Probing a critical player in cancer growth

Alissandra Hillis ’18 has spent all four years at MIT in the same cancer metabolism lab, deciphering the basic science behind pancreatic cancer.

Raleigh McElvery
February 19, 2018

Senior Alissandra Hillis attributes her appetite for the basic sciences to her craving for fundamental knowledge. She’s spent her four years at MIT in the same lab, committed to unraveling the molecular mechanics of pancreatic cancer — the fourth leading cause of cancer death for both men and women, given that symptoms do not often appear until the disease is quite advanced.

“I was always very curious growing up,” she says. “I taught myself how to read at a very young age, just because I wanted to know about things and how they worked. But I didn’t become interested in biology and chemistry specifically until I came to MIT and started taking my General Institute Requirements.”

In doing so, Hillis became enthralled by the prospect of breaking down life into its most fundamental, biological units to decipher cellular function and disease. Originally a Course 7 major with a chemistry minor, she declared Course 5-7 (Chemistry and Biology) as soon as it became available in the fall of 2017 — applying her study of biochemistry and cell metabolism to cancer research.

“When I was quite young, my grandfather was diagnosed with stomach cancer, and ended up having almost three quarters of his stomach removed,” she says. “I was too little to really understand the severity of the situation, but as soon as I came to MIT I started to wonder what was going on at a cellular level. Most people today know someone who is fighting cancer, and yet we’re still lacking effective treatments for its most severe forms.”

Hillis joined Matthew Vander Heiden’s cancer metabolism lab the first semester of her freshman year, and has been there ever since.

Professor Vander Heiden does an excellent job of tailoring the research project to the individual, and there is no hierarchy among lab members,” she says. “I really liked it from the onset, so I stayed.”

For nearly two years, Hillis has been investigating the role of one enzyme, pyruvate kinase muscle isozyme M2 (PKM2), in pancreatic cancer. PKM2 is responsible for catalyzing the final step in glycolysis, which is required to create the energy that fuels cells. Glycolysis is also important in tumor metastasis and growth, since cancer cells demand energy in order to proliferate.

Cancer cells often preferentially express PKM2 over other types of pyruvate kinases such as PKM1. This spurred William Israelsen PhD ’14, a former graduate student in the Vander Heiden lab working in breast cancer models, to delete the PKM2 gene and see what happened. Since PKM2 is critical for glycolysis, and cancer cells require energy to proliferate, he anticipated that removing PKM2 would hinder energy production and thus disrupt tumor development. To his surprise, he found the opposite: deleting PKM2 actually accelerated tumor formation and promoted liver metastasis in mice.

In his 2014 paper, Israelsen concluded that PKM2 might permit cancer cells to maintain their “plasticity,” shifting from one specialized role to another even after they’ve fully matured. In the absence of PKM2, he proposed PKM1 might take over PKM2’s influential role.

Hillis wondered if she could replicate Israelsen’s breast cancer results in a model for pancreatic cancer, especially given the conflicting findings in human data regarding PKM2 expression in the latter. Some studies suggest that high PKM2 expression correlates with accelerated disease, whiles others indicate just the opposite: that high PKM2 expression is associated with better survival rates.

“Going into the project, we were expecting similar effects in both pancreatic and breast cancer models because both cancers preferentially express PKM2, and we were using the same method of PKM2 deletion, just bred into a different cancer model,” Hillis explains. “We anticipated that PKM2 deletion would accelerate pancreatic tumor size and tumor genesis, and decrease the mouse’s lifespan. But we’ve noticed that these effects — if they exist — are very much attenuated in the pancreatic cancer model; there is only a slight decrease in lifespan and increase in tumor size without PKM2.”

Right now, her working hypothesis holds that PKM2’s influence varies depending on the tissue in question. This might explain why her own results don’t exactly parallel what Israelsen found in his breast cancer model. For instance, the method they were using to delete PKM2 is quite effective in the breast and pancreatic cells themselves, but less so in the dense scar-like tissue characteristic of pancreatic tumors in particular. It’s possible, she thinks, that this fibrous tissue may still express some PKM2 even post-knockout, perhaps hindering both a drastic decrease in lifespan and increase in tumor size.

Hillis hopes piecing together PKM2’s mechanism of action will help us better diagnose — and eventually treat — certain cancers. Her most recent results were published in the November 2017 issue Cancer & Metabolism.

Although Hillis enjoys tackling the more fundamental questions concerning cancer, she’s also interested in translating this work from bench to bedside. That’s why she decided to intern with David Ting at the Massachusetts General Hospital Cancer Center this past summer.

“I wanted to try a different type of research before applying to graduate school,” she says. “The Department of Biology frequently sends out emails about job opportunities, and there was one advertising that the Ting lab was looking for a research technician.”

Although she was still a junior at the time, she contacted Ting — an MIT alumnus with a dual degree in 7A and 10 — and together they fashioned a summer position just for her, studying the role of miniscule, fluid-filled transportation structures called exosomes in cancer development and diagnosis.

“That was the first time I’d worked with samples from actual patients,” she says. “Many of the assays were the same, but I felt closer to a clinical application than I ever had before. I really enjoy doing the foundational work to identify the basic problem, but there’s definitely something to be said for experiencing research targeted at creating a diagnostic tool. I can see the pros and cons of both approaches.”

As Hillis begins her final semester at MIT, she’s continuing her work in the Vander Heiden lab, while also finishing up the requirements for her HASS concentration in legal studies. She’s still set on pursuing a PhD in cancer biology, but the propensity to ask tough questions that drew her to science in the first place has led her to realize that the questions she raises in her own research have ramifications far beyond her lab bench. Taking policy-oriented classes in addition to her science-related ones has inspired her to pursue a law degree in conjunction with her PhD — weaving together her love for science with a newfound interest in the rules and regulations that govern how science is funded, performed, shared, applied, and monetized.

“I really enjoy doing research, and that’s something I probably will continue to do,” she says, “but I also want to influence science-related regulations, which is something I couldn’t possibly do without a law degree. I would still be heavily immersed in science, while applying the subjects I love in new and exciting ways.”

