Seychelle M. Vos

Seychelle M. Vos

Robert A. Swanson (1969) Career Development Professor of Life Sciences; HHMI Freeman Hrabowski Scholar

Seychelle M. Vos investigates how genome organization and gene expression are physically coupled across molecular scales.





Building 68 - Koch Biology Building


Meg Rheault



Assistant Phone


  • PhD, 2013, University of California, Berkeley
  • BS,  2008,  Genetics,  University of Georgia

Research Summary

We study the interplay of gene expression and genome organization. Our work focuses on understanding how large molecular machineries involved in genome organization and gene transcription regulate each others’ function to ultimately determine cell fate and identity. We employ a broad range of approaches including single-particle cryo-electron microscopy (cryo-EM), X-ray crystallography, biochemistry, and genetics to mechanistically understand how these molecular assemblies regulate each other across molecular scales.


  • New Innovator Award, National Institutes of Health Common Fund’s High-Risk, High-Reward Research Program, 2021

Recent Publications

  1. Identification and characterization of a human MORC2 DNA binding region that is required for gene silencing. Fendler, NL, Ly, J, Welp, L, Urlaub, H, Vos, SM. 2024. bioRxiv , .
    doi: 10.1101/2024.06.05.597643PMID:38895295
  2. Targeting MYC effector functions in pancreatic cancer by inhibiting the ATPase RUVBL1/2. Vogt, M, Dudvarski Stankovic, N, Cruz Garcia, Y, Hofstetter, J, Schneider, K, Kuybu, F, Hauck, T, Adhikari, B, Hamann, A, Rocca, Y et al.. 2024. Gut , .
    doi: 10.1136/gutjnl-2023-331519PMID:38821858
  3. The MYCN oncoprotein is an RNA-binding accessory factor of the nuclear exosome targeting complex. Papadopoulos, D, Ha, SA, Fleischhauer, D, Uhl, L, Russell, TJ, Mikicic, I, Schneider, K, Brem, A, Valanju, OR, Cossa, G et al.. 2024. Mol Cell 84, 2070-2086.e20.
    doi: 10.1016/j.molcel.2024.04.007PMID:38703770
  4. MECP2 directly interacts with RNA polymerase II to modulate transcription in human neurons. Liu, Y, Flamier, A, Bell, GW, Diao, AJ, Whitfield, TW, Wang, HC, Wu, Y, Schulte, F, Friesen, M, Guo, R et al.. 2024. Neuron 112, 1943-1958.e10.
    doi: 10.1016/j.neuron.2024.04.007PMID:38697112
  5. Distinct negative elongation factor conformations regulate RNA polymerase II promoter-proximal pausing. Su, BG, Vos, SM. 2024. Mol Cell 84, 1243-1256.e5.
    doi: 10.1016/j.molcel.2024.01.023PMID:38401543
  6. Inherited blood cancer predisposition through altered transcription elongation. Zhao, J, Cato, LD, Arora, UP, Bao, EL, Bryant, SC, Williams, N, Jia, Y, Goldman, SR, Nangalia, J, Erb, MA et al.. 2024. Cell 187, 642-658.e19.
    doi: 10.1016/j.cell.2023.12.016PMID:38218188
  7. Structure of the complete Saccharomyces cerevisiae Rpd3S-nucleosome complex. Markert, JW, Vos, SM, Farnung, L. 2023. Nat Commun 14, 8128.
    doi: 10.1038/s41467-023-43968-8PMID:38065958
  8. Structure of the complete S. cerevisiae Rpd3S-nucleosome complex. Markert, JW, Vos, SM, Farnung, L. 2023. bioRxiv , .
    doi: 10.1101/2023.08.03.551877PMID:37577459
  9. Structure of a backtracked hexasomal intermediate of nucleosome transcription. Farnung, L, Ochmann, M, Garg, G, Vos, SM, Cramer, P. 2022. Mol Cell 82, 3126-3134.e7.
    doi: 10.1016/j.molcel.2022.06.027PMID:35858621
  10. Structural advances in transcription elongation. Mohamed, AA, Vazquez Nunez, R, Vos, SM. 2022. Curr Opin Struct Biol 75, 102422.
    doi: 10.1016/


Photo credit: Raleigh McElvery