A genome-wide screen in live hosts reveals new secrets of parasite infection

Researchers in the Lourido Lab performed the first genome-wide screen of Toxoplasma gondii in live hosts, revealing genes that are important for infection but previously undetected in cell culture experiments. 

Greta Friar | Whitehead Institute
July 8, 2024

Apicomplexan parasites are a common cause of disease, infecting hundreds of millions of people each year. They are responsible for spreading malaria; cryptosporidiosis – a severe childhood diarrheal disease; and toxoplasmosis – a disease that endangers immune compromised people and fetuses, and is the reason why pregnant women are told to avoid changing cat litter. Apicomplexan parasites are very good at infecting humans and many other animals, and persisting inside of them. The more that researchers can learn about how apicomplexans infect hosts, the better they will be able to develop effective treatments against the parasites.

To this end, researchers in Whitehead Institute Member Sebastian Lourido’s lab, led by graduate student Christopher Giuliano, have now completed a genome-wide screen of the apicomplexan parasite Toxoplasma gondii (T. gondii), which causes toxoplasmosis, during its infection of mice. This screen shows how important each gene is for the parasite’s ability to infect a host, providing clues to genes’ functions. In the journal Nature Microbiology on July 8, the researchers share their approach for tracing lineages of parasites in a live host, and some specific findings of interest—including a possible anti-parasitic drug target.

From dish to animal

Researchers in Lourido’s lab previously developed a screen to test the function of every T. gondii gene in cells in a dish in 2016. They used CRISPR gene editing technology to make mutant parasites in which each lineage had one gene inactivated. The researchers could then assess the importance of each gene to a parasite’s fitness, or ability to thrive, based on how well the mutants missing that gene did. If a mutant died off, this implied that its inactivated gene is essential for the parasite’s survival.

This screen taught the researchers a lot about T. gondii’s biology but faced a common limitation: the parasites were studied in a dish rather than a live host. Cell culture provides an easier way to study parasites, but the conditions are not the same as what parasites face in an animal host. A host’s body is a more complex and dynamic environment, so it may require parasites to rely on genes that they don’t need in the artificial setting of cell culture.

To overcome this limitation, researchers in Lourido’s lab figured out how to repeat the T. gondii genome-wide screen, which their colleagues in the lab had previously done in cell culture, in live mice. This was a massive undertaking, which required solving various technical challenges and running a large number of parallel experiments. T. gondii has around eight thousand genes, so the researchers performed pooled experiments, with each mouse getting infected by many different mutants—but not so many as to overwhelm the mouse. This meant that the researchers needed a way to more closely monitor the trajectories of mutants in the mouse. They needed to track the lineages of parasites that carried the same mutation over time, as this would allow them to see how different replicate lineages of a particular mutant performed.

“This is an outstanding resource,” says Lourido. “The results of the screen reveal such a broader spectrum of ways in which the parasites are interacting with hosts, and enrich our perception of the parasites’ abilities and vulnerabilities.”
The researchers added barcodes to the CRISPR tools that inactivated a gene of interest in the parasite. When they harvested the parasites’ descendants, the barcode would identify the lineage, distinguishing replicate parasites that had been mutated in the same way. This allowed the researchers to use a population-based analytical approach to rule out false results and decrease experimental noise. Then they could draw conclusions about how well each lineage did. Lineage tracing allowed them to map how different populations of parasites traveled throughout the host’s body, and whether some populations grew better in one organ versus another.

The researchers found 237 genes that contribute to the parasite’s fitness more in a live host than in cell culture. Many of these were not previously known to be important for the parasite’s fitness. The genes identified in the current screen are active in different parts of the parasite, and affect diverse aspects of its interactions with a host. The researchers also found instances in which parasite fitness in a live host increased when a gene was inactivated; these genes may be, for example, related to signals that the host immune system uses to detect the parasites. Next, the researchers followed up on several of the fitness-improving genes that stuck out as of particular interest.

Genes that make the difference in a live host

One gene that stuck out was GTP cyclohydrolase I (GCH), which codes for an enzyme involved in the production of the essential nutrient folate. Apicomplexans rely on folate, and so the researchers wanted to understand GCH’s role in securing it for the parasite. Cell culture media contains high levels of folate, and in this nutrient-rich environment, GCH is not essential. However, in a live mouse, the parasite must both scavenge folate and synthesize it using the metabolic pathway containing GCH. Lourido and Giuliano uncovered new details of how that pathway works.