Photo credit: Raleigh McElvery
Fine-tuning cancer medicine

New cancer research initiative eyes individualized treatment for patients.

Koch Institute
February 1, 2018

Details matter — perhaps most noticeably in the fight against cancer. Some patients respond to a given anticancer therapy, and some do not. A new initiative at MIT takes aim at those details, and the name of the game is precision.

The recently launched MIT Center for Precision Cancer Medicine (CPCM) is housed within MIT’s Koch Institute for Integrative Cancer Research and headed by physician-scientist Michael B. Yaffe, the David H. Koch Professor of Science and professor of biology and biological engineering. The center brings together leading Institute faculty members to focus on key research themes to accelerate the clinical translation of novel cancer discoveries, treatments, and technologies.

Engineering approaches to the clinic

While other institutions have begun efforts in precision medicine as well, the MIT Center for Precision Cancer Medicine stands out for using engineering approaches to solve complex clinical challenges in cancer treatment that are rooted in biology. In particular, the CPCM combines understandings of biological circuitry — along with engineering, computational, and mathematical techniques (as well as genomic ones) — to focus on signaling networks and pathways that are aberrantly regulated in cancer cells. This strategy is supported by the fact that most state-of-the-art molecularly targeted cancer therapies are focused on these key pathways.

At its core, the CPCM is driven by both internal and external collaboration, and is devoted to translational research to help the substantial number of patients who do not respond well to traditional cancer therapies — for example, those with triple-negative breast cancer, ovarian cancer, non-small cell lung cancer, or advanced prostate cancer.

To improve outcomes for these patients, CPCM investigators are focused on four key areas of research. First among these is identifying and targeting the processes, signals, and mechanisms that determine an individual patient’s response to chemotherapy. Recent discoveries by CPCM researchers include mechanisms that cancer cells use to repair chemotherapy damage that should have killed them, to hide from drugs in protected “niches” in the body, or to grow when and where they should not.

CPCM members are also working on a second research pillar, which involves finding ways to use existing FDA-approved cancer drugs more effectively, particularly in carefully designed combinations. Combination therapies are currently used in the clinic to treat some cancers, yet the discovery process for these has been largely empirical. By contrast, CPCM investigators are integrating their knowledge of cancer biology, understandings of drugs’ mechanisms of action, and sophisticated analytical techniques, to identify or design specific combinations that work synergistically to disarm and then destroy cancer cells.

“We believe we can significantly alter cancer patients’ outcomes by determining the right combination of therapies and the right sequence of drugs for the right patients,” says Yaffe. “We’re also concentrating on innovative ways to give these drugs, like time-staggered dosages and nanoparticle delivery.” He notes that, as part of their analyses of drugs and combination regimens currently administered in the clinic, CPCM members expect to identify combinations of drugs that are not as efficacious when given simultaneously as when given sequentially, at specific intervals. Yaffe stresses that these will be important findings that could help reduce the toxicity of treatment by not exposing people to multiple drug toxicities at the same time.

In parallel with their efforts to use existing drugs more effectively, CPCM investigators are also working to identify compounds, materials, and approaches that can engage key “undruggable” genetic and molecular targets and disrupt processes driving drug resistance. The “undruggable” label often refers to the fact that a target protein or molecule lacks a site to which drugs can bind, and thus is not considered a good drug target by the pharmaceutical industry. However, using novel chemistry approaches, CPCM researchers have made early inroads against several such high-value cancer targets, including specific transcription factors and RNA-binding proteins. The center will continue and expand these efforts as the third part of its research platform, including collaborations with industry.

Finally, the fourth component of the CPCM’s efforts will be harnessing MIT’s particular expertise in big data analysis and tools to begin new and expedite existing cancer research efforts. For example, the researchers plan to use data analytics to identify selective panels of biomarkers that can be used to prioritize which of their drug combinations, treatment protocols, and formulations are best suited to a particular patient’s tumor.

Getting discoveries out the door

“Patients will be the ultimate beneficiaries of the work of the new MIT Center for Precision Cancer Medicine,” says Tyler Jacks, director of the Koch Institute and the David H. Koch Professor of Biology. “This research is, by its nature, imminently and rapidly translatable. By concentrating efforts on which patients will benefit from particular existing drugs or combinations of drugs, there is a relatively small step from laboratory to a treatment that is benefitting a cancer patient.”

While work on combinations of approved therapies, like that at the CPCM, may be more rapidly translatable than other cancer research, it can be challenging for industry to pursue, particularly when those drugs hail from multiple companies. Overcoming this disjuncture is one of the goals behind the establishment of the MIT Center for Precision Cancer Medicine, which was made possible by a generous gift from an anonymous donor.

Yaffe and his CPCM colleagues are committed to finding viable routes to move their cancer research into the clinic, particularly through collaborations between CPCM members, hospitals, and industry. Logistically, this means more work for the center’s research groups, including advanced laboratory and preclinical studies, safety and scale-up studies, and clinical-grade manufacturing, as well as staff to carry it out. Woven into these efforts, CPCM investigators will tap into MIT’s celebrated tradition of entrepreneurship and, even more so, the Institute’s expanding network of clinical collaborators. The philanthropic investment behind the center will provide stable financial support for the researchers’ endeavors.

The new hub in town

In addition to supporting the research of member investigators, the CPCM offers a robust training ground for young engineers and scientists interested in precision medicine. Moreover, it will serve as the hub of precision cancer medicine research at MIT and beyond, connecting with researchers across the MIT campus and partnering with clinical investigators in Greater Boston’s noted health care centers and around the country.

Five outstanding cancer researchers make up the center’s founding faculty:

  • Michael B. Yaffe, MD, PhD, director, MIT Center for Precision Cancer Medicine; David H. Koch Professor of Science, professor of biology and biological engineering
  • Michael Hemann, PhD, associate professor of biology
  • Angela Koehler, PhD, Karl Van Tassel (1925) Career Development Associate Professor, assistant professor of biological engineering
  • Matthew Vander Heiden, MD, PhD, associate professor of biology, associate director, Koch Institute for Integrative Cancer Research
  • Forest M. White, PhD, professor of biological engineering

Efforts are currently underway to recruit an assistant director and a scientific advisory board.

