Pathology and the Allure of Analytical Thinking

Susan Fuhrman ’75 pursued pathology because she liked providing clear answers to diagnostic questions, and has spent her retirement making complex beaded jewelry, a hobby she started more than 30 years ago as a foil for the stresses of work.

Kathryn M. O'Neill | Slice of MIT
October 7, 2025

Susan Fuhrman ’75 became a pathologist because she likes providing clear answers to diagnostic questions. “As opposed to guessing what people have, you’ve got the lab results, you have reviewed the pathology slides,” she says. “It’s pretty analytical. Your answer is the answer.”

That clarity of focus was never more valuable than in 2020, when Fuhrman was charged with answering the question everyone was asking: Is it Covid?

As the system director for pathology and laboratory services at OhioHealth, a major hospital system based in Columbus, Ohio, Fuhrman led efforts to address the epidemic—through hospital protocols and, of course, testing—all while fielding seemingly endless requests for her expertise in identifying disease.

“Everybody—from hospital vice presidents to the chief medical officer for the system— was calling me late at night and multiple times on weekends. It was incredible,” she says.

Within a year, the system’s labs had performed over half a million Covid tests and Fuhrman had been featured several times in CAP Today, a publication of the College of American Pathologists. She discussed general testing challenges as well as whom to test when and on which testing platform.

As it happened, however, Fuhrman was already famous thanks to work dating back to the 1980s.

Understanding Renal Cancer

The daughter of two chemists, Fuhrman majored in biology at MIT and earned her medical degree from the University of Michigan in 1978. She then went to the University of Minnesota Medical Center for her residency in pathology and laboratory medicine and found herself in need of a research topic. “I remember asking the head of our surgical pathology department, Dr. Juan Rosai, ‘What is a question in pathology that hasn’t been answered?’” she says. “He said, ‘Well, we don’t have a good way of determining which renal cell cancers have a bad prognosis. Currently we go by size, but there must be more than that. No one’s cracked the code. Why don’t you try that?’”

So, Fuhrman teamed up with another doctor at the Minneapolis veterans hospital, Dr. Catherine Limas, and together they developed and proposed a set of parameters to grade kidney cancers that might predict cancer outcomes. Then, Fuhrman did the painstaking work of reviewing and analyzing thousands of tumor slides, as well as cancer registry clinical data and medical charts. Her husband, Larry Lasky ’72—whom she had met at MIT and who also became a pathologist—programmed the analysis and helped her run the data she found through an early computer. “I input everything with computer cards and a teletype, super primitive stuff,” she says.

The data produced clear patterns in the predictive value of the appearance of cell nuclei, and the three published a paper proposing a grading system classifying which renal tumors are most aggressive and likely to spread based on their findings. The system, which is still the standard, is known as the Fuhrman Nuclear Grade for Clear Cell Renal Carcinoma.

American Board of Pathology President

After her residency, Fuhrman taught laboratory medicine to senior medical students as an assistant professor at the University of Minnesota for 12 years before moving to Ohio in 1994. In addition to working at OhioHealth, Fuhrman served for several years as president and CEO of CORPath, a private pathology practice. In 2022, she served a term as president of the American Board of Pathology, which later named her a life trustee in honor of her many years of service.

Fuhrman retired at the end of 2020 and has since spent much of her time making beaded jewelry—a hobby she started 35 years ago as a foil to work. “The job was stressful, and beading uses a totally different part of your brain. The left side can rest,” she says. “I can sit and sort beads by size and color for hours. That’s really weird and mindless, but I love it. I also love bead weaving; it’s like physics and architecture, building beautiful, structurally sound pieces from tiny beads.”

She creates elaborate bracelets and necklaces, often giving them away to friends or donating them to charity. “Jewelry making doesn’t pay very well, but I’m very lucky I don’t need to support myself on my hobby,” she says. “I do this for me.”

Little picture, large revelations

A summer intensive using microscopy to study a unique type of yeast was a dream come true for BSG-MSRP-Bio student Adryanne Gonzalez.

