Decoding the genetics of roundworm mating

Sixth year graduate student Zoë Hilbert investigates how C. elegans react to changes in their environment — and how these changes affect physiology, gene expression, and behavior

Raleigh McElvery
January 30, 2018

Sixth year graduate student Zoë Hilbert is sure of many things. After performing her first dissection in third grade, she was sure she liked science. Before she started college, she was sure she wanted to major in a biology-related discipline. And as she finished her final year at Columbia University, she was sure she would leave the East Coast immediately upon graduation. What she did not anticipate, however, was falling in love with the Cambridge biotechnology hub, applying to MIT for graduate school, and switching fields from biochemistry to genetics.

“I’m incredibly grateful for the MIT first-year program, because dedicating the fall semester solely to taking classes gave me a background in subjects I didn’t take in college,” Hilbert says. “I’d never taken genetics before, and now here I am in Dennis Kim’s lab — a genetics lab.”

Hilbert was enthralled by evolution from an early age, in particular the idea that entire organisms and their proteins change over time in response to internal and external pressures. She recalls becoming “obsessed” with the small and seemingly unremarkable stickleback fish, after she learned that researchers could map the evolution of physical features like additional belly fins or extra armor to variations in specific genes.

“When it came time for the first years to write our National Science Foundation proposals, we had the opportunity to work with a faculty member,” she recalls, “and I chose Dennis because one of the project ideas he’d listed was in a similar vein to the stickleback research. Coming into it, I didn’t know anything about his work or even his model system, but I ended up joining the lab after second semester rotations.”

The Kim lab investigates how the roundworm Caenorhabditis elegans reacts to changes in their environment — and how these changes not only affect physiology and gene expression, but behavior as well.

Today, Hilbert is as enamored by C. elegans as she once was with stickleback fish. With minimal prodding, she’s happy to rattle off their numerous advantages: they’re transparent, so there’s no need to do dissections to look inside; they’re ideal for studying development and the nervous system, because scientists have already charted all the cells in the body and how the neurons communicate; and they’re low-maintenance and easy to keep in lab. The list goes on.

But most pertinent to Hilbert is the fact that — like most species of animals — the two sexes of C. elegans, males and hermaphrodites, often behave differently in similar situations due to differences in gene expression. Take mating, for example.

Hermaphrodites are capable of self-fertilization, and can produce up to several hundred identical progeny over the course of several days. Males are much less common and unable to reproduce on their own, but by mating with hermaphrodites they can introduce some genetic variety into their offspring. Because males must locate a hermaphrodite in order to pass on their genetic material, they’ve developed some specific behaviors to find their mate. And that’s where Hilbert’s work comes in. She makes males choose between the two things they need most: food and mate.

There comes a time in every adult male’s life when finding a mate takes precedence over continuously eating, as younger worms are wont to do. If he is placed in a plate of yummy bacteria by himself, he runs away — not because he’s full, but because he’d rather spend his time searching for a mate. However, if he is placed in a plate of food along with a tempting hermaphrodite, his urge to escape is suppressed and he remains long enough to mate.

That said, C. elegans mating is not always so cut and dry. Researchers understand that a male’s behavior is also food-dependent. If you place a starving male on the plate of food, he no longer prioritizes mating over feeding, and will remain in the food instead of seeking a mate. He is constantly evaluating his priorities, which are heavily influenced by the situation at hand and — as Hilbert discovered — when and where certain genes are expressed.

“We’ve spent a lot of time monitoring how the expression of daf-7 changes in different food and mating situations,” Hilbert says. “When you starve the male, you suppress the gene and as a result you also suppress the fleeing behavior.”Hilbert demonstrated several years ago that this male-specific behavior is controlled by a gene known as daf-7, which encodes a signaling molecule and is expressed in two specific neurons in the male.  (No expression is normally seen in the hermaphrodite.) Curiously, the same gene in the same two neurons is also turned on when any worm — male or hermaphrodite — comes across a pathogen, sending a “WARNING: consume at your own risk” signal, and prompting the worm to avoid the noxious bacteria.

Expression appears to be dependent not only on nutritional state (hungry or full), but also environment (food and/or mate) and sex (since males express daf-7 differently than hermaphrodites).

“All these factors and signals are converging on this one gene,” Hilbert says. “It’s really quite incredible.”

The neurons that express daf-7 are “sensory,” and traditionally viewed as funnels to higher neural centers where information is processed and behaviors are generated. However, Hilbert’s data suggest this information processing is happening right there, directly within these neurons via changes in gene expression without waiting for instructions from on high.

What Hilbert finds particularly intriguing is that the worms rely on just one molecular pathway to dictate behavior in two very different situations: mating and pathogen avoidance. Although the worm flees food in both situations, precisely why one gene is implicated in two distinct settings remains a mystery. Hilbert is still asking herself, For what benefit?

She intends to spend her final semester at MIT tying up loose ends and conducting follow-up experiments to extend the work from her recent paper in the January 2017 issue of eLife, on which she was first author. She’s screening for molecules that could impact whether or not daf-7 is expressed, honing in on chemicals and signaling molecules used by neurons to communicate with one another.

“I’d advise prospective grads to be willing and open to change your mind about what you want to do,” she says. “I was really into protein biochemistry when I first arrived at MIT, and was really surprised when I fell in love with a discipline that was completely different from my initial interests.”

As Hilbert applies to academic postdoctoral positions, she’s still set on fulfilling her longtime dream of heading out West. She’s sure she’d like to end up someplace like California, Washington, or Utah, but only time will tell.

Photo credit: Raleigh McElvery
December 14, 2017

Lab coat meets legislation

Person with red hair in bun stands outside with umbrella.

Undergraduate Courtney Diamond combines biology and policy to tackle real-world challenges

Raleigh McElvery

 

Undergraduate Courtney Diamond arrived at MIT determined to be an oncologist. Five years later, she’s leaving with a broader focus on human health, grappling with real-world, biomedical problems by way of public policy rather than medicine or research.

Although Diamond had completed her requirements for a degree in biology at the beginning of her senior year, she decided then to add a second major: Course 17 (Political Science), and with it a fifth year of study at MIT.

“I came into MIT wanting to be a doctor, but the more I thought about it the less it felt like medical school would be a good fit,” she says. “I spent a long time narrowing my interests within the realm of human health, and recently realized there was another dimension to that interest related to public policy, which was also this common thread among my extracurriculars.”