As part of its charge, and key to spurring the new collaborations in precision cancer medicine that are its focus, the MIT Center for Precision Cancer Medicine will also convene lectures, events, and scientific exchanges and symposia, the first of which is slated for the fall.

December 14, 2017

Lab coat meets legislation

Person with red hair in bun stands outside with umbrella.

Undergraduate Courtney Diamond combines biology and policy to tackle real-world challenges

Raleigh McElvery

 

Undergraduate Courtney Diamond arrived at MIT determined to be an oncologist. Five years later, she’s leaving with a broader focus on human health, grappling with real-world, biomedical problems by way of public policy rather than medicine or research.

Although Diamond had completed her requirements for a degree in biology at the beginning of her senior year, she decided then to add a second major: Course 17 (Political Science), and with it a fifth year of study at MIT.

“I came into MIT wanting to be a doctor, but the more I thought about it the less it felt like medical school would be a good fit,” she says. “I spent a long time narrowing my interests within the realm of human health, and recently realized there was another dimension to that interest related to public policy, which was also this common thread among my extracurriculars.”

Diamond grew up in a small town in Massachusetts called Millbury, not too far from MIT, which she describes as special to her but “rather unremarkable” in most other ways — with the exception of one particularly zealous and articulate high school biology teacher. His infectious enthusiasm sparked Diamond’s passion for the life sciences, but over the course of her senior year this interest became far more personal. It was around that time that her mother developed breast cancer, and Diamond resolved to be an oncologist.

“My mom had been diagnosed once before with a different kind of cancer, cervical cancer,” she says. “But I was in sixth grade back then, and assumed she was just at home resting. By the time the breast cancer rolled around, I was old enough to understand that most people are lucky to survive cancer once. But twice?”

Her mother has since entered remission, and the year Diamond began at MIT her interests matured away from a career in medicine and towards biomedical research. In April 2014, she applied to the MIT Undergraduate Research Opportunities Program (UROP). “I wanted to figure out which part of biology excited me — which area I really wanted to drill down on,” she recalls.

She began working with a postdoctoral fellow in Professor Darrell Irvine’s lab at the Koch Institute for Integrative Cancer Research, tackling research questions related to cancer immunology. Diamond’s job was to analyze murine tumors as they developed over time, in order to understand how they were affected by changes to their cellular environments.

After a year, Diamond took a break from research in order to focus on her classes. But she didn’t stay away for long.

“I’ve had a life-long obsession with Australia,” she says, “and in the fall of my sophomore year, I told my advisor, Professor Bob Horvitz, that my dream was to study biochemistry in Melbourne.” One email and two hours later, she received an offer from the Walter and Eliza Hall Institute for Medical Research to spend a summer abroad in Jeff Babon’s lab. “It turns out the director of the Institute did his postdoc at MIT, and liked the UROP system so much he decided to bring it back to Australia,” she explains.

There, Diamond helped to unravel the structure of a protein complex known as JAK-STAT. This complex is involved in many diverse processes — from cell proliferation and programmed cell death to immunity — making it critical to understand how the different molecular components of the complex fit together to influence function.

When she returned to MIT, Diamond decided to maintain her focus on structural biology. She completed her thesis in Professor Thomas Schwartz’s lab, studying the Y complex, a component of the nuclear pore — a channel that allows mRNA and other molecules to pass into the cell’s nucleus. Diamond helped creat a library of fluorescing antibodies that could adhere to the Y complex, allowing her to visualize its position within the nuclear pore. After a year, she opted to broaden her interests by taking classes outside her major.

One of those classes, recommended by a friend, was in political science: 17.309 (Science, Technology, and Public Policy), taught by Professor Kenneth Oye. During one of his lectures, Oye made a quip about a small Massachusetts town called Millbury.

“I came up to him after class to ask him, ‘Did you know I’m actually from there?’ and he thought it was the funniest thing,” she says. “That initial, informal interaction led to more meaningful conversations, and I ended up working with him on a few projects.”

Today, she is pursuing a final UROP with Oye, looking at technologies and policies related to synthetic biology. At Oye’s weekly working group of graduate students and postdocs, she debates the possible repercussions of using gene editing techniques like CRISPR-Cas9 to control the transmission of certain traits throughout a given population. For example, what would happen if mosquitos in the regions where malaria is most prevalent carried a gene encoding malaria resistance — would that eradicate the illness? But might there be unintended, negative consequences?

As part of a separate project, Diamond is researching U.S. consent and privacy policies in the realm of health information technology. She’s also hard at work on her political science thesis, focusing on ways to incentivize companies and researchers to develop new and more effective antibiotics to combat antimicrobial resistance.

Diamond is now applying for public health consulting jobs, and she plans to pursue graduate training in epidemiology, followed by a master’s in public health. Long-term, she sees herself at the Centers for Disease Control and Prevention or the World Health Organization.

“I mean, that’s the current plan,” she says. “Check back in with me in two years.”

Photo credit: Raleigh McElvery
From DNA forensics to cancer metabolism

Carolyn Lanzkron discovered bench science while attending community college with her son, and followed her newfound passion to MIT

Raleigh McElvery
December 3, 2017

From DNA forensics to cancer metabolism

Person in black hat and purple shirt sitting in front of lab building.

Carolyn Lanzkron discovered bench science while attending community college with her son, and followed her newfound passion to MIT

Raleigh McElvery

 

Carolyn Lanzkron spent 20 years as a stay-at-home mother raising five children before starting at MIT. Life has taught her patience, which she, in turn, has tried to pass on to her kids: “A successful person falls down many times and gets up — just pick a direction and move forward.”

Those were the same words she told her teenage son back in 2011 when she encouraged him to attend community college.

