Joseph (Joey) Davis

Joseph (Joey) Davis

Assistant Professor of Biology

Joey Davis investigates how cells maintain a delicate internal balance of assembling and dismantling their own machinery — in particular, assemblages of many molecules known as macromolecular complexes.

617-258-6154

Phone

68-671

Office

Gina Lee

Assistant

617-258-6473

Assistant Phone

Education

  • PhD, 2010, MIT
  • BA,  2003, Computer Science, University of California, Berkeley
  • BS, 2003, Biological Engineering, University of California, Berkeley

Research Summary

The Davis lab is working to uncover how cells construct and degrade complex molecular machines rapidly and efficiently. We apply a variety of biochemical, biophysical, and structural approaches including quantitative mass spectrometry and single particle cryo-electron microscopy to understand the detailed molecular mechanisms of these processes. Ongoing projects in the lab are focused on autophagy, an essential eukaryotic protein and organelle degradation pathway, and assembly of the ribosome, which is essential in all cells.

Awards

  • Sloan Research Fellowship, Alfred P. Sloan Foundation, 2021
  • National Institute on Aging R00 Fellowship, 2017
  • National Institute on Aging K99 Fellowship, 2015

Recent Publications

  1. The SspB adaptor drives structural changes in the AAA+ ClpXP protease during ssrA-tagged substrate delivery. Ghanbarpour, A, Fei, X, Baker, TA, Davis, JH, Sauer, RT. 2023. Proc Natl Acad Sci U S A 120, e2219044120.
    doi: 10.1073/pnas.2219044120PMID:36730206
  2. Cryo-EM at ACA 2022. Subramaniam, S, Kotecha, A, Davis, JH. 2022. IUCrJ 9, 713-714.
    doi: 10.1107/S2052252522009721PMID:36381144
  3. Uncovering structural ensembles from single-particle cryo-EM data using cryoDRGN. Kinman, LF, Powell, BM, Zhong, ED, Berger, B, Davis, JH. 2023. Nat Protoc 18, 319-339.
    doi: 10.1038/s41596-022-00763-xPMID:36376590
  4. Conformational landscape of the yeast SAGA complex as revealed by cryo-EM. Vasyliuk, D, Felt, J, Zhong, ED, Berger, B, Davis, JH, Yip, CK. 2022. Sci Rep 12, 12306.
    doi: 10.1038/s41598-022-16391-0PMID:35853968
  5. CryoDRGN: reconstruction of heterogeneous cryo-EM structures using neural networks. Zhong, ED, Bepler, T, Berger, B, Davis, JH. 2021. Nat Methods 18, 176-185.
    doi: 10.1038/s41592-020-01049-4PMID:33542510
  6. Structures of radial spokes and associated complexes important for ciliary motility. Gui, M, Ma, M, Sze-Tu, E, Wang, X, Koh, F, Zhong, ED, Berger, B, Davis, JH, Dutcher, SK, Zhang, R et al.. 2021. Nat Struct Mol Biol 28, 29-37.
    doi: 10.1038/s41594-020-00530-0PMID:33318703
  7. Role of Era in assembly and homeostasis of the ribosomal small subunit. Razi, A, Davis, JH, Hao, Y, Jahagirdar, D, Thurlow, B, Basu, K, Jain, N, Gomez-Blanco, J, Britton, RA, Vargas, J et al.. 2019. Nucleic Acids Res 47, 8301-8317.
    doi: 10.1093/nar/gkz571PMID:31265110
  8. Addressing preferred specimen orientation in single-particle cryo-EM through tilting. Tan, YZ, Baldwin, PR, Davis, JH, Williamson, JR, Potter, CS, Carragher, B, Lyumkis, D. 2017. Nat Methods 14, 793-796.
    doi: 10.1038/nmeth.4347PMID:28671674
  9. Structure and dynamics of bacterial ribosome biogenesis. Davis, JH, Williamson, JR. 2017. Philos Trans R Soc Lond B Biol Sci 372, .
    doi: 10.1098/rstb.2016.0181PMID:28138067
  10. Modular Assembly of the Bacterial Large Ribosomal Subunit. Davis, JH, Tan, YZ, Carragher, B, Potter, CS, Lyumkis, D, Williamson, JR. 2016. Cell 167, 1610-1622.e15.
    doi: 10.1016/j.cell.2016.11.020PMID:27912064
More Publications

Multimedia