Diamond grew up in a small town in Massachusetts called Millbury, not too far from MIT, which she describes as special to her but “rather unremarkable” in most other ways — with the exception of one particularly zealous and articulate high school biology teacher. His infectious enthusiasm sparked Diamond’s passion for the life sciences, but over the course of her senior year this interest became far more personal. It was around that time that her mother developed breast cancer, and Diamond resolved to be an oncologist.

“My mom had been diagnosed once before with a different kind of cancer, cervical cancer,” she says. “But I was in sixth grade back then, and assumed she was just at home resting. By the time the breast cancer rolled around, I was old enough to understand that most people are lucky to survive cancer once. But twice?”

Her mother has since entered remission, and the year Diamond began at MIT her interests matured away from a career in medicine and towards biomedical research. In April 2014, she applied to the MIT Undergraduate Research Opportunities Program (UROP). “I wanted to figure out which part of biology excited me — which area I really wanted to drill down on,” she recalls.

She began working with a postdoctoral fellow in Professor Darrell Irvine’s lab at the Koch Institute for Integrative Cancer Research, tackling research questions related to cancer immunology. Diamond’s job was to analyze murine tumors as they developed over time, in order to understand how they were affected by changes to their cellular environments.

After a year, Diamond took a break from research in order to focus on her classes. But she didn’t stay away for long.

“I’ve had a life-long obsession with Australia,” she says, “and in the fall of my sophomore year, I told my advisor, Professor Bob Horvitz, that my dream was to study biochemistry in Melbourne.” One email and two hours later, she received an offer from the Walter and Eliza Hall Institute for Medical Research to spend a summer abroad in Jeff Babon’s lab. “It turns out the director of the Institute did his postdoc at MIT, and liked the UROP system so much he decided to bring it back to Australia,” she explains.

There, Diamond helped to unravel the structure of a protein complex known as JAK-STAT. This complex is involved in many diverse processes — from cell proliferation and programmed cell death to immunity — making it critical to understand how the different molecular components of the complex fit together to influence function.

When she returned to MIT, Diamond decided to maintain her focus on structural biology. She completed her thesis in Professor Thomas Schwartz’s lab, studying the Y complex, a component of the nuclear pore — a channel that allows mRNA and other molecules to pass into the cell’s nucleus. Diamond helped creat a library of fluorescing antibodies that could adhere to the Y complex, allowing her to visualize its position within the nuclear pore. After a year, she opted to broaden her interests by taking classes outside her major.

One of those classes, recommended by a friend, was in political science: 17.309 (Science, Technology, and Public Policy), taught by Professor Kenneth Oye. During one of his lectures, Oye made a quip about a small Massachusetts town called Millbury.

“I came up to him after class to ask him, ‘Did you know I’m actually from there?’ and he thought it was the funniest thing,” she says. “That initial, informal interaction led to more meaningful conversations, and I ended up working with him on a few projects.”

Today, she is pursuing a final UROP with Oye, looking at technologies and policies related to synthetic biology. At Oye’s weekly working group of graduate students and postdocs, she debates the possible repercussions of using gene editing techniques like CRISPR-Cas9 to control the transmission of certain traits throughout a given population. For example, what would happen if mosquitos in the regions where malaria is most prevalent carried a gene encoding malaria resistance — would that eradicate the illness? But might there be unintended, negative consequences?

As part of a separate project, Diamond is researching U.S. consent and privacy policies in the realm of health information technology. She’s also hard at work on her political science thesis, focusing on ways to incentivize companies and researchers to develop new and more effective antibiotics to combat antimicrobial resistance.

Diamond is now applying for public health consulting jobs, and she plans to pursue graduate training in epidemiology, followed by a master’s in public health. Long-term, she sees herself at the Centers for Disease Control and Prevention or the World Health Organization.

“I mean, that’s the current plan,” she says. “Check back in with me in two years.”

Photo credit: Raleigh McElvery
From DNA forensics to cancer metabolism

Carolyn Lanzkron discovered bench science while attending community college with her son, and followed her newfound passion to MIT

Raleigh McElvery
December 3, 2017

From DNA forensics to cancer metabolism

Person in black hat and purple shirt sitting in front of lab building.

Carolyn Lanzkron discovered bench science while attending community college with her son, and followed her newfound passion to MIT

Raleigh McElvery

 

Carolyn Lanzkron spent 20 years as a stay-at-home mother raising five children before starting at MIT. Life has taught her patience, which she, in turn, has tried to pass on to her kids: “A successful person falls down many times and gets up — just pick a direction and move forward.”

Those were the same words she told her teenage son back in 2011 when she encouraged him to attend community college.

“I figured I would just take a few courses with him,” she says. “He enjoyed his chemistry classes, so I was looking at the chemistry offerings, and on the wall there was a poster for Dr. Bruce Jackson’s unique Forensic DNA Science program.” Lanzkron was intrigued, and decided to enroll.

The students aided Jackson with real cases, and were given dedicated lab space and materials to follow their curiosities, as well as design their own inquiries. The program was based on a peer-mentoring model, and Lanzkron was appointed chief of peer mentors and forensic case manager. Under Jackson’s tutelage, she worked on lineage cases tracing ancestry and criminal cases for defense and prosecution.

“I was hoping my son would join me in a chemistry class, but he wasn’t so interested in having his mom as a lab partner — go figure,” she says. “But we carpooled to school together for a year, and by that time I’d developed a love for bench science.”

After two years, Lanzkron had completed her degree, but it wasn’t enough. So she applied to several institutions within her carpool radius, including MIT. Like all transfers here, she began as a sophomore.

“I love bench science because I really appreciate the combination of being part of a team and solving a big, important question, but at the same time having tasks in my day that allow me to focus on small details — like keeping track of the labels on my tubes,” she says. “That balance works really well for me; it satisfies my need for a quest while still having control over a small environment.”

She’s turned her attention from DNA forensics to cancer metabolism, an interest which has become far more personal over the past year. Last spring, Lanzkron’s mother was diagnosed with lung cancer, and Lanzkron took a leave of absence to care for her.

“Right now, my mother is doing really well, and we are enjoying a window of stability,” Lanzkron says, “which has allowed me to come back to MIT and finish my degree.”

Although Lanzkron is not currently in a lab, lest that period of stability suddenly end, she’s worked in several over the course of her three years at MIT. She began in Jean Francois Hamel’s chemical engineering lab, adapting an adherent cell line to grow in a suspension-like culture in various bioreactors using microcarriers.

Later, Lanzkron joined David Sabatini’s lab in the Whitehead Institute for Biomedical Research, aiding two separate projects: one spearheaded by then-postdoc Yoav Shaul, and the other led by MD-PhD student Walter Chen.