Although previously GCH’s role was not fully understood, the importance of folate for apicomplexans is a well-known vulnerability that has been used to design anti-parasitic therapies. The anti-folate drug pyrimethamine was commonly used to treat malaria, but many parasites have developed resistance to it.

Some drug-resistant apicomplexans have increased the number of GCH gene copies that they have, suggesting that they may be using GCH-mediated folate synthesis to overcome pyrimethamine. The researchers found that combining a GCH inhibitor with pyrimethamine increased the efficacy of the drug against the parasites. The GCH inhibitor was also effective on its own. Unfortunately, the currently available GCH inhibitor targets mammalian as well as parasitic folate pathways, and so is not safe for use in animals. Giuliano and colleagues are working on developing a GCH inhibitor that is parasite-specific as a possible therapy.

“There was an entire half of the folate metabolism pathway that previously looked like it wasn’t important for parasites, simply because people add so much folate to cell culture media,” Giuliano says. “This is a good example of what can be missed in cell culture experiments, and what’s particularly exciting is that the finding has led us to a new drug candidate.”

Another gene of interest was RASP1. The researchers determined that RASP1 is not involved in initial infection attempts, but is needed if the parasites fail and need to mount a second attempt. They found that RASP1 is needed to reload an organelle of the parasites called a rhoptry that the parasites use to breach and reprogram host cells. Without RASP1, the parasites could only deploy one set of rhoptries, and so could only attempt one invasion.

Identifying the function of RASP1 in infection also demonstrated the importance of studying how parasites interact with different cell types. In cell culture, researchers typically culture parasites in fibroblasts, a connective tissue cell. The researchers found that parasites could invade fibroblasts with or without RASP1, suggesting that this cell type is easy for them to invade. However, when the parasites tried to invade macrophages, an immune cell, those without RASP1 often failed, suggesting that macrophages present the parasites with more of a challenge, requiring multiple attempts. The screen uncovered other probable cell-type specific pathways, which would not have been found using only model cell types in a dish.

The screen also highlighted a previously unnamed gene that the researchers are calling GRA72. Previous studies suggested that this gene plays a role in the vacuole or protective envelope that the parasite forms around itself. The Lourido lab researchers confirmed this, and discovered additional details of how the absence of GRA72 disrupts the parasite vacuole.

A rich resource for the future

Lourido, Giuliano, and colleagues hope that their findings will provide new insights into parasite biology and, especially in the case of GCH, lead to new therapies. They intend to continue pulling from the treasure trove of results—their screen identified many other genes of interest that require follow-up—to learn more about apicomplexan parasites and their interactions with mammalian hosts. Lourido says that other researchers in his lab have already used the results of the screen to guide them towards relevant genes and pathways in their own projects.

“This is an outstanding resource,” says Lourido, who is also an associate professor of biology at MIT. “The results of the screen reveal such a broader spectrum of ways in which the parasites are interacting with hosts, and enrich our perception of the parasites’ abilities and vulnerabilities.”

News brief: Davis Lab

Exploring the cellular neighborhood

Alison Biester | Department of Biology
March 12, 2024

New software allows scientists to model shapeshifting proteins in native cellular environments

Cells rely on complex molecular machines composed of protein assemblies to perform essential functions such as energy production, gene expression, and protein synthesis. To better understand how these machines work, scientists capture snapshots of them by isolating proteins from cells and using various methods to determine their structures. However, isolating proteins from cells also removes them from the context of their native environment, including protein interaction partners and cellular location.

Recently, cryogenic electron tomography (cryo-ET) has emerged as a way to observe proteins in their native environment by imaging frozen cells at different angles to obtain three-dimensional structural information. This approach is exciting because it allows researchers to directly observe how and where proteins associate with each other, revealing the cellular neighborhood of those interactions within the cell.

With the technology available to image proteins in their native environment, graduate student Barrett Powell wondered if he could take it one step further: what if molecular machines could be observed in action? In a paper published today in Nature Methods, Powell describes the method he developed, called tomoDRGN, for modeling structural differences of proteins in cryo-ET data that arise from protein motions or proteins binding to different interaction partners. These variations are known as structural heterogeneity. 

Although Powell had joined the Davis Lab as an experimental scientist, he recognized the potential impact of computational approaches in understanding structural heterogeneity within a cell. Previously, the Davis Lab developed a related methodology named cryoDRGN to understand structural heterogeneity in purified samples. As Powell and Associate Professor of Biology Joey Davis saw cryo-ET rising in prominence in the field, Powell took on the challenge of reimagining this framework to work in cells. 