“I figured I would just take a few courses with him,” she says. “He enjoyed his chemistry classes, so I was looking at the chemistry offerings, and on the wall there was a poster for Dr. Bruce Jackson’s unique Forensic DNA Science program.” Lanzkron was intrigued, and decided to enroll.

The students aided Jackson with real cases, and were given dedicated lab space and materials to follow their curiosities, as well as design their own inquiries. The program was based on a peer-mentoring model, and Lanzkron was appointed chief of peer mentors and forensic case manager. Under Jackson’s tutelage, she worked on lineage cases tracing ancestry and criminal cases for defense and prosecution.

“I was hoping my son would join me in a chemistry class, but he wasn’t so interested in having his mom as a lab partner — go figure,” she says. “But we carpooled to school together for a year, and by that time I’d developed a love for bench science.”

After two years, Lanzkron had completed her degree, but it wasn’t enough. So she applied to several institutions within her carpool radius, including MIT. Like all transfers here, she began as a sophomore.

“I love bench science because I really appreciate the combination of being part of a team and solving a big, important question, but at the same time having tasks in my day that allow me to focus on small details — like keeping track of the labels on my tubes,” she says. “That balance works really well for me; it satisfies my need for a quest while still having control over a small environment.”

She’s turned her attention from DNA forensics to cancer metabolism, an interest which has become far more personal over the past year. Last spring, Lanzkron’s mother was diagnosed with lung cancer, and Lanzkron took a leave of absence to care for her.

“Right now, my mother is doing really well, and we are enjoying a window of stability,” Lanzkron says, “which has allowed me to come back to MIT and finish my degree.”

Although Lanzkron is not currently in a lab, lest that period of stability suddenly end, she’s worked in several over the course of her three years at MIT. She began in Jean Francois Hamel’s chemical engineering lab, adapting an adherent cell line to grow in a suspension-like culture in various bioreactors using microcarriers.

Later, Lanzkron joined David Sabatini’s lab in the Whitehead Institute for Biomedical Research, aiding two separate projects: one spearheaded by then-postdoc Yoav Shaul, and the other led by MD-PhD student Walter Chen.

Chen was hard at work developing a new method for profiling undamaged mitochondria, while Shaul had discovered a unique set of 44 metabolic genes that were upregulated in certain cancers that expressed mesenchymal markers (which he called the “Mesenchymal Metabolic Signature,” or “MMS”), indicating that those cells were acquiring cancerous characteristics. Lanzkron collaborated with Shaul as he worked to further characterize the metabolic requirements and behavior of the MMS. She also helped him refine his web-based gene analysis tool, Metabolic gEne RApid Visualizer (MERAV), which queries a database comprising ∼4,400 microarrays, representing human gene expression in normal tissues, cancer cell lines, and primary tumors.

The summer after Shaul completed his postdoctoral training, Lanzkron interned in his lab in at the Hebrew University of Jerusalem at Hadassah Ein Kerem through the MISTI/Israel program, to continue working with him on these projects.

“When I went to Israel, my husband stayed in Boston and took care of the kids,” she recalls. “Without family responsibilities, I could work in lab around the clock, and that was great. I was actually able to finish things up, prepare them for the next day, and cover for other people and really focus; I look forward to being able to do that again as the kids get older.”

Lanzkron admits these aren’t the only aspects of the MIT undergraduate experience she’s missed — not just because she lives off campus and can’t meet at odd hours of the night to collaborate on problem sets — but also because she’s a generation and a half older than her classmates.

But in some ways she considers this an advantage. For instance, she now has the tools to guide her own children through today’s college process.

“I no longer have this outdated view of what it’s like to apply to schools and navigate the SAT,” she says. “Granted, MIT is not your average school. It’s been quite the ride to be at the community college where I had to bring my own masking tape to complete the gel trays because we didn’t have any sealing rings — I didn’t even know there was such a thing as a seal back then. And to go from that to the MIT Department of Biology and the Whitehead Institute where the resources are phenomenal, it’s just mind blowing. I have learned so much from both situations — having to make do, and having an abundance of resources.”

While Lanzkron intends to graduate this spring, her future plans depend on her mother’s health.

“I picked my classes this semester so that I could take her to her cancer treatment,” Lanzkron says, “so, though I’m ultimately planning to go to graduate school, right now things are still in flux.”

While maintaining this school-family balance would be inconceivable for most, Lanzkron takes her personal and academic responsibilities in stride.

“Honestly I’m so happy here at MIT,” she says. “I tell my kids, ‘Don’t get too worked up about the college process. You’ll get where you need to go — the starting point almost doesn’t matter; what matters is what you do when you get there.’”

Photo credit: Raleigh McElvery
Sizing up cancer

Graduate student Zhaoqi Li investigates how cancer cells grow by harnessing exceptional chemical reactions

Justin Chen
January 11, 2018

Cancer cells use extreme measures to fuel their growth. In fact, researchers like Zhaoqi Li, a third-year graduate student, witness chemical reactions in these cells that would be impossible in the context of normal cells. In a petri dish, normal cells stop dividing once they cover the bottom of the dish and fit neatly together like mosaic tiles. In contrast, cancer cells continue to proliferate and pile haphazardly into small mounds. Within the human body, this abnormal growth — when combined with the spread of cancer cells throughout the body — interferes with organ function and causes death.

Li, a member of Professor Matthew Vander Heiden’s lab located in the Koch Institute, studies cancer metabolism. His work describes the chemical reactions cancer cells use to create energy and materials to make new cells such as membranes, proteins, and DNA. By tracking the flow of nutrients through cancer cells, Li and his labmates are learning how such cells change their metabolism to stimulate growth. These insights will help scientists develop new ways to treat the disease.

Cell metabolism comprises all the chemical reactions occurring in the cell, but researchers are particularly interested in a few reactions that aren’t required by normal cells but are critical for cancer growth. Stopping these reactions with drugs would disrupt the metabolism of cancer cells and hinder tumor development.