Chen was hard at work developing a new method for profiling undamaged mitochondria, while Shaul had discovered a unique set of 44 metabolic genes that were upregulated in certain cancers that expressed mesenchymal markers (which he called the “Mesenchymal Metabolic Signature,” or “MMS”), indicating that those cells were acquiring cancerous characteristics. Lanzkron collaborated with Shaul as he worked to further characterize the metabolic requirements and behavior of the MMS. She also helped him refine his web-based gene analysis tool, Metabolic gEne RApid Visualizer (MERAV), which queries a database comprising ∼4,400 microarrays, representing human gene expression in normal tissues, cancer cell lines, and primary tumors.

The summer after Shaul completed his postdoctoral training, Lanzkron interned in his lab in at the Hebrew University of Jerusalem at Hadassah Ein Kerem through the MISTI/Israel program, to continue working with him on these projects.

“When I went to Israel, my husband stayed in Boston and took care of the kids,” she recalls. “Without family responsibilities, I could work in lab around the clock, and that was great. I was actually able to finish things up, prepare them for the next day, and cover for other people and really focus; I look forward to being able to do that again as the kids get older.”

Lanzkron admits these aren’t the only aspects of the MIT undergraduate experience she’s missed — not just because she lives off campus and can’t meet at odd hours of the night to collaborate on problem sets — but also because she’s a generation and a half older than her classmates.

But in some ways she considers this an advantage. For instance, she now has the tools to guide her own children through today’s college process.

“I no longer have this outdated view of what it’s like to apply to schools and navigate the SAT,” she says. “Granted, MIT is not your average school. It’s been quite the ride to be at the community college where I had to bring my own masking tape to complete the gel trays because we didn’t have any sealing rings — I didn’t even know there was such a thing as a seal back then. And to go from that to the MIT Department of Biology and the Whitehead Institute where the resources are phenomenal, it’s just mind blowing. I have learned so much from both situations — having to make do, and having an abundance of resources.”

While Lanzkron intends to graduate this spring, her future plans depend on her mother’s health.

“I picked my classes this semester so that I could take her to her cancer treatment,” Lanzkron says, “so, though I’m ultimately planning to go to graduate school, right now things are still in flux.”

While maintaining this school-family balance would be inconceivable for most, Lanzkron takes her personal and academic responsibilities in stride.

“Honestly I’m so happy here at MIT,” she says. “I tell my kids, ‘Don’t get too worked up about the college process. You’ll get where you need to go — the starting point almost doesn’t matter; what matters is what you do when you get there.’”

Photo credit: Raleigh McElvery
Biology by Numbers

Undergraduate Camilo Espinosa grew up with a love for math, before developing a second passion for immunology at MIT

Raleigh McElvery
November 10, 2017

Biology by Numbers

Person with short brown hair and green jacket stands in front of MIT pillars.

Undergraduate Camilo Espinosa grew up with a love for math, before developing a second passion for immunology at MIT

Raleigh McElvery

 

Undergraduate Camilo Espinosa, now in his senior year, tackles biological problems with the mindset of a mathematician. That’s because he initially approached the STEM fields (science, technology, engineering and mathematics) starting with the “M” and ending with the “S” — developing an appetite for math before realizing a second love for biology.

Every six months, beginning his first year of middle school, Espinosa would venture from his home on the north coast of Colombia to the nation’s capital. There, for several weeks, he would do nothing but math.

“These were math olympiads — basically a combination of math camp and competitions,” he explains. “That was the first real community I had outside my school.

But he didn’t just glean formulas and analytical strategies from those competitions; it was his olympiad team that first introduced him to MIT. In Colombia, he explains, students must select a major almost immediately upon entering university, and are offered limited electives. MIT came to represent “academic freedom” for Espinosa, who, despite his avid and early love of math, intended to explore multiple academic avenues before limiting himself to just one.

Now, as a math and chemistry-biology double major with a concentration in philosophy, he says MIT has enabled him to pursue his many academic interests, as well as his non-academic ones. He has served as an active member of not one but four dance teams, as well as president of his fraternity. He also helped establish a channel of communication between the International Students Office and the Department of Biology, to streamline the work authorization process for international students.

He was drawn to biology, he explains, because he prefers learning processes over basic facts. “I don’t care much for memorization, but I do care about the underlying reasons for why and how things function,” he says. “I think that mindset stems from my dad.”

Espinosa’s father is an OB/GYN specializing in female oncology, who initially helped to popularize laparoscopic surgery techniques in Colombia. Often, he sees patients at a discounted price or for free if they could not afford his services.

“At the end of the day, he is just trying to help people,” Espinosa explains. “He taught me the way I think about the world. He’s the reason I do what I do, and why I’m so oriented towards the life sciences.”  

Espinosa’s siblings are studying to become doctors and veterinarians, and he himself is intrigued by the possibilities of using our body’s innate defense mechanisms to treat diseases like cancer.

His foray into the field of immunology began with antibodies — special ones taken from furry, gawky alpacas — so tiny and versatile that they can be employed for all manner of imaging, therapeutic, and diagnostic techniques. These “single domain” antibodies were a popular area of interest in Hidde Ploegh’s lab (formerly a Professor of Biology at the Whitehead Institute for Biomedical Research), where Espinosa began mid-way through October of his freshman year. Using these single-domain antibodies, the Ploegh lab had developed a treatment for melanoma in mice, and Espinosa worked to pinpoint antibodies directed against melanoma in humans.

The summer between his sophomore and junior years, Espinosa began a separate project that eventually evolved into his thesis. He honed in on one tiny antibody, known as A4, which binds to a particular protein expressed on the surface of red blood cells, and has the potential to thwart the immune response by activating a process known as “tolerance.”

Our body’s immune system is programmed to discern self from non-self, targeting foreign entities for destruction. It does so in two distinct steps. First, it creates an army of cells, that together express antibodies tailored to combat virtually every possible substance, both self and non-self. The immune system is then primed to spring into action whenever it senses something foreign, amplifying those cells that express antibodies against it. However, the body would also attack itself if not for the second step in this process: tolerance. The immune system essentially deletes the cells expressing antibodies against itself, and in doing so learns to “tolerate” its own proteins.

For example, when red blood cells die of old age (and many do every day), this triggers tolerance to the various protein components that constitute those cells — preventing related antibodies from being created.

Previous work has shown that binding a foreign protein to red blood cells triggers tolerance for that specific protein, despite being “non-self.” This could have implications for therapies to treat conditions like hemophilia, Espinosa explains, which require injections of proteins to reinstate the body’s blood-clotting abilities.

