer immunotherapy.

To better understand how the resident memory T cell populations change over time, Son and Heim conducted a time-point experiment in which mice were studied at different points after being infected with influenza. They do this by injecting antibodies into the mouse’s bloodstream after infection, which mark any immune cells circulating in the blood, allowing the researchers to gauge if the cells are recruited to help fight a virus.

Son’s work this summer goes deeper, examining proteins known as cytokines that enable the immune system to combat germs or other substances that can harm an organism. 

Son used a genetically modified mouse to track the production of interferon-gamma, IFN‐γ. IFN‐γ is a cytokine that plays a key role in regulating immune responses, often helping fight off infection and cancer. Son found evidence that resident memory T cells produce this cytokine in both the lungs and lung-draining lymph nodes. 

The goal of this research is to one day use the information collected on resident memory CD8+ T cell populations and cytokine expression to help systematically target cancerous cells that appear in the body.

“Yeongseo has helped us pioneer a system to track how these cells move within tissues of living mice,” Spranger explains. “By using this approach, we will be able to understand how they are affecting cancer development and how cancer is affecting them, and that’s pretty exciting.”

Learning Outside the Lab

The BSG-MSRP-Bio program also gave Son near-constant access to faculty from across the biology department, both through extracurricular offerings such as dinner seminars and journal clubs as well as departmental retreats. 

She’s also sat down with professors individually and heard more about their stories and research as part of her podcast Let’s Talk Chemistry. Nobel Laureate Phil Sharp, whose office is on the same floor as the Spranger Lab, joined the show after Son dropped by his office to introduce herself. Son learned more about his discoveries in RNA splicing and the behind-the-scenes details of his Nobel Prize ceremonies. 

At MIT, Son has found a welcoming community of enthusiastic scientists working towards common goals, especially in her lab. Every day, members of the Spranger Lab actively seek each other out to have lunch together, and she feels right at home with them.

“I realized that yes, the people in this community are intensely passionate about their work, but they’re also multi-dimensional with a ton of different interests,” Son says. “One of the graduate students in my lab even gave me tennis lessons, and I’m already a better player because of it.”

As she returns to her studies in Georgia and begins the process of applying to graduate schools, Son is excited about her future in science. Armed with new knowledge, confidence, and community, she’s ready for whatever curveball her career in science will throw her next.

Want to know more about our BSG-MSRP-Bio Students? Read more testimonials and stories here.

BSG-MSRP-Bio student profile: Praise Lasekan, Vos Lab

A scientist’s toolkit: practice, patience, and plenty of questions

Noah Daly | Department of Biology
September 24, 2024

A childhood interest in the complex worlds within an organism that the naked eye cannot see ultimately led Praise Lasekan to the BSG-MSRP-Bio program at MIT working in the Vos Lab in the Department of Biology at MIT. 


Praise Lasekan talks about the fast protein liquid chromatography machines he used in the Vos Lab as though they were colleagues. 

“We have two of them,” he explains. “Sam and Frodo.” 

FPLC machines separate and analyze proteins based on their properties, such as size, charge, and binding affinity. When Lasekan first saw the FPLC machines, the tubing and valves, hooked up to a computer, reminded him of a fancy piece of plumbing. Much like an expert plumber, proficiency​​ with these machines required him to understand every valve and tube.

Although Lasekan is a Biology major with a Chemistry Minor at the University of Maryland, Baltimore County, Lasekan had the opportunity to spend his summer living in Boston and working on MIT’s campus as a Bernard S. and Sophie G. Gould MIT Summer Research Program in Biology student.

“I loved every part of this summer: Waking up in the morning, coming to the lab, setting up some stuff — whether it goes well or not,” Lasekan says. “Taking that experience and coming back the next day, you’re ready to keep going and improving.”

Lasekan spent his days in the lab of Seychelle Vos, Robert A. Swanson Career Development Professor of Life Sciences and HHMI Freeman Hrabowski Scholar. The Vos Lab examines how genetic information is stored so compactly yet is still accessible enough for genes to be expressed. All cells in an organism have the same DNA, but the organization of that DNA and how genes are expressed determine why one cell becomes part of the liver and another cell part of the brain. 

Lasekan worked with a highly conserved protein that plays a role in gene transcription called CCCTCF-binding factor, or CTCF. He worked to understand how adding a phosphate group, a process called phosphorylation, affects CTCF’s binding to DNA. Binding to DNA is the first step in the process of transcription, which creates proteins within a cell.

The Vos lab uses various tools and techniques that Vos learned during her training, often using simple systems with limited components to study phenomena such as molecular structures, the dynamics of proteins and nucleic acids, and how structural alterations affect the function of these molecules. The lab has also recently been delving into more systemic work, such as removing genes from cells to observe how that affects gene expression. 

“My lab is a little unconventional in some ways,” Vos says. “We use a lot of biochemistry and structural biology, but we want to use the tools of genetics and cell biology as well to understand how genome organization and genome expression are coupled.” 