“Even though many people may not think of metabolism as a treatment target for cancer, this strategy has been used unwittingly for a long time,” Li says. “Many chemotherapies, such as antifolates, were originally used by doctors without knowing exactly how they worked. Since then, we’ve discovered that those treatments target metabolic pathways. By understanding the details of cancer metabolism we are hoping to design drugs in a more rational way.”

– –

Li might never have joined the Vander Heiden lab or studied cancer metabolism were it not for the unique structure of graduate training at MIT.

During their first year at MIT, graduate students are required to take four classes. Unlike their counterparts at many other PhD programs, they do not work in laboratories until their second semester. This allows students to focus initially on coursework — covering biochemistry, genetics, and research methodology — designed to build a foundation of knowledge. As a result, students discover new interests and develop the confidence to move out of their comfort zones. When it comes time to select a lab, they can choose from 56 spread across six locations, spanning a wide breadth of biological research.

Li could study how the brain forms memories, interpret X-rays to deduce protein structure, or even build miniature organs for drug testing. Before making his decision, he rotated in three laboratories. During each month-long rotation, he performed a small project allowing him to experience the culture of the lab and learn more about its research.

“The first two labs I visited were studying topics I was familiar with and thought were interesting,” he says. “But when I visited the Vander Heiden lab it was so different and caught me off guard. That’s why I eventually joined, even though I had never imagined myself working in a metabolism lab before.”

Diagram showing a metabolism pathway
Cellular metabolism is comprised of a network of interconnected biochemical reactions resembling a subway system. Zhaoqi Li compares normal and diseased cells to determine the differences in the way nutrients travel through this network. Credit: Justin Chen

– –

Although he is new to the community of researchers specializing in metabolism, Li has long known that he wanted to interact with the world through science. As an immigrant who moved from China to southern Tennessee at the age of six, Li struggled to learn English and began to view science as a universal language that transcended culture.

“My parents were also non-native speakers and the English as a Second Language classes in my elementary school were geared towards Spanish speakers, so I had a really hard time,” Li says. “I joke that the only reason I passed the first grade was because I was good at math.”

Li’s contrasting relationship with science and English continued as an undergraduate at Columbia University. There he majored in biochemistry and also studied literature of the Western Canon to fulfill his general degree requirements.

“I took four semesters worth of classes that started with Plato and ended with Virginia Woolf,” he says, “It was an eye-opening experience, but I never really loved it. I found biology more intuitive because it doesn’t rely on being familiar with a specific cultural lens. Most every society in the world values the scientific method to some extent.”

Li began working in a lab during his sophomore year at Columbia. To his surprise, he was mentored by a professor who valued his input and encouraged creative thinking. Li’s supervisor also introduced him to basic science — a type of research driven not by the desire to find a specific answer or cure, but by curiosity and the need to better understand the natural world.

– –

During his second semester rotation at MIT, Li searched for similarly open-minded environments, and was attracted to cancer metabolism because the field was relatively young.

“In other more established areas of biology, if you have a question someone has probably answered it in some capacity,” Li says. “The Vander Heiden lab was using new techniques so there was a lot of space to explore. Many questions I asked — even during my initial rotation —  didn’t have an answer, which was exciting.”

The great challenge confronting the metabolism field is translating decades’ worth of research on enzymes — proteins that manage chemical reactions — from the test tube to the cell and human body. By studying enzymes individually in the controlled setting of test tubes, researchers have documented almost all the chemical reactions that occur in the cell. When combined, these reactions look like a giant subway map where each stop, indicated by a dot, is a different molecule, and the line between stops represents a chemical reaction where atoms are added or subtracted. Some pathways are a straight line but others have nodes or intersections where a molecule can take part in several different reactions. Other pathways are circular where the molecule that starts the pathway is remade at the end so that the line circles back on itself.

Despite the ability to study chemical reactions in a test tube, scientists have struggled to understand what is actually happening in the complex environment of cells, which coordinate millions of reactions that not only affect each other, but are also influenced by outside stresses like nutrient deprivation.

To Li, using the metabolism map to figure out what chemical reactions are occurring and how atoms are moving through the cell is like using a subway map to track how people are traveling through a city.

“The map describes all the possible routes people could take,” Li says, “but you have to track the passengers to figure out where they are actually going. You could imagine people commuting into the city during the week and going to entirely different places on the weekend. There are a lot of different patterns of movement that you can’t infer just from looking at a map.”

To analyze what chemical reactions are occurring in the cell, Li utilizes cutting edge technology to track carbon atoms — an essential element that is required to build all components of the cell. By tagging carbon with an extra neutron, Li makes the experimentally altered atom heavier and distinguishable from naturally occurring carbon in the cell. Feeding cells nutrients like glucose made with heavy carbons allows Li to compare how molecules are broken down and used by normal and cancerous cells.

Person at lab instrument with sample“Returning to the subway map analogy, this labeling technique is similar to not only being inside the subway, but also giving everyone in Downtown Boston a red shirt,” Li says. “After 12 hours, we can look at the rest of the city. If we see a lot of red shirts in Allston, we would know that this particular route is really popular.”

In the case of glucose, Li and his labmates observed that normal cells break down the sugar to release energy and heavy carbons in the form of carbon dioxide. In contrast, cancer cells alter their metabolism so that the heavy carbons originally found in glucose are used to build new parts of the cells that are required for cancer cells to grow, such as membranes, DNA, and proteins.

Li’s observations demonstrate how cancer cells sustain abnormal growth by accumulating carbon. For his thesis project, Li has chosen to investigate one of the main tricks cancer cells use to hoard carbon atoms: a process known as carbon fixation. This type of chemical reaction, originally studied in plants performing photosynthesis, attaches carbon dioxide to other molecules. Li’s initial findings suggest that a protein, Malic Enzyme 1, helps cancer cells use carbon dioxide to build components required for growing and dividing.

“This is surprising,” he says, “because the textbook version of this enzyme actually catalyzes the reverse reaction in normal cells where carbon dioxide is removed from molecules.  Malic Enzyme 1 is an example of how cancer performs remarkable chemical reactions — who would have thought that cancer cells use carbon like plants do?”