In a large proportion of patients, the immune system responds and attacks these proteins as foreign, rendering the treatment useless and barring the patients from receiving it again in the future. However, Espinosa proposes, if he could couple A4 to the treatment protein, then A4 would link the protein to the red blood cells and initiate tolerance to it. Since the body can no longer create antibodies against the treatment proteins, the therapy can run its course. In other words, the body would now see the injected proteins as self.

After months of methodical experiments, A4 didn’t appear to disguise proteins as self in the way Espinosa had initially hoped, although it did reduce the immune response triggered by the protein injection, if he staggered the protein and antibody infusions in the proper manner.

“So maybe A4 doesn’t work as a camouflage per se, but rather as a suppressor of certain immune responses,” he says. “So the results didn’t turn out exactly as we expected, but it is still a step in the right direction.”

He ultimately submitted his thesis to MIT’s Ilona Karmel Writing Prizes, earning second place in the technical writing category.  

Last summer, Espinosa explored a different side of basic research — the corporate side — during an internship at the biotechnology company Genentech. There, he investigated the pathways by which uncontrolled cell death leads to sepsis in patients.

As he wraps up his senior year and begins applying to graduate programs, Espinosa reflects on his transition from student to instructor, having served as a teaching assistant in a number of biology courses during the past three years. “As someone who arrived at MIT with a weak foundation in biology, almost everything I’ve learned since was because someone taught it to me, and taught it to me well,” he says. “I feel honored to be able to pass it on.”

Photo credit: Raleigh McElvery
Posted: 1.18.18
Sizing up cancer

Graduate student Zhaoqi Li investigates how cancer cells grow by harnessing exceptional chemical reactions

Justin Chen
January 11, 2018

Cancer cells use extreme measures to fuel their growth. In fact, researchers like Zhaoqi Li, a third-year graduate student, witness chemical reactions in these cells that would be impossible in the context of normal cells. In a petri dish, normal cells stop dividing once they cover the bottom of the dish and fit neatly together like mosaic tiles. In contrast, cancer cells continue to proliferate and pile haphazardly into small mounds. Within the human body, this abnormal growth — when combined with the spread of cancer cells throughout the body — interferes with organ function and causes death.

Li, a member of Professor Matthew Vander Heiden’s lab located in the Koch Institute, studies cancer metabolism. His work describes the chemical reactions cancer cells use to create energy and materials to make new cells such as membranes, proteins, and DNA. By tracking the flow of nutrients through cancer cells, Li and his labmates are learning how such cells change their metabolism to stimulate growth. These insights will help scientists develop new ways to treat the disease.

Cell metabolism comprises all the chemical reactions occurring in the cell, but researchers are particularly interested in a few reactions that aren’t required by normal cells but are critical for cancer growth. Stopping these reactions with drugs would disrupt the metabolism of cancer cells and hinder tumor development.

“Even though many people may not think of metabolism as a treatment target for cancer, this strategy has been used unwittingly for a long time,” Li says. “Many chemotherapies, such as antifolates, were originally used by doctors without knowing exactly how they worked. Since then, we’ve discovered that those treatments target metabolic pathways. By understanding the details of cancer metabolism we are hoping to design drugs in a more rational way.”

– –

Li might never have joined the Vander Heiden lab or studied cancer metabolism were it not for the unique structure of graduate training at MIT.

During their first year at MIT, graduate students are required to take four classes. Unlike their counterparts at many other PhD programs, they do not work in laboratories until their second semester. This allows students to focus initially on coursework — covering biochemistry, genetics, and research methodology — designed to build a foundation of knowledge. As a result, students discover new interests and develop the confidence to move out of their comfort zones. When it comes time to select a lab, they can choose from 56 spread across six locations, spanning a wide breadth of biological research.

Li could study how the brain forms memories, interpret X-rays to deduce protein structure, or even build miniature organs for drug testing. Before making his decision, he rotated in three laboratories. During each month-long rotation, he performed a small project allowing him to experience the culture of the lab and learn more about its research.

“The first two labs I visited were studying topics I was familiar with and thought were interesting,” he says. “But when I visited the Vander Heiden lab it was so different and caught me off guard. That’s why I eventually joined, even though I had never imagined myself working in a metabolism lab before.”

Diagram showing a metabolism pathway
Cellular metabolism is comprised of a network of interconnected biochemical reactions resembling a subway system. Zhaoqi Li compares normal and diseased cells to determine the differences in the way nutrients travel through this network. Credit: Justin Chen

– –

Although he is new to the community of researchers specializing in metabolism, Li has long known that he wanted to interact with the world through science. As an immigrant who moved from China to southern Tennessee at the age of six, Li struggled to learn English and began to view science as a universal language that transcended culture.

“My parents were also non-native speakers and the English as a Second Language classes in my elementary school were geared towards Spanish speakers, so I had a really hard time,” Li says. “I joke that the only reason I passed the first grade was because I was good at math.”

Li’s contrasting relationship with science and English continued as an undergraduate at Columbia University. There he majored in biochemistry and also studied literature of the Western Canon to fulfill his general degree requirements.

“I took four semesters worth of classes that started with Plato and ended with Virginia Woolf,” he says, “It was an eye-opening experience, but I never really loved it. I found biology more intuitive because it doesn’t rely on being familiar with a specific cultural lens. Most every society in the world values the scientific method to some extent.”

Li began working in a lab during his sophomore year at Columbia. To his surprise, he was mentored by a professor who valued his input and encouraged creative thinking. Li’s supervisor also introduced him to basic science — a type of research driven not by the desire to find a specific answer or cure, but by curiosity and the need to better understand the natural world.

– –

During his second semester rotation at MIT, Li searched for similarly open-minded environments, and was attracted to cancer metabolism because the field was relatively young.

“In other more established areas of biology, if you have a question someone has probably answered it in some capacity,” Li says. “The Vander Heiden lab was using new techniques so there was a lot of space to explore. Many questions I asked — even during my initial rotation —  didn’t have an answer, which was exciting.”

The great challenge confronting the metabolism field is translating decades’ worth of research on enzymes — proteins that manage chemical reactions — from the test tube to the cell and human body. By studying enzymes individually in the controlled setting of test tubes, researchers have documented almost all the chemical reactions that occur in the cell. When combined, these reactions look like a giant subway map where each stop, indicated by a dot, is a different molecule, and the line between stops represents a chemical reaction where atoms are added or subtracted. Some pathways are a straight line but others have nodes or intersections where a molecule can take part in several different reactions. Other pathways are circular where the molecule that starts the pathway is remade at the end so that the line circles back on itself.