Lillian Eden | Department of Biology
September 11, 2025

For Adryanne Gonzalez, studying yeast using microscopy at MIT this summer has been a dream come true. 

“Whatever world we’re living in, there’s an even smaller one,” Gonzalez says. “Knowing and understanding the smaller one can help us learn about the bigger stuff, and I think that’s so fascinating.” 

Gonzalez was part of the Bernard S. and Sophie G. Gould MIT Summer Research Program in Biology, working in the Lew Lab this summer. The program offers talented undergraduates from institutions with limited research opportunities at their home institutions the chance to spend 10 weeks at MIT, where they gain experience, hone skills, and create the types of connections with potential collaborators and future colleagues that are critical for success in academia. 

Gonzalez was so excited about the opportunity that she didn’t apply for any other summer programs.  

“I really wanted to work on becoming more independent in the lab, and this program was research-intensive, and you get to lead your own project,” she says. “It was this or nothing.”

two people standing at a bench in front of a computer
Adryanne Gonzalez, right, with her mentor, Lew Lab graduate student Clara Fikry, left. Gonzalez spent the summer studying Aureobasidium pullulans, a type of yeast that produces large, root-like networks. Photo credit: Mandana Sassanfar/MIT Department of Biology

The fun of science & the rigors of mentoring

The Lew Lab works with two different specimens: a model baker’s yeast that multiplies by producing a round growth called a bud that eventually separates into a separate, daughter cell; and Aureobasidium pullulans, which is unusual because it can create multiple buds at the same time, and can also spread in large networks of branching, rootlike growths called hyphae. A. pullulans is an emerging model system, meaning that researchers are still defining what normal growth and behavior is for the fungus, like how it senses and responds to obstacles, and how resources and molecular machinery are allocated to its branching structures.  

“I’m really interested in all the diversity of biology that we don’t get to study if we’re only focused on the model species,” says Clara Fikry, a graduate student in the Lew Lab and Gonzalez’s mentor for the summer. 

On the mentoring side, Fikry learned how to balance providing a rigorous workload while not overwhelming her mentee with information. 

“Science should be fun,” Fikry says. “The goal of this isn’t to produce as much data as possible; it’s to learn what the process of science is like.”

Although her day-to-day work was with Fikry, Gonzalez also received guidance from Daniel Lew himself. For example, his advice was invaluable for honing a draft of her research statement for potential graduate school applications, which she’d previously written as part of a class assignment.

“It was an assignment where I needed to hit a page count, and he pointed out that I kind of wrote the same thing three times in the first paragraph,” she shares with a laugh. He helped her understand that “when you’re writing something professionally, you want your writing to be concise and understandable to a broad spectrum of readers.” 

Life in the cohort

The BSG-MSRP-Bio program gives undergraduate students a taste of what the day-to-day life of graduate school might feel like, from balancing one’s workload and reading research papers to learning new techniques and troubleshooting when experiments don’t go as planned. Gonzalez recalls that the application process felt very “adult” and “professional” because she was responsible for reaching out to the faculty member of the lab she was interested in on her own behalf, rather than going through a program intermediary. 

Gonzalez is one of just three students from Massachusetts participating in the program this year—the program draws students from across the globe to study at MIT. 

Every student also arrives with different levels of experience, from Gonzalez, who can only work in a lab during the school year about once a week, to Calo Lab student Adriana Camacho-Badillo, who is in her third consecutive summer in the program, and continuing work on a project she began last year.

“We’re all different levels of novice, and we’re coming together, and we’re all really excited about research,” Gonzalez says.

Gonzalez is a Gould Fellow, supported at MIT through the generous donations of Mike Gould and Sara Moss. The program funding was initiated in 2015 to honor the memory of Gould’s parents, Bernard S. and Sophie G. Gould. Gould and Moss take the time to come to campus and meet the students they’re supporting every year. 