Li is at the beginning stages of his research, and can’t predict where his project will take him. His current goal is to determine how cancer cells react when they are missing Malic Enzyme 1. Such loss could slow growth, but Li will have to perform experiments to be sure, since cancer is a resourceful and elusive target.

Like a detour rerouting travelers around a closed metro stop, cancer cells may further contort their metabolism, taking advantage of little-used or still unidentified chemical reactions to maintain growth. In the face of such adaptability, Li and his labmates believe the best course of action is to be as curious as possible to understand as much as they can about how cancer works. Working together, they discuss confounding results, adjust hypotheses, and design new experiments.

“It’s really encouraging to be part of Matt’s lab and the Koch Institute in general where researchers take a basic science approach,” Li says. “We try to keep an open mind because there’s probably no single thing that cancer cells depend on. Everyone’s work builds together to form a cumulative understanding.”

Photo credit: Raleigh McElvery
Combatting chemotherapy resistance

Graduate student Faye-Marie Vassel investigates a protein that helps cells tolerate DNA damage, sharing her expertise with budding scientists to further STEM education

Raleigh McElvery
December 8, 2017

Combatting chemotherapy resistance

Person with long, dark hair and lab coat stares into microscope.

Graduate student Faye-Marie Vassel investigates a protein that helps cells tolerate DNA damage, sharing her expertise with budding scientists to further STEM education

Raleigh McElvery

 

Faye-Marie Vassel has a protein. Well, as a living entity, technically she has many, but just one she affectionately refers to as her own. “My protein, REV7.” And it makes sense — if you were hard at work characterizing a single protein for all six years of your graduate career, you’d be pretty attached, too. Plus, the stakes are high. REV7, which aids in DNA damage repair, could ultimately provide insight into ways to combat chemotherapy resistance.

Although Vassel’s mother trained as an OB/GYN in Russia before moving to the U.S., serving as what Vassel describes as a “quiet” scientific role model, Vassel spent her early childhood emulating her father, a social worker, and engrossed in the social sciences. She intended to one day work in science policy — until high school when she joined an after-school program at the American Museum of Natural History in New York City, and discovered an additional interest.

Here, Vassel took a series of molecular biology classes and met her first female research mentor, a postdoctoral fellow at Rockefeller University, who encouraged her to participate in another, more advanced science program funded by the National Science Foundation.

“I initially had my doubts, but just having that support changed everything,” Vassel says. “That was my first time doing research of any kind, and I got a sense of the sheer diversity of potential research projects. That’s also when I heard there was something called biophysics.”

From that point on, Vassel was hooked. As an undergraduate at Stony Brook University, she initially declared a major in physics before switching to biochemistry. Later, when it came time to select a graduate school, she was split between MIT and the University of California, Berkeley. As she recalls, MIT’s graduate preview weekend made all the difference.

“I had the chance to stay with biology students and speak with professors,” she says. “The whole experience made the department seem personal, and demystified the graduate school process by making it more tangible.”

She proposed a joint position between two labs: Graham Walker’s lab, based in Building 68, and Michael Hemann’s lab situated in the Koch Institute for Integrative Cancer Research. Walker’s lab focuses on microbiology, DNA repair, and antibiotic resistance, while Hemann’s lab investigates chemotherapy resistance in hopes of improving cancer therapies. After stumbling upon one of their joint papers, Vassel decided she’d like to combine the two.

“It’s invaluable to have both perspectives,” she says. “Mike’s lab just celebrated its 10th anniversary, while Graham‘s just had its 35th. It’s been interesting seeing the different ways they approach their respective research questions, because they were trained in such different scientific eras.”

Although Vassel is currently the only student formally working in both labs, the collaboration between Walker and Hemann, aimed at combatting chemotherapy resistance, has been ongoing.

Frontline chemotherapies, including one anticancer agent called cisplatin, kill cancer cells by damaging their DNA and preventing them from synthesizing new genetic material. Just how sensitive cancer cells are to cisplatin — and therefore how effective the treatment is — depends on whether the cell can repair the damage and bypass DNA-damage induced cell death. In some cases, cells increase production of “translesion polymerases,” which are specialized DNA polymerases that can help cells tolerate certain kinds of DNA damage by synthesizing across from damaged DNA or DNA bound to a carcinogen.

Vassel’s protein, REV7, is a structural subunit of one key translesion polymerase, and its expression is deregulated in many different cancer cells. As Vassel suggests, if one aspect of these translesion polymerases — say, the REV7 subunit — could be altered to hinder repair, then perhaps cancer-ridden cells could regain drug sensitivity.

Thanks to recently-developed CRISPR-Cas9 gene editing techniques, Vassel has removed REV7 entirely from drug resistant lung cancer cellsand watched as cisplatin sensitivity was restored. She also conducted rescue experiments, adding REV7 back into cell lines lacking the protein to see whether those cells become resistant to the drug once again. Most recently, she has been working in murine models to see whether REV7 has similar effects in a living system.

If her hypothesis is correct, REV7 would be a powerful target for drug development. Treatments that inhibit REV7, she explains, could be used in tandem with frontline chemotherapies like cisplatin to prevent resistance.

Since her foray into biology at the American Museum of Natural History almost a decade ago, Vassel has maintained her passion for science outreach. During her time at MIT, she has served as a math tutor for middle schoolers in the Cambridge public school system. She also volunteered as a science and math mentor for high school students, as part of a dual athletic and academic program founded by MIT.

As Vassel wraps up her final year of graduate studies, she is torn between completing an academic postdoc and indulging her early interest in science education policy.

“Growing up in New York City, it was not lost on me that — despite the city’s wonderful diversity — people from historically underserved groups were still missing from many science-related positions,” Vassel says. “It got me thinking about the dire need for policymakers to improve curricula to make science more inclusive of all life experiences. There’s this idea that science is apolitical when it’s really not, and that mindset can have detrimental effects on equity and diversity in science.”

Photo credit: Raleigh McElvery
Biologists’ new peptide could fight many cancers

Drug that targets a key cancer protein could combat leukemia and other types of cancer.