Despite the ability to study chemical reactions in a test tube, scientists have struggled to understand what is actually happening in the complex environment of cells, which coordinate millions of reactions that not only affect each other, but are also influenced by outside stresses like nutrient deprivation.

To Li, using the metabolism map to figure out what chemical reactions are occurring and how atoms are moving through the cell is like using a subway map to track how people are traveling through a city.

“The map describes all the possible routes people could take,” Li says, “but you have to track the passengers to figure out where they are actually going. You could imagine people commuting into the city during the week and going to entirely different places on the weekend. There are a lot of different patterns of movement that you can’t infer just from looking at a map.”

To analyze what chemical reactions are occurring in the cell, Li utilizes cutting edge technology to track carbon atoms — an essential element that is required to build all components of the cell. By tagging carbon with an extra neutron, Li makes the experimentally altered atom heavier and distinguishable from naturally occurring carbon in the cell. Feeding cells nutrients like glucose made with heavy carbons allows Li to compare how molecules are broken down and used by normal and cancerous cells.

Person at lab instrument with sample“Returning to the subway map analogy, this labeling technique is similar to not only being inside the subway, but also giving everyone in Downtown Boston a red shirt,” Li says. “After 12 hours, we can look at the rest of the city. If we see a lot of red shirts in Allston, we would know that this particular route is really popular.”

In the case of glucose, Li and his labmates observed that normal cells break down the sugar to release energy and heavy carbons in the form of carbon dioxide. In contrast, cancer cells alter their metabolism so that the heavy carbons originally found in glucose are used to build new parts of the cells that are required for cancer cells to grow, such as membranes, DNA, and proteins.

Li’s observations demonstrate how cancer cells sustain abnormal growth by accumulating carbon. For his thesis project, Li has chosen to investigate one of the main tricks cancer cells use to hoard carbon atoms: a process known as carbon fixation. This type of chemical reaction, originally studied in plants performing photosynthesis, attaches carbon dioxide to other molecules. Li’s initial findings suggest that a protein, Malic Enzyme 1, helps cancer cells use carbon dioxide to build components required for growing and dividing.

“This is surprising,” he says, “because the textbook version of this enzyme actually catalyzes the reverse reaction in normal cells where carbon dioxide is removed from molecules.  Malic Enzyme 1 is an example of how cancer performs remarkable chemical reactions — who would have thought that cancer cells use carbon like plants do?”

Li is at the beginning stages of his research, and can’t predict where his project will take him. His current goal is to determine how cancer cells react when they are missing Malic Enzyme 1. Such loss could slow growth, but Li will have to perform experiments to be sure, since cancer is a resourceful and elusive target.

Like a detour rerouting travelers around a closed metro stop, cancer cells may further contort their metabolism, taking advantage of little-used or still unidentified chemical reactions to maintain growth. In the face of such adaptability, Li and his labmates believe the best course of action is to be as curious as possible to understand as much as they can about how cancer works. Working together, they discuss confounding results, adjust hypotheses, and design new experiments.

“It’s really encouraging to be part of Matt’s lab and the Koch Institute in general where researchers take a basic science approach,” Li says. “We try to keep an open mind because there’s probably no single thing that cancer cells depend on. Everyone’s work builds together to form a cumulative understanding.”

Photo credit: Raleigh McElvery
Combatting chemotherapy resistance

Graduate student Faye-Marie Vassel investigates a protein that helps cells tolerate DNA damage, sharing her expertise with budding scientists to further STEM education

Raleigh McElvery
December 8, 2017

Combatting chemotherapy resistance

Person with long, dark hair and lab coat stares into microscope.

Graduate student Faye-Marie Vassel investigates a protein that helps cells tolerate DNA damage, sharing her expertise with budding scientists to further STEM education

Raleigh McElvery

 

Faye-Marie Vassel has a protein. Well, as a living entity, technically she has many, but just one she affectionately refers to as her own. “My protein, REV7.” And it makes sense — if you were hard at work characterizing a single protein for all six years of your graduate career, you’d be pretty attached, too. Plus, the stakes are high. REV7, which aids in DNA damage repair, could ultimately provide insight into ways to combat chemotherapy resistance.

Although Vassel’s mother trained as an OB/GYN in Russia before moving to the U.S., serving as what Vassel describes as a “quiet” scientific role model, Vassel spent her early childhood emulating her father, a social worker, and engrossed in the social sciences. She intended to one day work in science policy — until high school when she joined an after-school program at the American Museum of Natural History in New York City, and discovered an additional interest.

Here, Vassel took a series of molecular biology classes and met her first female research mentor, a postdoctoral fellow at Rockefeller University, who encouraged her to participate in another, more advanced science program funded by the National Science Foundation.

“I initially had my doubts, but just having that support changed everything,” Vassel says. “That was my first time doing research of any kind, and I got a sense of the sheer diversity of potential research projects. That’s also when I heard there was something called biophysics.”

From that point on, Vassel was hooked. As an undergraduate at Stony Brook University, she initially declared a major in physics before switching to biochemistry. Later, when it came time to select a graduate school, she was split between MIT and the University of California, Berkeley. As she recalls, MIT’s graduate preview weekend made all the difference.

“I had the chance to stay with biology students and speak with professors,” she says. “The whole experience made the department seem personal, and demystified the graduate school process by making it more tangible.”

She proposed a joint position between two labs: Graham Walker’s lab, based in Building 68, and Michael Hemann’s lab situated in the Koch Institute for Integrative Cancer Research. Walker’s lab focuses on microbiology, DNA repair, and antibiotic resistance, while Hemann’s lab investigates chemotherapy resistance in hopes of improving cancer therapies. After stumbling upon one of their joint papers, Vassel decided she’d like to combine the two.

“It’s invaluable to have both perspectives,” she says. “Mike’s lab just celebrated its 10th anniversary, while Graham‘s just had its 35th. It’s been interesting seeing the different ways they approach their respective research questions, because they were trained in such different scientific eras.”

Although Vassel is currently the only student formally working in both labs, the collaboration between Walker and Hemann, aimed at combatting chemotherapy resistance, has been ongoing.

Frontline chemotherapies, including one anticancer agent called cisplatin, kill cancer cells by damaging their DNA and preventing them from synthesizing new genetic material. Just how sensitive cancer cells are to cisplatin — and therefore how effective the treatment is — depends on whether the cell can repair the damage and bypass DNA-damage induced cell death. In some cases, cells increase production of “translesion polymerases,” which are specialized DNA polymerases that can help cells tolerate certain kinds of DNA damage by synthesizing across from damaged DNA or DNA bound to a carcinogen.