BSG-MSRP-Bio Student Praise with Graduate Student and mentor, Bonnie Su, of the Vos Lab.

CTCF can play many roles during transcription, able to act as an activator or as a roadblock for transcription. Lasekan’s mentor, graduate student Bonnie Su, has been trying to figure out how cells control CTCF behavior.

“What if the cell needed something done ASAP, and CTCF was blocking its route to its destination on a DNA sequence?” Vos asks. “How does the cell regulate it?” 

Praise mutated different sites on CTCF that have been reported in previous research as possible points of phosphorylation of the CTCF protein. Several other amino acids can also be phosphorylated. Still, Su was particularly interested in the work other researchers have done on three specific sites along a segment called the zinc finger domain.  A zinc finger domain is a zinc ion that helps proteins stabilize their shape and the domain has a function in various cellular processes such as genetic transcription. The ion is regulated by amino acids to give it a finger-like structure that helps in binding the protein to DNA during transcription.

“Before we went on a wild goose chase,” Lasekan explains, “we needed to identify a specific area of the protein to concentrate on and examine the behavior of CTCF locally there.”

Off of the Drawing Board and Into the Laboratory

Lasekan was introduced to the microscopic world of the body — cells, organelles, molecules, and even atoms — in the pages of his secondary school science textbooks in Ondo, Nigeria. There began his curiosity about atomic structures, cells, and the complex worlds within an organism that the naked eye cannot see. He would spend much of his class time flipping through the pages of diagrams and ultimately decided to pursue science as his core focus during senior secondary school.

“It was there that I could take my first classes in chemistry, biology, and physics,” he says. “I realized I love all of the sciences, so my focus in school was science and technology.”

Initially drawn to engineering, Lasekan ended up dropping out of a technical drawing course.

“I loved the course,” Lasekan smiles, “but the course didn’t like me one bit.” 

Lasekan’s dreams shifted toward medicine and, with it, more science and math courses. 

When he graduated valedictorian from Staff Secondary School at the Federal University of Technology in Akure, his parents — both pharmacists — encouraged him to apply to university to become a medical doctor. However, getting into a good university is challenging in Nigeria. 

Praise opted instead to remain at home after graduating, building a successful business doing portrait photography. He also took chemistry, physics, and biology courses through Cambridge University International.

Despite making good money with photography, Praise was determined to go to university but wasn’t confident that he would get in. Nevertheless, an acquaintance encouraged him to apply to UMBC. 

“It was the only school I applied to, and I couldn’t believe that I got in,” says Lasekan. 

At UMBC, Lasekan discovered the pre-med track he’d signed up for was not a good fit for him either — many of the fundamental questions he was curious about were beyond the scope of his courses. A friend who was working in a research lab on campus suggested that Lasekan should try to find a lab to work in, too. 

“They told me I might like what they’re doing there because of the level of questions that I ask,” Lasekan says. “Sometimes people didn’t have answers for me, and maybe I could find some of those answers through research.” 

After he emailed PIs in biology and chemistry labs around campus, Lasekan was eventually accepted into the lab of Dr. Erin Green, Associate Professor of Biological Sciences at UMBC — his first experience doing research in the lab. 

Dr. Green focuses on trying to understand how post-translational modifications of proteins regulate functions, such as the establishment of proper states of gene expression and the ability of cells to respond to stress. 

“Dr. Green took a chance with me,” Lasekan says. “I am forever grateful to her for that.” 

MIT: A Destination for Scientific Discovery

When considering summer research programs, Praise applied to MIT, one institution he’d always remembered from his childhood textbooks as the birthplace of many great inventions and scientific discoveries. It’s also one of the few programs in the U.S. that accepts international students. 

“I’ve always had MIT at the back of my mind, but I didn’t think they’re looking for people like me,” Lasekan says. When he saw the notification for his acceptance to the program pop up on his smartwatch, he screamed, startling some students walking by him in the hallway.

“This is one of the best institutions in the world, and I just got an opportunity to go there for ten weeks, actually do a project of my own under the mentorship of my PI,” Lasekan recalls thinking. “This was a dream come true for me.”

In the Vos lab, Lasekan’s interest in the fundamental questions of biology was not only acceptable but encouraged, especially by his mentor, Su.

“Bonnie always had the patience to sit down with me, explain concepts to me, and write out the math with me if I need her to,” Lasekan says, “and sometimes I need it 25 times, but she’s there for me.” 

Now that the BSG-MSRP-Bio program has wrapped up, Praise has the confidence to set his sights higher than ever before — on the “big guys,” the universities and institutions doing the sort of cutting-edge research that first caught his eye in the textbooks back home. Praise is eagerly preparing his graduate school applications for fall 2025, including MIT.

“After being here, surrounded by people from everywhere driven by the same purpose, I know there’s an exciting future in science for me.” 

Want to know more about our BSG-MSRP-Bio Students? Read more testimonials and stories here.

