David Sabatini

David Sabatini

Professor of Biology; Member, Whitehead Institute; Investigator, Howard Hughes Medical Institute; Senior Member, Broad Institute; Member, Koch Institute for Integrative Cancer Research; American Cancer Society Research Professor

David Sabatini studies the pathways that regulate growth and metabolism and how they are deregulated in diseases like cancer and diabetes.

617-258-6407

Phone

WI-661

Office

Education

  • MD/PhD, 1997, Johns Hopkins School of Medicine
  • BS, 1990, Biochemistry, Brown University

Research Summary

We probe the basic mechanisms that regulate growth — the process whereby cells and organisms accumulate mass and increase in size. The pathways that control growth are often hindered in human diseases like diabetes and cancer. Our long-term goals are to identify and characterize these mechanisms, and to understand their roles in normal and diseased mammals. David Sabatini is currently on leave.

Awards

  • Sjöberg Prize, Royal Swedish Academy of Sciences, 2020
  • Frontiers of Knowledge Award in Biology and Biomedicine, 2020
  • Louisa Gross Horwitz Prize, Columbia University, 2019
  • Switzer Prize, 2018
  • Dickson Prize in Medicine, 2017
  • Lurie Prize in Biomedical Sciences, 2017
  • National Academy of Sciences, Member, 2016
  • National Academy of Sciences, Award in Molecular Biology, 2014
  • Howard Hughes Medical Institute, HHMI Investigator, 2008
  • Charles Ross Scholar Award, 2003-2005

Key Publications

  1. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Zoncu, R, Bar-Peled, L, Efeyan, A, Wang, S, Sancak, Y, Sabatini, DM. 2011. Science 334, 678-83.
    doi: 10.1126/science.1207056PMID:22053050
  2. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Sancak, Y, Peterson, TR, Shaul, YD, Lindquist, RA, Thoreen, CC, Bar-Peled, L, Sabatini, DM. 2008. Science 320, 1496-501.
    doi: 10.1126/science.1157535PMID:18497260
  3. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Sarbassov, DD, Guertin, DA, Ali, SM, Sabatini, DM. 2005. Science 307, 1098-101.
    doi: 10.1126/science.1106148PMID:15718470
  4. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Kim, DH, Sarbassov, DD, Ali, SM, King, JE, Latek, RR, Erdjument-Bromage, H, Tempst, P, Sabatini, DM. 2002. Cell 110, 163-75.
    doi: 10.1016/s0092-8674(02)00808-5PMID:12150925
  5. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Sabatini, DM, Erdjument-Bromage, H, Lui, M, Tempst, P, Snyder, SH. 1994. Cell 78, 35-43.
    doi: 10.1016/0092-8674(94)90570-3PMID:7518356

Recent Publications

  1. Genome-wide CRISPR screens reveal multitiered mechanisms through which mTORC1 senses mitochondrial dysfunction. Condon, KJ, Orozco, JM, Adelmann, CH, Spinelli, JB, van der Helm, PW, Roberts, JM, Kunchok, T, Sabatini, DM. 2021. Proc Natl Acad Sci U S A 118, .
    doi: 10.1073/pnas.2022120118PMID:33483422
  2. MFSD12 mediates the import of cysteine into melanosomes and lysosomes. Adelmann, CH, Traunbauer, AK, Chen, B, Condon, KJ, Chan, SH, Kunchok, T, Lewis, CA, Sabatini, DM. 2020. Nature 588, 699-704.
    doi: 10.1038/s41586-020-2937-xPMID:33208952
  3. MCART1/SLC25A51 is required for mitochondrial NAD transport. Kory, N, Uit de Bos, J, van der Rijt, S, Jankovic, N, Güra, M, Arp, N, Pena, IA, Prakash, G, Chan, SH, Kunchok, T et al.. 2020. Sci Adv 6, .
    doi: 10.1126/sciadv.abe5310PMID:33087354
  4. Dihydroxyacetone phosphate signals glucose availability to mTORC1. Orozco, JM, Krawczyk, PA, Scaria, SM, Cangelosi, AL, Chan, SH, Kunchok, T, Lewis, CA, Sabatini, DM. 2020. Nat Metab 2, 893-901.
    doi: 10.1038/s42255-020-0250-5PMID:32719541
  5. A PEROXO-Tag Enables Rapid Isolation of Peroxisomes from Human Cells. Ray, GJ, Boydston, EA, Shortt, E, Wyant, GA, Lourido, S, Chen, WW, Sabatini, DM. 2020. iScience 23, 101109.
    doi: 10.1016/j.isci.2020.101109PMID:32417403
  6. Author Correction: Tumours with PI3K activation are resistant to dietary restriction. Kalaany, NY, Sabatini, DM. 2020. Nature 581, E2.
    doi: 10.1038/s41586-020-2215-yPMID:32405003
  7. Dietary modifications for enhanced cancer therapy. Kanarek, N, Petrova, B, Sabatini, DM. 2020. Nature 579, 507-517.
    doi: 10.1038/s41586-020-2124-0PMID:32214253
  8. Author Correction: mTOR at the nexus of nutrition, growth, ageing and disease. Liu, GY, Sabatini, DM. 2020. Nat Rev Mol Cell Biol 21, 246.
    doi: 10.1038/s41580-020-0219-yPMID:32005970
  9. Author Correction: A human ciliopathy reveals essential functions for NEK10 in airway mucociliary clearance. Chivukula, RR, Montoro, DT, Leung, HM, Yang, J, Shamseldin, HE, Taylor, MS, Dougherty, GW, Zariwala, MA, Carson, J, Daniels, MLA et al.. 2020. Nat Med 26, 300.
    doi: 10.1038/s41591-020-0773-zPMID:31996837
  10. A human ciliopathy reveals essential functions for NEK10 in airway mucociliary clearance. Chivukula, RR, Montoro, DT, Leung, HM, Yang, J, Shamseldin, HE, Taylor, MS, Dougherty, GW, Zariwala, MA, Carson, J, Daniels, MLA et al.. 2020. Nat Med 26, 244-251.
    doi: 10.1038/s41591-019-0730-xPMID:31959991
More Publications

Multimedia

Photo credit: Gretchen Ertl/Whitehead Institute