When solving structures with purified samples, each particle is imaged only once. By contrast, cryo-ET data is collected by imaging each particle more than 40 times from different angles. That meant tomoDRGN needed to be able to merge the information from more than 40 images, which was where the project hit a roadblock: the amount of data led to an information overload.

To address the information overload, Powell successfully rebuilt the cryoDRGN model to prioritize only the highest-quality data. When imaging the same particle multiple times, radiation damage occurs. The images acquired earlier, therefore, tend to be of higher quality because the particles are less damaged.

“By excluding some of the lower quality data, the results were actually better than using all of the data–and the computational performance was substantially faster,” Powell says.

Just as Powell was beginning work on testing his model, he had a stroke of luck: the authors of a groundbreaking new study that visualized, for the first time, ribosomes inside cells at near-atomic resolution, shared their raw data on the Electric Microscopy Public Image Archive (EMPIAR). This dataset was an exemplary test case for Powell, through which he demonstrated that tomoDRGN could uncover structural heterogeneity within cryo-ET data. 

According to Powell, one exciting result is what tomoDRGN found surrounding a subset of ribosomes in the EMPIAR dataset. Some of the ribosomal particles were associated with a bacterial cell membrane and engaged in a process called cotranslational translocation. This occurs when a protein is being simultaneously synthesized and transported across a membrane. Researchers can use this result to make new hypotheses about how the ribosome functions with other protein machinery integral to transporting proteins outside of the cell, now guided by a structure of the complex in its native environment. 

After seeing that tomoDRGN could resolve structural heterogeneity from a structurally diverse dataset, Powell was curious: how small of a population could tomoDRGN identify? For that test, he chose a protein named apoferritin which is a commonly used benchmark for cryo-ET and is often treated as structurally homogeneous. Ferritin is a protein used for iron storage and is referred to as apoferritin when it lacks iron.

Surprisingly, in addition to the expected particles, tomoDRGN revealed a minor population of ferritin particles–with iron bound–making up just 2% of the dataset that was not previously reported. This result further demonstrated tomoDRGN’s ability to identify structural states that occur so infrequently that they would be averaged out with traditional analysis tools. 

Powell and other members of the Davis Lab are excited to see how tomoDRGN can be applied to further ribosomal studies and to other systems. Davis works on understanding how cells assemble, regulate, and degrade molecular machines, so the next steps include exploring ribosome biogenesis within cells in greater detail using this new tool.

“What are the possible states that we may be losing during purification?” Davis says. “Perhaps more excitingly, we can look at how they localize within the cell and what partners and protein complexes they may be interacting with.” 

CLAMP complex helps parasites enter human cells

Apicomplexan parasites are responsible for several serious and prevalent diseases, including malaria & toxoplasmosis. New work from the Lourido Lab identifies the CLAMP protein complex, which plays a key role in helping apicomplexan parasites invade new cells.

Greta Friar | Whitehead Institute
October 27, 2023
3 Questions: Daniel Lew on what we can learn about cells from yeast

New professor of biology uses budding yeast to address fundamental questions in cell biology.

Lillian Eden | Department of Biology
September 28, 2023

Sipping a beer on an early autumn evening, one might not consider that humans and yeast have been inextricably linked for thousands of years; winemaking, baking, and brewing all depend on budding yeast. Outside of baking and fermentation, researchers also use Saccharomyces cerevisiae, classified as a fungus, to study fundamental questions of cell biology.

Budding yeast gets its name from the way it multiplies. A daughter cell forms first as a swelling, protruding growth on the mother cell. The daughter cell projects further and further from the mother cell until it detaches as an independent yeast cell.

How do cells decide on a front and back? How do cells decode concentration gradients of chemical signals to orient in useful directions, or sense and navigate around physical obstacles? New Department of Biology faculty member Daniel “Danny” Lew uses the model yeast S. cerevisiae, and a non-model yeast with an unusual pattern of cell division, to explore these questions. 

Q: Why is it useful to study yeast, and how do you approach the questions you hope to answer?

A: Humans and yeast are descended from a common ancestor, and some molecular mechanisms developed by that ancestor have been around for so long that yeast and mammals often use the same mechanisms. Many cells develop a front and migrate or grow in a particular direction, like the axons in our nervous system, using similar molecular mechanisms to those of yeast cells orienting growth towards the bud.

When I started my lab, I was working on cell cycle control, but I’ve always been interested in morphogenesis and the cell biology of how cells change shape and decide to do different things with different parts of themselves. Those mechanisms turn out to be conserved between yeast and humans.