2024 Catalyst Symposium

Lowering ‘activation barriers’ for rising biology researchers

Lillian Eden | Department of Biology
May 16, 2024

The second annual Catalyst Symposium, sponsored by the Department of Biology and Picower Institute for Learning and Memory, invited postdocs from across the country to meet with faculty, present their work to the MIT community, and build relationships.

For science — and the scientists who practice it — to succeed, it must be shared. That’s why members of the MIT community recently gathered to learn about the research of eight postdocs from across the country for the second annual Catalyst Symposium, an event co-sponsored by the Department of Biology and The Picower Institute for Learning and Memory

The eight Catalyst Fellows came to campus as part of an effort to increase engagement between MIT scholars and postdocs excelling in their respective fields from traditionally underrepresented backgrounds in science. The three-day symposium included panel discussions with faculty and postdocs, one-on-one meetings, social events, and research talks from the Catalyst Fellows.

“I love the name of this symposium because we’re all, of course, eager to catalyze advancements in our professional lives, in science, and to move forward faster by lowering activation barriers,” says MIT Biology Department Head Amy Keating. “I feel we can’t afford to do science with only part of the talent pool, and I don’t think people can do their best work when they are worried about whether they belong.”  

The cohort of 2024 Catalyst Fellows included: Chloé Baron from Boston Children’s Hospital; Maria Cecília Canesso from The Rockefeller University; Kiara Eldred from the University of Washington School of Medicine; Caitlin Kowalski from the University of Oregon; Fabián Morales-Polanco from Stanford University; Kali Pruss from the Washington University School of Medicine in St. Louis; Rodrigo Romero from Memorial Sloan Kettering Cancer Center; and Zuri Sullivan from Harvard University. 

Romero, who received his PhD from MIT working in the Jacks Lab at the Koch Institute, said that it was “incredible to see so many familiar faces,” but he spent the Symposium lunch chatting with new students in his old lab. 

“Especially having been trained to think differently after MIT, I can now reach out to people that I didn’t as a graduate student, and make connections that I didn’t think about before,” Romero says. 

He presented his work on lineage plasticity in the tumor microenvironment. Lineage plasticity is a hallmark of tumor progression but also occurs during normal development, such as wound healing.

As for the general mission of the symposium, Romero agreed with Keating. 

“Trying to lower the boundary for other people to actually have a chance to do academic research in the future is important,” Romero says.

The Catalyst Symposium is aimed at early-career scientists who foresee a path in academia. Of the 2023 Catalyst Fellows, one has already secured a faculty position. Starting in September 2024, Shan Maltzer will be an assistant professor at Vanderbilt University in the Department of Pharmacology and the Vanderbilt Brain Institute studying mechanisms of somatosensory circuit assembly, development, and function. 

Another aim of the Catalyst Symposium is to facilitate collaborations and strengthen existing relationships. Sullivan, an immunologist and molecular neuroscientist who presented on the interactions between the immune system and the brain, is collaborating with Sebastian Lourido, an Associate Professor of Biology and Core Member of the Whitehead Institute. Lourido’s studies include pathogens such as Toxoplasma gondii, which is known to alter the behavior of infected rodents. In the long term, Sullivan hopes to bridge research in immunology and neuroscience — for instance by investigating how infection affects behavior. She has observed that two rodents experiencing illness will huddle together in a cage, whereas an unafflicted rodent and an ill one will generally avoid each other when sharing the same space. 

Pruss presented research on the interactions between the gut microbiome and the environment, and how they may affect physiology and fetal development. Kowalski discussed the relationship between fungi residing on our bodies and human health. Beyond the opportunity to deliver talks, both agreed that the small group settings of the three-day event were rewarding.

“The opportunity to meet with faculty throughout the symposium has been invaluable, both for finding familiar faces and for establishing friendly relationships,” Pruss says. “You don’t have to try to catch them when you’re running past them in the hallway.”

Eldred, who studies cell fate in the human retina, says she was excited about the faculty panels because they allowed her to ask faculty about fundamental aspects of recruiting for their labs, like bringing in graduate students. 

Kowalski also says she enjoyed interfacing with so many new ideas — the spread of scientific topics from among the cohort of speakers extended beyond those she usually interacts with.

Mike Laub, Professor of Biology and HHMI Investigator, and Yadira Soto-Feliciano, Assistant Professor of Biology and Intramural Faculty at the Koch Institute, were on the symposium’s planning committee, along with Diversity, Equity, and Inclusion Officer Hallie Dowling-Huppert. Laub hopes the symposium will continue to be offered annually; next year’s Catalyst Symposium is already scheduled to take place in early May.

“I thought this year’s Catalyst Symposium was another great success. The talks from the visiting Fellows featured some amazing science from a wide range of fields,” Laub says. “I also think it’s fair to say that their interactions with the faculty, postdocs, and students here generated a lot of excitement and energy in our community, which is exactly what we hoped to accomplish with this symposium.”

Starting off the year with new skills, new connections

At MIT’s Quantitative Methods Workshop, more than 80 students and faculty from a dozen partner institutions became immersed at the intersection of computation and life sciences and forged new ties to MIT and each other

January 30, 2024