Vassel’s protein, REV7, is a structural subunit of one key translesion polymerase, and its expression is deregulated in many different cancer cells. As Vassel suggests, if one aspect of these translesion polymerases — say, the REV7 subunit — could be altered to hinder repair, then perhaps cancer-ridden cells could regain drug sensitivity.

Thanks to recently-developed CRISPR-Cas9 gene editing techniques, Vassel has removed REV7 entirely from drug resistant lung cancer cellsand watched as cisplatin sensitivity was restored. She also conducted rescue experiments, adding REV7 back into cell lines lacking the protein to see whether those cells become resistant to the drug once again. Most recently, she has been working in murine models to see whether REV7 has similar effects in a living system.

If her hypothesis is correct, REV7 would be a powerful target for drug development. Treatments that inhibit REV7, she explains, could be used in tandem with frontline chemotherapies like cisplatin to prevent resistance.

Since her foray into biology at the American Museum of Natural History almost a decade ago, Vassel has maintained her passion for science outreach. During her time at MIT, she has served as a math tutor for middle schoolers in the Cambridge public school system. She also volunteered as a science and math mentor for high school students, as part of a dual athletic and academic program founded by MIT.

As Vassel wraps up her final year of graduate studies, she is torn between completing an academic postdoc and indulging her early interest in science education policy.

“Growing up in New York City, it was not lost on me that — despite the city’s wonderful diversity — people from historically underserved groups were still missing from many science-related positions,” Vassel says. “It got me thinking about the dire need for policymakers to improve curricula to make science more inclusive of all life experiences. There’s this idea that science is apolitical when it’s really not, and that mindset can have detrimental effects on equity and diversity in science.”

Photo credit: Raleigh McElvery
An eye for a mouth: How regenerating flatworms keep track of body parts

Graduate student Lauren Cote identifies genes directing regeneration

Justin Chen
November 16, 2017

An eye for a mouth: How regenerating flatworms keep track of body parts

Person with brown hair in pony tail sits in front of computer and microscope.

Graduate student Lauren Cote identifies genes directing regeneration

Justin Chen

 

Peering down through a microscope at a petri dish, Lauren Cote, a sixth-year graduate student, watches the tip of a worm’s tail. Alone in the petri dish, the brown globule of tissue is regenerating an entirely new digestive system, a brain, and a pair of eye spots. After just a few weeks, the animal — a quarter-inch-long ribbon of flesh capped by a triangular head — is complete again. Swimming through the dish, the worm’s grainy, mahogany body fades to a translucent gray-blue along the edges, stretching and contracting as if hinting at its malleability.

Many animals regenerate. Salamanders replace their tails while zebrafish regrow damaged heart muscle. Even humans can renew large parts of their livers. However, few creatures can regenerate like planarians, a class of flatworms found in fresh and salt water habitats around the world — and in the Reddien lab at the Whitehead Institute.

Because planarians are masters of regeneration, able to replace any body part and even create a new animal from small chunks of tissue, they have become a focus of intense study. By examining the flatworm species Schmidtea mediterranea, Cote and other members of the Reddien lab have uncovered the ways cells communicate after injury to coordinate regeneration. Their work provides insight into how the ability to regenerate evolved, and how the healing process works in a variety of animals, including humans.

– –

Although regeneration seems mysterious, researchers have simplified the feat into two steps. First, planarians create the raw material to make new body parts by stimulating a group of rapidly dividing cells, called stem cells, that are the source of all new tissue in the worm. Second, these new cells need instructions to know what kind of tissue to become. Cote’s goal is to demystify this second step by locating a grid of information, like latitude and longitude lines on a map, that helps planarians keep track of their body parts and sense what is missing.

Hands suctioning small, black dots from petri dish.
Few creatures can regenerate like planarians, a class of flatworms found in fresh and salt water habitats around the world.

“The animal could have lost just the tip of its head or entire left side of its body,” Cote says, “and somehow it regrows the precise anatomy needed to make a complete worm.”

Over the past few years, research in the Reddien lab has demonstrated that a network of muscle cells spread throughout the worm’s body guides regeneration. To accomplish this task, muscle cells rely on a group of genes called position control genes (PCGs) which, based on Cote’s model, are predicted to encode proteins involved in cell communication. Depending on what PCGs are activated or expressed, muscle cells would send out a unique combination of signaling molecules that determine which body parts, such as eyes, stomach, or tail, would form.

“We like to imagine that muscle cells function like satellites and beam down information,” Cote says. “This allows stem cells to know where they are and what new body part to become.”

– –

To systematically identify PCGs from the roughly 20,000 genes expressed in Schmidtea mediterranea, Cote worked in tandem with postdoctoral researcher Lucila Scimone in the Reddien lab to perform a two-part study. First they created maps of gene expression by examining individual muscle cells. After inventorying the genes each individual muscle cell expressed, they aggregated the data into a whole body map, showing gene activity across the entire worm. Some genes were expressed in all muscle cells, implying a general function such as controlling contraction and relaxation. In contrast, other genes were expressed in precise regions of the worm, like the head or midsection, suggesting that they could act as PCGs by defining the identity of each area.

In the second half of the study, Cote and Scimone used molecular techniques to disrupt the activity of potential PCGs. “We hypothesized that if a gene were needed to direct regeneration, the worm would still be able to renew itself without that gene’s activity,” Cote says, “but the animal would end up with an abnormal body.”

Indeed, Cote found that disrupting four genes in particular, encoding signaling molecules and receptor-like proteins, led to defective regeneration; worms either grew extra eyes on their head or grew extra feeding tubes sprouting out of their midsection like elongated suction cups.  Together these four genes, along with a few previously identified genes controlling head and tail regeneration, comprise a short but expanding list of PCGs controlling the location and identity of new tissues. As scientists begin to understand the molecular details of planarian regeneration, they will test whether similar genes are used by other animals and humans.

– –

Although a biologist now, Cote began her academic life focusing on mathematics. As an undergraduate math major at the University of Chicago, she studied branches of mathematics such as analysis, algebra, and algebraic topology, a discipline that describes the properties of multidimensional shapes. After a summer project, Cote realized that — while she enjoyed learning mathematics — she found the research far too abstract.

“I was having a mid-college crisis,” she recalls. “I wanted to study something more visual where you could actually see what is going on.” Following this urge, Cote began to work in a lab examining fly development during her junior year. “I remember watching sheets of cells on the outside of a fly embryo folding in on themselves and sliding under the surface away from view. It made me wonder how cells make decisions and choreograph their movements to build a body. That’s how I got interested in developmental biology.”