But some things are very different about fungal and animal cells. One of the differences is the cell wall and what fungal cells have to do to deal with the fact that they have a cell wall.

Fungi are inflated by turgor pressure, which pushes their membranes against the rigid cell wall. This means they’ll die if there is any hole in the cell wall, which would be expected to happen often as cells remodel the wall in order to grow. We’re interested in understanding how fungi sense when any weak spots appear in the wall and repair them before those weak spots become dangerous.

Yeast cells, like most fungi, also mate by fusing with a partner. To succeed, they must do the most dangerous thing in the fungal life cycle: get rid of the cell wall at the point of contact to allow fusion. That means they must be precise about where and when they remove the wall. We’re fascinated to understand how they know it is safe to remove the wall there, and nowhere else.

We take an interdisciplinary approach. We’ve used genetics, biochemistry, cell biology, and computational biology to try and solve problems in the past. There’s a natural progression: observation and genetic approaches tend to be the first line of attack when you know nothing about how something works. As you learn more, you need biochemical approaches and, eventually, computational approaches to understand exactly what mechanism you’re looking at.

I’m also passionate about mentoring, and I love working with trainees and getting them fascinated by the same problems that fascinate me. I’m looking to work with curious trainees who love addressing fundamental problems.

Q: How does yeast decide to orient a certain way — toward a mating partner, for example?

A: We are still working on questions of how cells analyze the surrounding environment to pick a direction. Yeast cells have receptors that sense pheromones that a mating partner releases. What is amazing about that is that these cells are incredibly small, and pheromones are released by several potential partners in the neighborhood. That means yeast cells must interpret a very confusing landscape of pheromone concentrations. It’s not apparent how they manage to orient accurately toward a single partner.

That got me interested in related questions. Suppose the cell is oriented toward something that isn’t a mating partner. The cell seems to recognize that there’s an obstacle in the way, and it can change direction to go around that obstacle. This is how fungi get so good at growing into things that look very solid, like wood, and some fungi can even penetrate Kevlar vests.

If they recognize an obstacle, they have to change directions and go around it. If they recognize a mating partner, they have to stick with that direction and allow the cell wall to get degraded. How do they know they’ve hit an obstacle? How do they know a mating partner is different from an obstacle? These are the questions we’d like to understand.

Q: For the last couple of years, you’ve also been studying a budding yeast that forms multiple buds when it reproduces instead of just one. How did you come across it, and what questions are you hoping to explore?

A: I spent several years trying to figure out why most yeasts make one bud and only one bud, which I think is related to the question of why migrating cells make one and only one front. We had what we thought was a persuasive answer to that, so seeing a yeast completely disobey that and make as many buds as it felt like was a shock, which got me intrigued.

We started working on it because my colleague, Amy Gladfelter, had sampled the waters around Woods Hole, Massachusetts. When she saw this specimen under a microscope, she immediately called me and said, “You have to look at this.”

A question we’re very intrigued by is if the cell makes five, seven, or 12 buds simultaneously, how do they divide the mother cell’s material and growth capacity five, seven, or 12 ways? It looks like all of the buds grow at the same rate and reach about the same size. One of our short-term goals is to check whether all the buds really get to exactly the same size or whether they are born unequal.

And we’re interested in more than just growth rate. What about organelles? Do you give each bud the same number of mitochondria, nuclei, peroxisomes, and vacuoles? That question will inevitably lead to follow-up questions. If each bud has the same number of mitochondria, how does the cell measure mitochondrial inheritance to do that? If they don’t have the same amount, then buds are each born with a different complement and ratio of organelles. What happens to buds if they have very different numbers of organelles?

As far as we can tell, every bud gets at least one nucleus. How the cell ensures that each bud gets a nucleus is a question we’d also very much like to understand.

We have molecular candidates because we know a lot about how model yeasts deliver nuclei, organelles, and growth materials from the mother to the single bud. We can mutate candidate genes and see if similar molecular pathways are involved in the multi-budding yeast and, if so, how they are working.

It turns out that this unconventional yeast has yet to be studied from the point of view of basic cell biology. The other thing that intrigues me is that it’s a poly-extremophile. This yeast can survive under many rather harsh conditions: it’s been isolated in Antarctica, from jet engines, from all kinds of plants, and of course from the ocean as well. An advantage of working with something so ubiquitous is we already know it’s not toxic to us under almost any circumstances. We come into contact with it all the time. If we learn enough about its cell biology to begin to manipulate it, then there are many potential applications, from human health to agriculture.