Anne Trafton | MIT News Office
January 15, 2018

MIT biologists have designed a new peptide that can disrupt a key protein that many types of cancers, including some forms of lymphoma, leukemia, and breast cancer, need to survive.

The new peptide targets a protein called Mcl-1, which helps cancer cells avoid the cellular suicide that is usually induced by DNA damage. By blocking Mcl-1, the peptide can force cancer cells to undergo programmed cell death.

“Some cancer cells are very dependent on Mcl-1, which is the last line of defense keeping the cell from dying. It’s a very attractive target,” says Amy Keating, an MIT professor of biology and one of the senior authors of the study.

Peptides, or small protein fragments, are often too unstable to use as drugs, but in this study, the researchers also developed a way to stabilize the molecules and help them get into target cells.

Loren Walensky, a professor of pediatrics at Harvard Medical School and a physician at Dana-Farber Cancer Institute, is also a senior author of the study, which appears in the Proceedings of the National Academy of Sciences the week of Jan. 15. Researchers in the lab of Anthony Letai, an associate professor of medicine at Harvard Medical School and Dana-Farber, were also involved in the study, and the paper’s lead author is MIT postdoc Raheleh Rezaei Araghi.

A promising target

Mcl-1 belongs to a family of five proteins that play roles in controlling programmed cell death, or apoptosis. Each of these proteins has been found to be overactive in different types of cancer. These proteins form what is called an “apoptotic blockade,” meaning that cells cannot undergo apoptosis, even when they experience DNA damage that would normally trigger cell death. This allows cancer cells to survive and proliferate unchecked, and appears to be an important way that cells become resistant to chemotherapy drugs that damage DNA.

“Cancer cells have many strategies to stay alive, and Mcl-1 is an important factor for a lot of acute myeloid leukemias and lymphomas and some solid tissue cancers like breast cancers. Expression of Mcl-1 is upregulated in many cancers, and it was seen to be upregulated as a resistance factor to chemotherapies,” Keating says.

Many pharmaceutical companies have tried to develop drugs that target Mcl-1, but this has been difficult because the interaction between Mcl-1 and its target protein occurs in a long stretch of 20 to 25 amino acids, which is difficult to block with the small molecules typically used as drugs.

Peptide drugs, on the other hand, can be designed to bind tightly with Mcl-1, preventing it from interacting with its natural binding partner in the cell. Keating’s lab spent many years designing peptides that would bind to the section of Mcl-1 involved in this interaction — but not to other members of the protein family.

Once they came up with some promising candidates, they encountered another obstacle, which is the difficulty of getting peptides to enter cells.

“We were exploring ways of developing peptides that bind selectively, and we were very successful at that, but then we confronted the problem that our short, 23-residue peptides are not promising therapeutic candidates primarily because they cannot get into cells,” Keating says.

To try to overcome this, she teamed up with Walensky’s lab, which had previously shown that “stapling” these small peptides can make them more stable and help them get into cells. These staples, which consist of hydrocarbons that form crosslinks within the peptides, can induce normally floppy proteins to assume a more stable helical structure.

Keating and colleagues created about 40 variants of their Mcl-1-blocking peptides, with staples in different positions. By testing all of these, they identified one location in the peptide where putting a staple not only improves the molecule’s stability and helps it get into cells, but also makes it bind even more tightly to Mcl-1.

“The original goal of the staple was to get the peptide into the cell, but it turns out the staple can also enhance the binding and enhance the specificity,” Keating says. “We weren’t expecting that.”

Killing cancer cells

The researchers tested their top two Mcl-1 inhibitors in cancer cells that are dependent on Mcl-1 for survival. They found that the inhibitors were able to kill these cancer cells on their own, without any additional drugs. They also found that the Mcl-1 inhibitors were very selective and did not kill cells that rely on other members of the protein family.

Keating says that more testing is needed to determine how effective the drugs might be in combating specific cancers, whether the drugs would be most effective in combination with others or on their own, and whether they should be used as first-line drugs or when cancers become resistant to other drugs.

“Our goal has been to do enough proof-of-principle that people will accept that stapled peptides can get into cells and act on important targets. The question now is whether there might be any animal studies done with our peptide that would provide further validation,” she says.

Joshua Kritzer, an associate professor of chemistry at Tufts University, says the study offers evidence that the stapled peptide approach is worth pursuing and could lead to new drugs that interfere with specific protein interactions.

“There have been a lot of biologists and biochemists studying essential interactions of proteins, with the justification that with more understanding of them, we would be able to develop drugs that inhibit them. This work now shows a direct line from biochemical and biophysical understanding of protein interactions to an inhibitor,” says Kritzer, who was not involved in the research.

Keating’s lab is also designing peptides that could interfere with other relatives of Mcl-1, including one called Bfl-1, which has been less studied than the other members of the family but is also involved in blocking apoptosis.

The research was funded by the Koch Institute Dana-Farber Bridge Project and the National Institutes of Health.

The need to know

Driven by curiosity, former auto mechanic Ryan Kohn now pursues a PhD in biology.

Bridget E. Begg | Office of Graduate Education
December 18, 2017

The name of Ryan Kohn’s son, Jayden, is tattooed in Hindi on his left outer forearm. Other tattoos on his inner arms declare “Respect” and “Loyalty.” A Latin phrase balances the tableau on his right outer forearm: “Many fear their reputation. Few their conscience.”

Kohn may stand out in the corporate milieu of Kendall Square, but he feels home at MIT. No one has ever judged me,” he says. “For as rigorous scientifically and academically as MIT is, it can be such a laid-back place. I’ve always felt included, if I wanted to be.”

Kohn, now a PhD candidate in the Jacks Lab at MIT’s Koch Institute for Integrative Cancer Research, has overcome a challenging adolescence, colored by economic difficulties and punctuated by personal loss. These hardships developed in him a resilient curiosity that made an unexpected cultural match between MIT and Kohn, a father and former mechanic from Boyertown, Pennsylvania.

Compelled to seek answers

After being placed in an alternative high school outside of Philadelphia for insubordination, Kohn graduated with a 1.8 GPA. His son was born three years later, while Kohn worked for six and a half years as a mechanic and manager at a Dodge dealership. After losing his job during the Great Recession, he decided to go back to school, attending his local community college on a premed track before transferring to Kutztown University after two years.

Kohn attributes some of his troubled youth to early tragedy. His older sister, Nicole, died from sepsis when she was a senior in college, just 10 days after 9/11; on the morning of her funeral, Kohn’s grandfather passed away from colon cancer. Kohn felt compelled to understand why and how these illnesses happened to his loved ones, and found himself spending his time googling the immune system, the inflammatory response, and cancer.

This habit remained with him. Kohn recalls scouring the internet again and again to understand illness when it arose near him, from his own son’s immunoglobulin A deficiency to the early-onset multiple sclerosis of a friend. Though he admits he did not yet have the core scientific knowledge to fully grasp what he read at the time, Kohn says he needed, deeply, to try.

At Kutztown University, Kohn met his undergraduate mentor Angelika Antoni, a professor who taught both oncology and immunology. According to Kohn, Antoni constantly encouraged him to pursue his curiosity despite the college’s lack of laboratory resources. In fact, Antoni paid for laboratory reagents with her own credit card, while Kohn wrote his own grants and subscribed to well-known biology journals out of his own pocket because journal access was not available through Kutztown.

These challenges shaped Kohn as an experimental biologist, requiring him to precisely understand the mechanisms of experimental techniques in order to reconstruct them in the most creative and inexpensive ways possible. Perhaps most importantly, this small-college experience cultivated Kohn’s persistent curiosity.

Diving into cancer research

In his current position at the Jacks Lab, Kohn studies cancer immunotherapy, the use of a cancer patient’s own immune system to fight cancer cells. To do this, Kohn uses a mouse model of lung cancer that mimics the natural development of human cancer: Mutations identical to those found in many human cancers are triggered in the mouse, causing a tumor to arise that originates from the mouse’s own cells. These mice, like human cancer patients, have an immune system that can recognize the cancer as aberrant. Kohn’s work focuses modifying mouse immune cells to identify and attack a tumor.

Kohn is excited by the translational potential of his work, but also eagerly defends basic research at MIT when he encounters skepticism about its practicality in his conservative hometown.

Kohn often draws on metaphors in these types of conversations. He may leverage car talk, for example, to explain why there will never be a single cure for cancer: “So your ‘check engine’ light always presents the same way … but there’s literally a multitude of different things that can [cause] it. It could be a loose gas cap for the evaporative emissions system that set it off, it could be a misfire because of a bad spark plug, it could be a catalytic converter.”

Likewise, cancer can be caused by many possible biological errors that lead to an overgrowth of cells, Kohn explains. “So just like there will never be a cure for ‘check engine light,’ there will never be a [single] cure for cancer.”

Perhaps unsurprisingly, Kohn embraces the scientific freedom of the research in his lab. His advisor, Tyler Jacks, director of the Koch Institute, an HHMI investigator, and a David H. Koch Professor of Biology at MIT, is frequently in high demand, but Kohn says he has felt fully supported in his work — including in the bold ideas and unconventional projects he undertakes in his free time.

Jacks remains accessible despite his busy schedule, according to Kohn, and his emphasis on mentorship has inspired the postdocs in the lab to mentor the graduate students. The Jacks Lab also enjoys a thriving social environment. Kohn regularly attends casual weekend parties held by his labmates, and every other year Jacks organizes a cross-campus themed scavenger hunt for which the whole lab dresses in elaborate costumes.

“Real conversations about ideas”

Outside of lab, Kohn calls himself a homebody and prefers to relax after a full day, often with a beer and a movie. He spends much of this down time with his partner Ruthlyn, whether they are exploring the Boston area or talking with friends and colleagues at local pubs.

Kohn speaks about these conversations with genuine excitement: “You meet so many different people, every religion, every gender identity, every country, every language, and you just meet these people and you get to have these cool conversations … these real conversations about ideas. Because that’s really what you want, right?”

He enthusiastically notes that, in contrast to his largely homogenous hometown, more than 200 countries are represented at MIT. Kohn says the diversity and ideals of MIT reflect his own worldview.

Despite his deep sense of belonging on campus, leaving home did lay an exceptional burden on Kohn: Twelve-year-old Jayden remains in Pennsylvania with his mother, over 300 miles away.

Kohn speaks about his son with immense pride, describing Jayden as not only an extremely talented baseball player, but as a positive, energetic, and deeply mature young person. Kohn recounts with admiration, and a trace of relief, that despite the difficulty of the distance, Jayden said his father’s coming to MIT was the right thing to do.

As for his own parents, Kohn finally feels that all the headaches he has given them over the years have been worthwhile. His intense desire for knowledge has driven him through many obstacles, connected him with like minds from all over the world, and still shows no signs of waning.

Kohn has a reputation in his lab for asking questions, big and small. Asked if he’s ever afraid to admit what he doesn’t know, he says no: “I want to know … and that’s really what it comes down to.”

Jacqueline Lees

Education

  • PhD, 1990, University of London
  • BSc, 1986, Biochemistry, University of York

Research Summary

We identify the proteins and pathways involved in tumorigenicity — establishing their mechanism of action in both normal and tumor cells. To do so, we use a combination of molecular and cellular analyses, mutant mouse models and genetic screens in zebrafish.

Michael T. Hemann

Education

  • PhD, 2001, Johns Hopkins University
  • BS, 1993, Molecular Biology and Biochemistry, Wesleyan University

Research Summary

Many human cancers do not respond to chemotherapy, and often times those that initially respond eventually acquire drug resistance. Our lab uses high-throughput screening technology — combined with murine stem reconstitution and tumor transplantation systems — to investigate the genetic basis for this resistance. Our goal is to identify novel cancer drug targets, as well as strategies for tailoring existing cancer therapies to target the vulnerabilities associated with specific malignancies.