After graduating from the University of Chicago, Cote worked as a lab technician for two years. During this time, she realized that her background in math and ability to think logically was an asset. “Putting together a mathematical proof is similar to publishing a research paper,” she says. “In both cases you are piecing together smaller bits of evidence into a cohesive argument.”

A series of blobs with white, green, purple and yellow specs inside them.
Gene expression maps from the first half of Cote’s and Scimone’s study. The head of the worm faces the top of the screen while the tail of the worm faces the bottom of the screen. Each worm is marked by purple, yellow, and green dots indicating the expression of three different genes expressed in muscle cells. These colors show how genes are localized to different areas of the worm and could act as PCGs.  In the second half of the study, Cote and Scimone identified PCGs by using molecular techniques to disrupt gene activity and looking for worms that regenerated abnormal bodies.

Encouraged by her successful venture into biological research, Cote decided to pursue a PhD in biology. She learned about the Reddien lab while taking a genetics course during her first year at MIT. Like Cote, many members of this group have backgrounds in other areas of science — including computational biology, development, evolution, biochemistry, and immunology — which helps them examine planarian regeneration from many perspectives.

“They were beginning to put together a story linking muscle cells to regeneration that was really intriguing,” Cote says. “I also liked the challenge of working with planarians because they are a fairly new lab animal. We’re still developing a lot of research tools so there is room to be creative and ask fundamental questions.”

By following an initial strand of curiosity as an undergraduate and identifying PCGs as a graduate student, Cote has begun to decipher the molecular language of regeneration.  As scientists learn more about how planarians replace missing body parts, new areas of exploration open. One pressing question­ is how planarian regeneration compares to that of other animals. To pursue that mystery, Cote plans on studying another animal as a postdoctoral researcher and eventually starting her own laboratory.

“I still haven’t made up my mind, “she says, “but I’m considering a lot of possibilities such as crustaceans, sea squirts, zebrafish, and axolotls.” Regardless of her final choice, Cote will be investigating how cells — essentially fatty membranes encasing a slurry of water and proteins — manage to form complex and intricate structures. She will be pursuing the same questions that first captivated her as an undergraduate in Chicago. “How do cells make decisions? How do they know to become an eye or a stomach or a brain?” she asks. “There is a lot more that I want to understand.”

Photo credit: Raleigh McElvery
Joan Ruderman PhD ’74: A lifelong enthusiasm for developmental biology

Studying the Humble Clam Leads to Environmental Work

Alice Waugh | MIT Technology Review
December 22, 2017

Joan Ruderman’s lifelong enthusiasm for developmental biology shines through, whether she’s talking about studying the reproductive habits of the humble clam or discussing the surprising effects of plastics components like bisphenol A (BPA) on fetal development.

Ruderman arrived at MIT in 1969, when the Department of Biology was still quite small. That fall there were more first-year graduate students—about half women—than there were faculty in the department. The field of developmental biology and her career would develop in parallel. She joined the Harvard Medical School (HMS) faculty in 1976 and by 2012 she had become the first female president and director of the Marine Biological Laboratory (MBL) in Woods Hole, Massachusetts, a post she held for two years.

“The field of molecular biology was just beginning, and MIT was at the forefront of many of the early advances,” she says. Her doctoral work involved studying how fertilization activates messenger RNA in sea urchin eggs. She describes the initiation of cell division on a molecular level this way: “An unfertilized egg is a quiescent cell, but then the sperm hits, the doorbell rings, and this whole dinner party rapidly unfolds.”

As is the case with so many MIT graduates, ­Ruderman’s interests have shaped her career. As she was finishing her doctorate, she began her long association with the MBL when she took an embryology course there. During the summer, scientists from all over the world come to the lab to study topics like neurobiology and cell division in local marine organisms. One of those creatures is Spisula solidissima, which is familiar to anyone who enjoys clam chowder.

“A single female can put out several hundred million eggs on a good day,” Ruderman says. The clam embryo makes a good study subject because of its rapid development after fertilization: “In 24 hours, it’s a functional little animal.”

Later, Ruderman became interested in environmental issues. While on the HMS faculty, she took a class on human health and global environmental change taught by Eric Chivian, the onetime MIT Medical psychiatrist who went on to share the Nobel Peace Prize as cofounder of International Physicians for the Prevention of Nuclear War.

Now a professor emeritus at Harvard, ­Ruderman teaches at Princeton about the adverse effects of chemicals such as BPA, phthalates, and pesticides. Knowing what can get budding scientists hooked, she titled her class “Hormonally Active Pollutants.” “If I called it ‘Environmental Endocrine Disrupters,’ no one would take the course,” she says.

This article originally appeared in the November/December 2017 issue of MIT Technology Review magazine.
Pairing mismatch helps impaired fish RNA cleavage proceed swimmingly
December 21, 2017

Beyond tending to its multitudes of genetic, metabolic, and developmental processes, eukaryotic cells must additionally be vigilant against invasion by parasitic sequences such as viruses and transposons. RNA interference (RNAi) is a defense used by eukaryotic cells to protect themselves from such threats to their genomic harmony. Cellular RNAi components slice and destroy invading double-stranded RNA sequences and also help snip and process microRNAs, RNA sequences encoded by the genome that play key roles in gene regulation. An important process that occurs naturally in our cells, RNAi has also been harnessed by scientists as a tool to study gene function in common models such as worms, fruit flies, and mice. While many researchers have been using RNAi to tease apart gene function for over a decade, those using zebrafish, a powerful vertebrate model, have been forced to use other approaches because RNAi just did not seem to work well in these animals. Now, researchers at Whitehead Institute have uncovered how small changes in the fish Argonaute (Ago) protein, an RNA slicing protein, that happened in its lineage an estimated 300 million years ago greatly diminished the efficiency of RNAi in these animals, while another ancestral feature, in a critical pre-microRNA, was retained that enabled the microRNA to still be produced despite the fish’s impaired Ago protein.

In an article published December 21 in the journal Molecular Cell, graduate student Grace Chen, along with both Whitehead Member David Bartel, also a professor of biology at Massachusetts Institute of Technology (MIT) and investigator with the Howard Hughes Medical Institute, and Whitehead Member and MIT professor of biology Hazel Sive, describe their discovery of a roughly 300 million-year-old, two amino acid substitutions in the fish Ago protein. The substitution is present in the ancestor all teleost fish, the class of fish which includes not only zebrafish but also the vast majority of fish species spanning those populating the ocean, aquarium, and supermarket. These two changes reside in and near the protein’s catalytic site and greatly decrease the ability of the fish Ago to perform its RNA slicing function, offering an explanation for why RNAi has not been a useful tool in zebrafish.