MIT alum filling in the gaps in urology research

Now an assistant professor at UT Dallas, Nicole De Nisco draws on love of problem solving and interdisciplinary skills honed as an undergraduate and graduate student at MIT

Lillian Eden | Department of Biology
June 12, 2023

There were early signs that Nicole De Nisco, SB ‘07, PhD ‘13, might become a scientist. She ran out of science classes to take in high school and fondly remembers the teacher that encouraged her to pursue science instead of the humanities. But she ended up at MIT, in part, out of spite. 

“I applied because my guidance counselor told me I wouldn’t get in,” she said. The rest, as they say, is history for the first-generation college student from Los Angeles. 

Now, she’s an assistant professor of biological sciences at UT Dallas studying urinary tract infections (UTIs) and the urinary microbiome in postmenopausal women. 

De Nisco has already made some important advancements in the field: she developed a new technique for visualizing bacteria in the bladder and used it to demonstrate that bacteria form reservoirs in human bladder tissue, leading to chronic or recurrent UTIs. 

It was known that in mice, bacteria are able to create communities within the bladder tissue, forming reservoirs and staying there long term—but no one had shown that occurring in human tissue before. 

People in lab coats looking at something Nicole De Nisco is holding in her hand.
De Nisco says MIT prepared her well for the type of interdisciplinary work she does every day at UT Dallas, where all research buildings are fully integrated. She works closely with mathematicians, chemists, and engineers. Photo provided by The University of Texas at Dallas

De Nisco found that reservoirs of tissue-resident bacteria exist in human patients with recurring UTIs, a condition which may ultimately lead to women needing to have their bladder removed. De Nisco now mostly works with postmenopausal women who have been suffering from decades of recurring UTIs. 

There was a big gap in the field, De Nisco explained, so entering the field of urology was also an opportunity to make new discoveries and find new ways to treat those recurring infections.  

De Nisco said she’s in the minority, both as a woman studying urology and as someone studying diseases that affect female patients. Most researchers in the urology field are men, and most focus on the prostate. 

But things are changing. 

“I think there are a lot of women in the field who are now pushing back, and I actually collaborate with a lot of other female investigators in the field. We’re trying to support each other so that we can survive and, hopefully, actually advance the science—instead of it being in the same place it was 15 years ago,” De Nisco says.

De Nisco first fell in love with biomedical research as an undergrad doing a UROP in Catherine Drennan’s lab, back when Drennan was still located in the chemistry building. 

“Cathy herself was incredibly encouraging, and is probably the main reason I decided to pursue a career in science—or felt that I could,” De Nisco said. 

De Nisco became fascinated with the dialogue between a microbe and a host organism during an undergraduate course in microbial physiology with Graham Walker, which led to De Nisco’s decision to remain at MIT for her PhD work and to perform her doctoral research in rhizobia legume symbiosis in Walker’s lab. 

De Nisco said during her time at MIT, Drennan and Walker gave her a lot of encouragement and “room to do my own thing,” fostering a love of discovery and problem solving. It’s a mentoring style she’s using now with her own graduate students; she currently has eight working in her lab. 

“Every student is different: some just want a project and they want to know what they’re doing, and some want to explore,” she said. “I was the type that wanted to do my own thing and so they gave me the room and the patience to be able to explore and find something new that I was interested in and excited about.” 

As a low-income student sending financial help home, she also pursued teaching opportunities outside of her usual duties; Walker was very supportive of pursuing other teaching opportunities. De Nisco was a graduate student tutor for Next House watching over 40 undergrads, served as a teaching fellow with the Harvard Extension School, and worked with Eric Lander to help launch the course 7.00x Introduction to Biology – The Secret of Life for EdX, one of the most highly rated MOOCs of all time.  

She said MIT definitely prepared her for a life as a professor, teacher, and mentor; the most important thing about graduate school isn’t choosing “the most cutting-edge research project,” but making sure you have a good training experience and an advisor who can provide that. 

“You don’t need to start building your name in the field when you’re a grad student. The lab environment is much more important than the topic. It’s easy to get burned out or to be turned off to a career in academia altogether if you have the wrong advisor,” she said. “You need to learn how to be a scientist, and you have plenty of time later in your career to follow whatever path you want to follow.”

She knows this from experience: her current research is somewhat parallel but unrelated to her previous research experience. 

“I think my motivation for being a scientist is rooted in my desire to help people doing something I enjoy,” she said. “I was not doing this kind of research as a graduate student, and that doesn’t mean that I wasn’t able to end up at this point in my career where I’m doing research that is focused on improving the lives of women, specifically.”

She did her postdoctoral work at UT Southwestern Medical Center studying Vibrio parahaemolyticus, a human pathogen that causes gastroenteritis. The work was a marriage of her interests in biochemistry and host-microbiome interactions.

She said MIT prepared her well for the type of interdisciplinary work that she does every day: At UT Dallas, all the research buildings are fully integrated, with engineers, chemists, physicists, and biologists sharing lab spaces in the same building. Her closest collaborators are mathematicians, chemists, and engineers. 

Although she may not be fully literate, she has a common language with the people she works with thanks to MIT’s undergraduate course requirements in many different topics and MIT’s focus on interdisciplinary research, which is “how real advancement is made.” 

Ultimately, De Nisco said she is glad to this day that she attended MIT. 

“Getting that acceptance letter to attend MIT probably changed the trajectory of my life,” she said. “You never know, on paper, what someone is going to achieve eventually, and what kind of force they’re going to be. I’m always grateful to whoever was on the admissions committees that made the decision to accept me—twice.” 

Probe expands understanding of oral cavity homeostasis

Approach opens the door to a greater understanding of protein-microbe interactions

Lillian Eden | Department of Biology
June 7, 2023

Your mouth is a crucial interface between the outside world and the inside of your body. Everything you breathe, chew or drink interacts with your oral cavity—the proteins and the microbes, including microbes that can harm us. When things go awry, the result can range from the mild, like bad breath, to the serious, like tooth and gum decay to more dire effects in the gut and other parts of the body. 

Even though the oral microbiome plays a critical role as a front-line defense for human health and disease, we still know very little about the intricacies of host-microbe interactions in the complex physiological environment of the mouth; a better understanding of those interactions is key to developing treatments for human disease. 

In a recent study published in PNAS, a collaborative effort revealed that one of the most abundant proteins found in our saliva binds to the surface of select microbes found in the mouth. The findings shed light on how salivary proteins and mucus play a role in maintaining the oral cavity microbiome. 

The collaboration involved members of the Imperiali lab in the Department of Biology and the Kiessling lab in the Department of Chemistry at MIT, as well as the Ruhl group at the University at Buffalo School of Dental Medicine, and the Grimes group at the University of Delaware. 

The paper is focused on an abundant oral cavity protein called zymogen granule protein 16 homolog B (ZG16B). Finding ZG16B’s interaction partners and gaining insight into its function were the overarching goals of the project. To accomplish this, Ghosh and colleagues engineered ZG16B to add reporter tags such as fluorophores. They called these modified proteins “microbial glycan analysis probes (mGAPs)” because they allowed them to identify ZG16B binding partners using complementary methods. They applied the probes to samples of healthy oral microbiomes to identify target microbes and binding partners. 

The results excited them. 

“ZG16B didn’t just bind to random bacteria. It was very focused on certain species including a commensal bacteria called Streptococcus vestibularis,” says first author Soumi Ghosh, a postdoctoral associate in the Imperiali lab. 

Commensal bacteria are found in a normal healthy microbiome and do not cause disease. 

Using the mGAPs, the team showed that ZG16B binds to cell wall polysaccharides of the bacteria, which indicates that ZG16B is a lectin, a carbohydrate-binding protein. In general, lectins are responsible for cell-cell interactions, signaling pathways, and some innate immune responses against pathogens. “This is the first time that it has been proven experimentally that ZG16B acts as a lectin because it binds to the carbohydrates on the cell surface or cell wall of the bacteria,” Ghosh highlights.

ZG16B was also shown to recruit Mucin 7 (MUC7), a salivary glycoprotein in the oral cavity, and, together the results suggest that ZG16B may help maintain a healthy balance in the oral microbiome by forming a complex with MUC7 and certain bacteria. The results indicate that ZG16B regulates the bacteria’s abundance by preventing overgrowth through agglutination when the bacteria exceed a certain level of growth. 

blue dots with red and green smudges
ZG16B recruits salivary mucin MUC7 onto Streptococcus vestibularis and enhance microbial aggregation. In this super-resolution image, both ZG16B (shown in red) and salivary mucin MUC7-enriched samples (shown in green), localize to the surface of S. vestibularis (shown in blue), leading to the formation of a ternary complex between the lectin, the mucin, and the microbes. Enhanced microbial clustering occurs during the recruitment of MUC7 on S. vestibularis by ZG16B, potentially to regulate the bacterial load on the oral cavity surfaces.
The scale bar shown here represents a 3-micron (µm) length.

“ZG16B, therefore, seems to function as a missing link in the system; it binds to different types of glycans—the microbial glycans and the mucin glycans—and ultimately, maintains a healthy balance in our oral cavity,” Ghosh says. 

Further work with this probe and samples of oral microbiome from healthy and diseased subjects could also reveal the lectin’s importance for oral health and disease. 

Current attention is focused on developing and applying additional mGAPs based on other human lectins, such as those found in serum, liver, and intestine to reveal their binding specificities and their roles in host-microbe interactions. 

“The research carried out in this collaboration exemplifies the kind of synergy that made me excited to move to MIT 5 years ago,” says senior co-author Laura Kiessling. “I’ve been able to work with outstanding scientists who share my interest in the chemistry and the biology of carbohydrates.” 

The senior authors of the paper—Barbara Imperiali and Kiessling — came up with the term for the probes they’re creating: “mGAPS to fill in the gaps” in our understanding of the role of lectins in the human microbiome, according to Ghosh. 

“If we want to develop therapeutics against bacterial infection, we need a better understanding of host-microbe interactions,” Ghosh says. “The significance of our study is to prove that we can make very good probes for microbial glycans, find out their importance in the frontline defense of the immune system, and, ultimately, come up with a therapeutic approach to disease.” 

This research was supported by the National Institute of Health.

New research supports finding explaining why some patients may test positive for COVID-19 long after recovery

SARS-CoV-2, the virus that causes COVID-19, seems to have become a permanent presence in our lives. Research from Whitehead Institute Founding Member Rudolf Jaenisch’s lab reveals that this may be true on multiple levels.

Greta Friar | Whitehead Institute
February 28, 2023

SARS-CoV-2, the virus that causes COVID-19, seems to have become a permanent presence in our lives. Research from Whitehead Institute Founding Member Rudolf Jaenisch’s lab reveals that this may be true on multiple levels. Jaenisch, postdoc Liguo Zhang, and colleagues have shown that when the virus infects people, it is capable of integrating parts of its genetic code into the human genome through a process called reverse transcription. This genomic integration is rare, but due to how many hundreds of millions of people have been infected, it has likely occurred many times.

In a paper published in the journal Viruses on February 25, the researchers use and compare multiple methods to show that SARS-CoV-2 can integrate into host cells’ genomes. The paper is a follow up to Jaenisch and Zhang’s 2021 paper in the Proceedings of the National Academy of Sciences, which provided initial evidence of SARS-CoV-2 genomic integration. The original paper intended to solve the puzzle of why some people who had had COVID-19 were still testing positive long after recovering from the disease. The answer the researchers found was that parts of the viral genome were reverse transcribed into the human genome, meaning the viral RNA was transcribed or “read” into DNA (a reverse of the usual process) and then that DNA was stitched into the cell’s DNA. Then, when the cells’ genomes were transcribed into RNA, the portion of the virus’ genome that had been incorporated would be included and could be recognized by a PCR test, leading to a positive result.

In order to further substantiate the findings described in the previous paper, Jaenisch and Zhang have now performed additional experiments and analyses. The new paper explains why some experiments testing for viral genomic integration would come up with a negative result, and how this is consistent with Jaenisch and Zhang’s conclusion. Additionally, Jaenisch and Zhang examine whether viral RNA put into cells, as a model of the COVID-19 mRNA vaccines, can also integrate into the human genome, and find initial evidence that it cannot.

“This paper puts our data on a very firm footing,” Jaenisch says. “Hopefully, it will clarify some of the issues raised in the discussion that followed the first paper, and provide some reassurance to people who were worried about the implications for the vaccine.”

Hunting for a needle in a haystack

The main challenge in finding evidence of SARS-CoV-2 integrating into the human genome is that this event appears to be very rare. In the new paper, Jaenisch and Zhang used digital PCR, an approach that can sensitively detect specific DNA sequences in cells, to see how commonly the sequence that they would find in instances of viral RNA being read into DNA appeared in infected cells. Specifically, they looked for reverse transcribed SARS-CoV-2 complementary DNA (cDNA), DNA that is made from the virus’ original mRNA. Digital PCR revealed that for every one thousand cells, reverse transcribed viral cDNA was only present in around four to twenty cells. This number includes all detected instances of viral cDNA, whether integrated into the genome or not, so genomic integration is likely even rarer—indeed, the new research suggests that only a fraction of the total cDNA identified is from genomic integration.

Because genomic viral integration is so rare, Jaenisch and Zhang needed to use multiple complementary methods to test for it. One approach, called whole genome sequencing (WGS), is able to search cells’ genomes in great detail. When it does come across an instance of viral genomic integration, it can identify not only the reverse transcribed viral sequence, but also two sequences near the viral sequence that are added when it is integrated into the genome by a common reverse transcription complex called LINE1, which is encoded in the host cells. The combination of viral cDNA plus the two nearby cellular host sequences provides very strong evidence that viral cDNA is not only present but has been incorporated into the cell’s genome. However, WGS can only search the equivalent of a few cells’ genomes, and so when searching for a rare event, like SARS-CoV-2 integration, it often comes up empty. People skeptical of the first paper performed this type of experiment and came up with a negative result; Jaenisch and Zhang were not surprised by that, and it is consistent with their own findings when using this approach.

“Because the human cell genome coverage by whole genome sequencing is very limited, you would need to run the sequencing experiment many times in order to have a good chance of detecting one viral genome copy,” Zhang says.

In order to make the most of WGS, Jaenisch and Zhang induced their cells to overexpress LINE1, the cellular machinery that reverse transcribes viral RNA into the human genome. This exponentially increases the amount of viral cDNA that gets made; when the researchers performed digital PCR on their cells with overexpression, it detected fourteen to twenty thousand cDNA copies per thousand cells. Consequently, WGS was able to detect instances of viral cDNA plus the two nearby sequences that are the telltale signature of genomic integration in these cells.

“This is unambiguous proof of viral genomic integration,” Zhang says.

This type of experiment is called a positive control. Researchers use it to prove that, in ideal circumstances, the biological phenomenon they are curious about can occur. The question then becomes: does the phenomenon happen in normal circumstances? This was a criticism raised by some researchers in response to the first paper: they were not convinced that viral genomic integration happens in the cells of an infected person, which do not have the same levels of LINE1.

The search gets shallower but wider

Jaenisch and Zhang used another approach to hunt for evidence of viral genomic integration in cells without LINE1 overexpression. The approach, called an enrichment method and performed with the tool TagMap, can analyze thousands of cells—enough cells to reliably find evidence of a rare event. However, it cannot get the same detail as whole genome sequencing; TagMap enriches and captures shorter sequences of DNA, so it can only capture one of the two nearby sequences that act as a signature alongside viral cDNA. However, the smaller stretch of DNA that the researchers focused on still has features that can be used as evidence of integration. With this approach, Jaenisch and Zhang detected many instances of viral cDNA linked to the nearby cellular sequence.

Jaenisch and Zhang argue that the combined results of these experiments show strong proof of viral integration. Whole genome sequencing provides very strong proof that viral genomic integration can occur in the right conditions. Enrichment with TagMap provides reasonably strong proof that viral genomic integration occurs in normal cells.

“Each of these methods has advantages and disadvantages. You have to combine them to get the complete picture,” Jaenisch says.

Turning to the vaccine

After reaffirming their results that genomic integration of SARS-CoV-2 happens following viral infection, the researchers wanted to know whether the same thing happens with mRNA from the COVID-19 vaccines—which had been a concern expressed by many in the wake of the first paper. Jaenisch and Zhang could not get access to the actual vaccine RNA, packaged into a lipid coat, which is used for vaccination. Instead, they created a model of vaccine injection, inserting a bit of SARS-CoV-2 genetic material (mRNA) into cells through transfection, or non-infection “delivery” of genetic content into cells.

The researchers found that transfection of SARS-CoV-2 mRNA did not lead to genomic integration in the same way that infection did. Infection naturally produces a large amount of viral RNA and causes an inflammatory response in cells. Such cellular stresses increase the level of the reverse transcription machinery. Transfection does not do this, and correspondingly, the researchers found no evidence with TagMap that it led to viral genomic integration by LINE1 in normal cells.

The researchers’ model of vaccine injection is missing several key features of the actual vaccine. In the future, Jaenisch hopes to follow up on this research using the actual vaccine RNA sequence, and testing in an animal model to more closely match what happens during vaccine injection. In the meantime, the researchers hope that these initial results are reassuring.

“We need to do further testing, but our results are consistent with vaccine RNA not integrating,” Jaenisch says.

Notes

Zhang, Liguo, Punam Bisht, Anthony Flamier, M. Inmaculada Barrasa, Max Friesen, Alexsia Richards, Stephen H. Hughes, and Rudolf Jaenisch. 2023. “LINE1-Mediated Reverse Transcription and Genomic Integration of SARS-CoV-2 mRNA Detected in Virus-Infected but Not in Viral mRNA-Transfected Cells” Viruses 15, no. 3: 629. https://doi.org/10.3390/v15030629