Phillip A. Sharp

Phillip A. Sharp

Institute Professor and Professor of Biology; Member, Koch Institute for Integrative Cancer Research

Phillip A. Sharp studies many aspects of gene expression in mammalian cells, including transcription, the roles of non-coding RNAs, and RNA splicing. 








Assistant Phone


  • PhD, 1969, University of Illinois, Urbana-Champaign
  • BA, 1966, Chemistry and Math, Union College

Research Summary

We investigate small, non-coding RNAs called microRNAs (miRNAs), which regulate over half of the genes in mammalian cells at the stages of translation and mRNA stability. We are also interested in the processes underlying transcription from the anti-sense strand (so-called “divergent” transcription), as well as the relationship between elongation of transcription, RNA splicing, and chromatin modifications.


  • AACR Award for Lifetime Achievement in Cancer Research, 2020
  • AACR Distinguished Award for Extraordinary Scientific Innovation and Exceptional Leadership in Cancer Research and Biomedical Science, 2018
  • Royal Society of London, Foreign Fellow, 2011
  • National Science Foundation, National Medal of Science, 2004
  • The Nobel Foundation, Nobel Prize in Physiology or Medicine, 1993
  • National Academy of Medicine, Member, 1991
  • American Association for the Advancement of Science, Fellow, 1987
  • American Academy of Arts and Sciences, Fellow, 1987
  • National Academy of Sciences, Member, 1983

Key Publications

  1. Coactivator condensation at super-enhancers links phase separation and gene control. Sabari, BR, Dall'Agnese, A, Boija, A, Klein, IA, Coffey, EL, Shrinivas, K, Abraham, BJ, Hannett, NM, Zamudio, AV, Manteiga, JC et al.. 2018. Science 361, .
    doi: 10.1126/science.aar3958PMID:29930091
  2. A Phase Separation Model for Transcriptional Control. Hnisz, D, Shrinivas, K, Young, RA, Chakraborty, AK, Sharp, PA. 2017. Cell 169, 13-23.
    doi: 10.1016/j.cell.2017.02.007PMID:28340338
  3. Targeted mRNA degradation by double-stranded RNA in vitro. Tuschl, T, Zamore, PD, Lehmann, R, Bartel, DP, Sharp, PA. 1999. Genes Dev 13, 3191-7.
    doi: 10.1101/gad.13.24.3191PMID:10617568
  4. Splicing of adenovirus RNA in a cell-free transcription system. Padgett, RA, Hardy, SF, Sharp, PA. 1983. Proc Natl Acad Sci U S A 80, 5230-4.
    doi: 10.1073/pnas.80.17.5230PMID:6577417
  5. Spliced segments at the 5' terminus of adenovirus 2 late mRNA. Berget, SM, Moore, C, Sharp, PA. 1977. Proc Natl Acad Sci U S A 74, 3171-5.
    doi: 10.1073/pnas.74.8.3171PMID:269380

Recent Publications

  1. RNA-Mediated Feedback Control of Transcriptional Condensates. Henninger, JE, Oksuz, O, Shrinivas, K, Sagi, I, LeRoy, G, Zheng, MM, Andrews, JO, Zamudio, AV, Lazaris, C, Hannett, NM et al.. 2021. Cell 184, 207-225.e24.
    doi: 10.1016/j.cell.2020.11.030PMID:33333019
  2. Partitioning of cancer therapeutics in nuclear condensates. Klein, IA, Boija, A, Afeyan, LK, Hawken, SW, Fan, M, Dall'Agnese, A, Oksuz, O, Henninger, JE, Shrinivas, K, Sabari, BR et al.. 2020. Science 368, 1386-1392.
    doi: 10.1126/science.aaz4427PMID:32554597
  3. MicroRNAs organize intrinsic variation into stem cell states. Chakraborty, M, Hu, S, Visness, E, Del Giudice, M, De Martino, A, Bosia, C, Sharp, PA, Garg, S. 2020. Proc Natl Acad Sci U S A 117, 6942-6950.
    doi: 10.1073/pnas.1920695117PMID:32139605
  4. Imprinted Maternally Expressed microRNAs Antagonize Paternally Driven Gene Programs in Neurons. Whipple, AJ, Breton-Provencher, V, Jacobs, HN, Chitta, UK, Sur, M, Sharp, PA. 2020. Mol Cell 78, 85-95.e8.
    doi: 10.1016/j.molcel.2020.01.020PMID:32032531
  5. Enhancer Features that Drive Formation of Transcriptional Condensates. Shrinivas, K, Sabari, BR, Coffey, EL, Klein, IA, Boija, A, Zamudio, AV, Schuijers, J, Hannett, NM, Sharp, PA, Young, RA et al.. 2019. Mol Cell 75, 549-561.e7.
    doi: 10.1016/j.molcel.2019.07.009PMID:31398323
  6. Pol II phosphorylation regulates a switch between transcriptional and splicing condensates. Guo, YE, Manteiga, JC, Henninger, JE, Sabari, BR, Dall'Agnese, A, Hannett, NM, Spille, JH, Afeyan, LK, Zamudio, AV, Shrinivas, K et al.. 2019. Nature 572, 543-548.
    doi: 10.1038/s41586-019-1464-0PMID:31391587
  7. Sequestration of microRNA-mediated target repression by the Ago2-associated RNA-binding protein FAM120A. Kelly, TJ, Suzuki, HI, Zamudio, JR, Suzuki, M, Sharp, PA. 2019. RNA 25, 1291-1297.
    doi: 10.1261/rna.071621.119PMID:31289130
  8. Gain-of-function mutation of microRNA-140 in human skeletal dysplasia. Grigelioniene, G, Suzuki, HI, Taylan, F, Mirzamohammadi, F, Borochowitz, ZU, Ayturk, UM, Tzur, S, Horemuzova, E, Lindstrand, A, Weis, MA et al.. 2019. Nat Med 25, 583-590.
    doi: 10.1038/s41591-019-0353-2PMID:30804514
  9. CDK12 regulates DNA repair genes by suppressing intronic polyadenylation. Dubbury, SJ, Boutz, PL, Sharp, PA. 2018. Nature 564, 141-145.
    doi: 10.1038/s41586-018-0758-yPMID:30487607
  10. Evolution of weak cooperative interactions for biological specificity. Gao, A, Shrinivas, K, Lepeudry, P, Suzuki, HI, Sharp, PA, Chakraborty, AK. 2018. Proc Natl Acad Sci U S A 115, E11053-E11060.
    doi: 10.1073/pnas.1815912115PMID:30404915
More Publications










Photo credit: Evgenia Eliseeva