Seychelle M. Vos

Seychelle M. Vos

Robert A. Swanson (1969) Career Development Professor of Life Sciences

Seychelle M. Vos investigates how genome organization and gene expression are physically coupled across molecular scales.





Building 68 - Koch Biology Building


Meg Rheault



Assistant Phone


  • PhD, 2013, University of California, Berkeley
  • BS,  2008,  Genetics,  University of Georgia

Research Summary

We study the interplay of gene expression and genome organization. Our work focuses on understanding how large molecular machineries involved in genome organization and gene transcription regulate each others’ function to ultimately determine cell fate and identity. We employ a broad range of approaches including single-particle cryo-electron microscopy (cryo-EM), X-ray crystallography, biochemistry, and genetics to mechanistically understand how these molecular assemblies regulate each other across molecular scales.


  • New Innovator Award, National Institutes of Health Common Fund’s High-Risk, High-Reward Research Program, 2021

Key Publications

  1. Structure of transcribing RNA polymerase II-nucleosome complex. Farnung, L, Vos, SM, Cramer, P. 2018. Nat Commun 9, 5432.
    doi: 10.1038/s41467-018-07870-yPMID:30575770
  2. Structure of paused transcription complex Pol II-DSIF-NELF. Vos, SM, Farnung, L, Urlaub, H, Cramer, P. 2018. Nature 560, 601-606.
    doi: 10.1038/s41586-018-0442-2PMID:30135580
  3. Structure of activated transcription complex Pol II-DSIF-PAF-SPT6. Vos, SM, Farnung, L, Boehning, M, Wigge, C, Linden, A, Urlaub, H, Cramer, P. 2018. Nature 560, 607-612.
    doi: 10.1038/s41586-018-0440-4PMID:30135578
  4. Direct control of type IIA topoisomerase activity by a chromosomally encoded regulatory protein. Vos, SM, Lyubimov, AY, Hershey, DM, Schoeffler, AJ, Sengupta, S, Nagaraja, V, Berger, JM. 2014. Genes Dev 28, 1485-97.
    doi: 10.1101/gad.241984.114PMID:24990966

Recent Publications

  1. Distinct negative elongation factor conformations regulate RNA polymerase II promoter-proximal pausing. Su, BG, Vos, SM. 2024. Mol Cell , .
    doi: 10.1016/j.molcel.2024.01.023PMID:38401543
  2. Inherited blood cancer predisposition through altered transcription elongation. Zhao, J, Cato, LD, Arora, UP, Bao, EL, Bryant, SC, Williams, N, Jia, Y, Goldman, SR, Nangalia, J, Erb, MA et al.. 2024. Cell 187, 642-658.e19.
    doi: 10.1016/j.cell.2023.12.016PMID:38218188
  3. Structure of the complete Saccharomyces cerevisiae Rpd3S-nucleosome complex. Markert, JW, Vos, SM, Farnung, L. 2023. Nat Commun 14, 8128.
    doi: 10.1038/s41467-023-43968-8PMID:38065958
  4. Structure of the complete S. cerevisiae Rpd3S-nucleosome complex. Markert, JW, Vos, SM, Farnung, L. 2023. bioRxiv , .
    doi: 10.1101/2023.08.03.551877PMID:37577459
  5. Structure of a backtracked hexasomal intermediate of nucleosome transcription. Farnung, L, Ochmann, M, Garg, G, Vos, SM, Cramer, P. 2022. Mol Cell 82, 3126-3134.e7.
    doi: 10.1016/j.molcel.2022.06.027PMID:35858621
  6. Structural advances in transcription elongation. Mohamed, AA, Vazquez Nunez, R, Vos, SM. 2022. Curr Opin Struct Biol 75, 102422.
    doi: 10.1016/
  7. Structural basis of nucleosome retention during transcription elongation. Filipovski, M, Soffers, JHM, Vos, SM, Farnung, L. 2022. Science 376, 1313-1316.
    doi: 10.1126/science.abo3851PMID:35709268
  8. Assembly of RNA polymerase II transcription initiation complexes. Farnung, L, Vos, SM. 2022. Curr Opin Struct Biol 73, 102335.
    doi: 10.1016/
  9. MYCN recruits the nuclear exosome complex to RNA polymerase II to prevent transcription-replication conflicts. Papadopoulos, D, Solvie, D, Baluapuri, A, Endres, T, Ha, SA, Herold, S, Kalb, J, Giansanti, C, Schülein-Völk, C, Ade, CP et al.. 2022. Mol Cell 82, 159-176.e12.
    doi: 10.1016/j.molcel.2021.11.002PMID:34847357
  10. Chronicles of the human SAGA co-activator complex. Vos, SM. 2021. Nat Struct Mol Biol 28, 959-960.
    doi: 10.1038/s41594-021-00696-1PMID:34819676


Photo credit: Raleigh McElvery