Despite the zebrafish’s deficiencies in RNAi, it is still able to produce the microRNA miR-451, an important regulator of red blood cell maturation and the only microRNA processed by Ago (the rest are produced with another protein called Dicer). MicroRNAs are short stretches of RNA that can regulate gene expression by inhibiting translation of mRNA into a protein and directing the destruction of mRNA before it can be used to make more protein. Since Chen had discovered that zebrafish lack an efficient Ago protein, it was mysterious as to how are fish were able to produce Ago cleavage-dependent miR-451. The Ago protein must process miR-451 by slicing the sequence out of a longer strand of RNA that has folded up on itself, forming a hairpin structure. What they determined was that in the pre-miR-451 hairpin in zebrafish, at a critical position in the miRNA, they found a “G–G” pairing mismatch that actually appears to facilitate cleavage by the impaired zebrafish Ago. No mismatch, no efficient cleavage.

Exploring the effects of a seed sequence mismatch on Ago-catalyzed cleavage kinetics further, they then tested its ability to slice other bound transcripts. The researchers discovered that while, as might be expected, a G–G mismatch slows Ago binding, it significantly enhances both slicing efficiency as well as the release of the bound product, more than off-setting the slower binding reaction kinetics and suggesting that non- “Watson–Crick” base pairing creates an exceptionally favorable geometry for the cleavage and release parts of the reaction.

These findings offer interesting insights into how animals can survive and thrive without an efficient RNAi system and suggest how the Ago protein could be “repaired” in order to allow zebrafish researchers to use RNAi in their experiments. Restoring a function that a lineage hasn’t had for 300 million years might also fuel additional findings into how the teleost class has diverged over time.

Written by Lisa Girard
***
David Bartel’s primary affiliation is with Whitehead Institute for Biomedical Research, where his laboratory is located and all his research is conducted. He is also a professor of biology at Massachusetts Institute of Technology and investigator with the Howard Hughes Medical Institute.
***
Paper cited:
Chen GR, Sive H, and Bartel DP. A Seed Mismatch Enhances Argonaute2-Catalyzed Cleavage and Partially Rescues Severely Impaired Cleavage Found in Fish. Molecular Cell, Dec 21 2017 DOI: 10.1016/j.molcel.2017.11.032.
Harnessing nature’s riches
December 19, 2017

Cambridge, MA – Researchers at Whitehead Institute have reconstructed the full suite of biochemical steps required to make salidroside, a plant-derived compound widely used in traditional medicine to combat depression and fatigue and boost immunity and memory. Their new study, which appears online this week in the journal Molecular Plant, resolves some long-standing questions about how this compound is manufactured by a type of high-altitude plant, known commonly as golden root. This work not only paves a path toward large-scale synthetic efforts—thereby protecting plants already in danger of extinction—but also provides a model for dissecting the biochemical synthesis of a host of natural products, which represent a treasure trove for modern medical discoveries.

“By cracking open the natural synthesis of this compound, known as salidroside, we have helped eliminate a major bottleneck in the broader development of plant-derived natural products into pharmaceuticals,” says Jing-Ke Weng, the senior author of the paper, a Member of Whitehead Institute, and an assistant professor of biology at Massachusetts Institute of Technology. “We simply can’t rely on the native plants as the sole sources of these biologically important molecules.”

Golden root, also called Tibetan ginseng, typically grows in high-altitude, arctic environments, such as Tibet. It is well known in Eastern cultures for its medicinal properties and produces a variety of chemical substances, particularly salidroside, which have garnered interest in the biomedical research community for their potential therapeutic effects.

“People have tried to farm golden root, but the medicinal value is much lower because the plants make much less salidroside when cultivated outside of their normal habitat,” says Weng.

That means collecting enough salidroside to fuel scientific studies is largely impossible, without risking the viability of these plants and their surroundings. So Weng and his team, including first author Michael Torrens-Spence, set out to find a better way. “If we can figure out how plants make these high-value natural products, then we can devise sustainable engineering approaches to recreate such molecules—we won’t have to destroy nature in order to harness its riches,” says Torrens-Spence, a postdoctoral researcher in Weng’s laboratory.

Torrens-Spence and his colleagues used a systematic multi-omics approach to characterize various tissues from a three-month-old, greenhouse-grown golden root plant. By correlating the active genes with the abundance of key metabolites between various tissue types, the researchers created a massive biochemical catalog of the plant’s tissues.

The researchers then mined these data and matched the likely biochemical precursors of salidroside with the candidate genes (and their corresponding enzymes) responsible for those compounds’ synthesis. This approach allowed Weng and his team to create a kind of draft blueprint of how salidroside is made in nature.

To test the validity of this draft blueprint—and the molecular players from the golden root plant that comprise it—the scientists turned to two well-studied laboratory organisms: the baker’s yeast Saccharomyces cerevisiae and the tobacco plant Nicotiana benthamiana. Normally, these organisms do not make salidroside. But if the researchers’ model was correct, by inserting the candidate genes involved in salidroside synthesis Weng and his colleagues should be able to bestow that special property upon them.

That is precisely what the researchers did. Using three key enzymes they identified through their “-omics” approach, including 4HPAAS (4-hydroxyphenylacetaldehyde synthase), 4HPAR (4-hydroxyphenylacetaldehyde reductase), and T8GT (tyrosol:UDP-glucose 8-O-glucosyltransferase), they engineered yeast and tobacco plants with the capacity to make salidroside. Notably, this biochemical pathway for synthesizing salidroside involves three enzymes, rather than four, as had previously been proposed.

“This is an exciting proof-of-principle for how we can systematically unlock the biochemistry behind a range of intriguing plant-derived natural products,” says Weng. “With this capability, we can accelerate biomedical studies of these unique compounds as well as their potential therapeutic development.”

Written by Nicole Davis
* * *
Jing-Ke Weng’s primary affiliation is with Whitehead Institute for Biomedical Research, where his laboratory is located and all his research is conducted. He is also an assistant professor of biology at Massachusetts Institute of Technology.
* * *
Full citation:
“Complete pathway elucidation and heterologous reconstitution of Rhodiola salidroside biosynthesis”
Molecular Plant, online December 19, 2017. DOI: 10.1016/j.molp.2017.12.007
Michael P. Torrens-Spence (1), Tomáš Pluskal (1), Fu-Shuang Li (1), Valentina Carballo (1) and Jing-Ke Weng (1,2).
1. Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
2. Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA