David Sabatini

David Sabatini

Professor of Biology; Member, Whitehead Institute; Investigator, Howard Hughes Medical Institute; Senior Member, Broad Institute; Member, Koch Institute for Integrative Cancer Research; American Cancer Society Research Professor

David Sabatini studies the pathways that regulate growth and metabolism and how they are deregulated in diseases like cancer and diabetes.

617-258-6407

Phone

WI-361

Office

Danica Rili

Assistant

617-258-6276

Assistant Phone

Education

MD/PhD 1997, Johns Hopkins School of Medicine

Research Summary

We probe the basic mechanisms that regulate growth — the process whereby cells and organisms accumulate mass and increase in size. The pathways that control growth are often hindered in human diseases like diabetes and cancer. Our long-term goals are to identify and characterize these mechanisms, and to understand their roles in normal and diseased mammals.

Awards

  • Switzer Prize, 2018
  • Dickson Prize in Medicine, 2017
  • Lurie Prize in Biomedical Sciences, 2017
  • National Academy of Sciences, Member, 2016
  • National Academy of Sciences, Award in Molecular Biology, 2014
  • Howard Hughes Medical Institute, HHMI Investigator, 2008

Key Publications

  1. Twenty-five years of mTOR: Uncovering the link from nutrients to growth. Sabatini, DM. 2017. Proc. Natl. Acad. Sci. U.S.A. 114, 11818-11825.
    doi: 10.1073/pnas.1716173114PMID:29078414
  2. Gene Essentiality Profiling Reveals Gene Networks and Synthetic Lethal Interactions with Oncogenic Ras. Wang, T, Yu, H, Hughes, NW, Liu, B, Kendirli, A, Klein, K, Chen, WW, Lander, ES, Sabatini, DM. 2017. Cell 168, 890-903.e15.
    doi: 10.1016/j.cell.2017.01.013PMID:28162770
  3. Mechanism of arginine sensing by CASTOR1 upstream of mTORC1. Saxton, RA, Chantranupong, L, Knockenhauer, KE, Schwartz, TU, Sabatini, DM. 2016. Nature 536, 229-33.
    doi: 10.1038/nature19079PMID:27487210
  4. Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway. Saxton, RA, Knockenhauer, KE, Wolfson, RL, Chantranupong, L, Pacold, ME, Wang, T, Schwartz, TU, Sabatini, DM. 2016. Science 351, 53-8.
    doi: 10.1126/science.aad2087PMID:26586190
  5. Sestrin2 is a leucine sensor for the mTORC1 pathway. Wolfson, RL, Chantranupong, L, Saxton, RA, Shen, K, Scaria, SM, Cantor, JR, Sabatini, DM. 2016. Science 351, 43-8.
    doi: 10.1126/science.aab2674PMID:26449471

Recent Publications

  1. Ragulator and SLC38A9 activate the Rag GTPases through noncanonical GEF mechanisms. Shen, K, Sabatini, DM. 2018. Proc. Natl. Acad. Sci. U.S.A. 115, 9545-9550.
    doi: 10.1073/pnas.1811727115PMID:30181260
  2. Histidine catabolism is a major determinant of methotrexate sensitivity. Kanarek, N, Keys, HR, Cantor, JR, Lewis, CA, Chan, SH, Kunchok, T, Abu-Remaileh, M, Freinkman, E, Schweitzer, LD, Sabatini, DM. 2018. Nature 559, 632-636.
    doi: 10.1038/s41586-018-0316-7PMID:29995852
  3. NUFIP1 is a ribosome receptor for starvation-induced ribophagy. Wyant, GA, Abu-Remaileh, M, Frenkel, EM, Laqtom, NN, Dharamdasani, V, Lewis, CA, Chan, SH, Heinze, I, Ori, A, Sabatini, DM. 2018. Science 360, 751-758.
    doi: 10.1126/science.aar2663PMID:29700228
  4. Architecture of the human GATOR1 and GATOR1-Rag GTPases complexes. Shen, K, Huang, RK, Brignole, EJ, Condon, KJ, Valenstein, ML, Chantranupong, L, Bomaliyamu, A, Choe, A, Hong, C, Yu, Z et al.. 2018. Nature 556, 64-69.
    doi: 10.1038/nature26158PMID:29590090
  5. Rapid immunopurification of mitochondria for metabolite profiling and absolute quantification of matrix metabolites. Chen, WW, Freinkman, E, Sabatini, DM. 2017. Nat Protoc 12, 2215-2231.
    doi: 10.1038/nprot.2017.104PMID:29532801
  6. SAMTOR is an S-adenosylmethionine sensor for the mTORC1 pathway. Gu, X, Orozco, JM, Saxton, RA, Condon, KJ, Liu, GY, Krawczyk, PA, Scaria, SM, Harper, JW, Gygi, SP, Sabatini, DM. 2017. Science 358, 813-818.
    doi: 10.1126/science.aao3265PMID:29123071
  7. Twenty-five years of mTOR: Uncovering the link from nutrients to growth. Sabatini, DM. 2017. Proc. Natl. Acad. Sci. U.S.A. 114, 11818-11825.
    doi: 10.1073/pnas.1716173114PMID:29078414
  8. Lysosomal metabolomics reveals V-ATPase- and mTOR-dependent regulation of amino acid efflux from lysosomes. Abu-Remaileh, M, Wyant, GA, Kim, C, Laqtom, NN, Abbasi, M, Chan, SH, Freinkman, E, Sabatini, DM. 2017. Science 358, 807-813.
    doi: 10.1126/science.aan6298PMID:29074583
  9. Intersubunit Crosstalk in the Rag GTPase Heterodimer Enables mTORC1 to Respond Rapidly to Amino Acid Availability. Shen, K, Choe, A, Sabatini, DM. 2017. Mol. Cell 68, 552-565.e8.
    doi: 10.1016/j.molcel.2017.09.026PMID:29056322
  10. mTORC1 Activator SLC38A9 Is Required to Efflux Essential Amino Acids from Lysosomes and Use Protein as a Nutrient. Wyant, GA, Abu-Remaileh, M, Wolfson, RL, Chen, WW, Freinkman, E, Danai, LV, Vander Heiden, MG, Sabatini, DM. 2017. Cell 171, 642-654.e12.
    doi: 10.1016/j.cell.2017.09.046PMID:29053970
More Publications
Photo credit: Gretchen Ertl/Whitehead Institute