“You don’t often get to meet the person that’s helping you,” Gonzalez said. “They were so warm and welcoming, and at the end, when they were giving everyone a nice, firm handshake, Mike Gould said, ‘Make sure you keep going. Don’t give up,’ which was so sweet.” 

Gonzalez is also supported by Cedar Tree, a Boston-based family foundation that primarily funds local environmental initiatives. In the interest of building a pipeline for future scientists with potential interest in the environmental sciences and beyond, Cedar Tree recently established a grant program for local high school and undergraduate students pursuing STEM research and training opportunities. 

Gonzalez discusses her summer research with attendees of the poster session that serves as the culmination of the 10-week summer research intensive for talented non-MIT undergraduate students from around the world. Photo credit: Lillian Eden/MIT Department of Biology.

Preparing for the future

The BSG-MSRP-Bio program culminates with a lively poster session where students present their summer projects to the MIT community—the first time some students are presenting their data to the public in that format.

Although the program is aimed at students who foresee a career in academia, the majority of students who participate are uncertain about the specific field, organism, or process they’ll eventually want to study during a PhD program. For Gonzalez, the program has helped her feel more prepared for the potential rigors of academic research.

“I think the hardest thing about this program is convincing yourself to apply,” she says. “Don’t let that hinder you from exploring opportunities that may seem out of reach.” 

3 Questions: Mariely Morales Burgos on the BSG-MSRP-Bio program

Undergraduate student and Gould Fellow discusses choosing a summer research lab, living in the Greater Boston Area, and managing imposter syndrome.

Lillian Eden | Department of Biology
August 28, 2025

Mariely Morales Burgos first fell in love with MIT while participating in the Quantitative Methods Workshop, a weeklong intensive offered in January to prepare students to analyze data in biology and neuroscience. Those skills have come in handy this summer while participating in the Bernard S. and Sophie G. Gould MIT Summer Research Program in Biology (BSG-MSRP-Bio), a ten-week training program for non-MIT undergraduate students interested in pursuing an academic career.

A Gould Fellow and McNair Scholar, Morales Burgos spent the summer mentored by Associate Professor of Biology Eliezer Calo, for whom the program served as a critical stepping stone in his own career. Calo is the first BSG-MSRP-Bio program alum to receive tenure at MIT. 

A rising senior at the University of Puerto Rico at Aguadilla, Morales Burgos spent the summer using zebrafish to study the molecular machinery responsible for making proteins. 

Three people standing in an interior lab space smiling at the camera
(from right to left) Mariely Morales Burgos, mentor and Associate Professor of Biology Eliezer Calo, and Adriana Camacho-Badillo in the lab at MIT. Camacho-Badillo, a returning BSG-MSRP-Bio student, encouraged Morales Burgos to apply for the program. Photo Credit: Mandana Sassanfar/MIT Department of Biology.

Q: How did you select your lab, and what have you been working on?

A: I knew I wanted to work in Eliezer’s lab after meeting him during a QMW faculty lunch. I felt like we really connected because of his genuine passion for science, commitment to his trainees, and the way he spoke about his lab and the care he puts into mentoring. 

My research focuses on ribosomes, which are the protein factories of the cell, and they’re essential to make what the cell needs to go through different developmental stages and through its most crucial processes. In early development, zebrafish and numerous other organisms depend on maternally deposited ribosomes and associated molecular components inherited directly from the oocyte. As time goes on, their own genomes activate, and they start being able to make their own ribosomes. What I’m studying is this transition from maternal to zygotic ribosomes during early development. We know this transition happens, but we don’t know how this transition is regulated, whether it happens passively, through dilution, or actively, through targeted cellular mechanisms.  

One skill that I’ve been able to learn here, other than just learning and applying techniques, is how to develop a whole project independently, how to think critically about the next step of my project, and what other questions I can ask.

Being able to work with a live animal organism and see the developmental stages in real-time, I thought that was really cool. And it really makes me appreciate the beauty of developmental biology, and just life in general.

Q: How did you prepare for the program, and what has it been like living and working in Boston and Cambridge? As a Gould Fellow, you also met with program supporters Mike Gould and Sara Moss, who established the Bernard S. and Sophie G. Gould fund to honor the memory of Mike’s parents. What was it like to meet and talk to Mike and Sara? 

A: Once we get accepted, we’re encouraged to start communication with our faculty. I had a few meetings with Eliezer to discuss some papers, and based on our discussion and the expectations for the project, I was able to read more and start preparing before I arrived.

Every few weeks beforehand, we had a meeting with Mandana and the rest of the cohort on Zoom, and we were talking on an app called GroupMe, and we exchanged socials, so when we came here, we weren’t complete, total strangers. 

When I’m not in the lab, I spend a lot of time with my roommates, and we like walking around Boston. It’s a very walkable city and has a lot of unique architecture, but Boston weather is very unpredictable. I’m from a tropical island, so I wish someone had told me to prepare for the rain and cold, but the July weather has been so nice. 

In Puerto Rico, you don’t have public transportation, so I’ve really enjoyed commuting. Our dorms are at Northeastern, so I take the bus, and it goes over the Charles, and it’s so beautiful. 

I’m a person who feels a lot of emotions, so I was the only one who cried when we met the Goulds. It was a bit embarrassing, but that’s okay. They told me to never lose the empathy that I have, no matter how hard my journey is, to keep on holding on to my sentimental side and keep working hard, and they’re so excited to see where we end up and what we end up doing.

Mariely Morales Burgos standing in front of a paper poster, indicating a certain point of data to three people
The summer research intensive culminated in a lively poster session. Photo Credit: Lillian Eden/MIT Department of Biology

Q: This program’s aim is to make research available for students who don’t have access to hands-on experience at their home institutions, so many students, including you, are embarking on independent research projects for the first time, which could trigger “imposter syndrome.” What was that experience like for you, and what advice would you give to future BSG-MSRP-Bio program participants? 

A: I was a little bit intimidated by the program, and didn’t apply the first time I had the opportunity. Then I did the Quantitative Methods Workshop, and those eight days were beautiful. I got to see how everybody loves collaborating and that the community here is very supportive. I met many wonderful faculty who were passionate about their research, and that exposure made me realize I would love to be part of a place like this. 

Imposter syndrome is something that I feel like most everybody deals with, but MSRP is a place that, if you’re willing to put in the work, everyone is willing to help you reach the places that you dream of being. It might feel intimidating to ask questions, and you could be scared of feeling like you don’t deserve to be in these spaces. But somebody who wants you to grow will answer your questions. I wanted to be able to work independently as soon as possible, because that really showcases your abilities, but no matter what, Eliezer, who’s mentoring me, his door is always open. 

What I advise is to really dive into your project and take advantage of everything this program offers. Working hard on your project, you get to fall in love with the process and the questions you’re trying to answer and science as a whole, and there’s nothing better than to spend the summer on a project that you love.

Ophthalmologist Puts Mind and Hand to Art

Carmel Mercado ’09 describes herself as “existing at the intersection of health and art.” A Seattle-based pediatric ophthalmologist, Mercado is also a visual artist whose whimsical illustrations and colorful animal characters can be found in places as varied as a children’s hospital and a microbrewery.

Sara Shay | MIT Technology Review
July 26, 2025

Carmel Mercado ’09 describes herself as “existing at the intersection of health and art.” A Seattle-based pediatric ophthalmologist, Mercado is also a visual artist whose whimsical illustrations and colorful animal characters can be found in places as varied as a children’s hospital and a microbrewery.

Looking back, Mercado says that even as a premed biology major at MIT she was pursuing both paths. She took a First-Year Advising Seminar in the arts and found a mentor in Michèle Oshima, then director of student and artist-in-residence programs at MIT’s Office of the Arts, who encouraged her to apply for the MIT Arts Scholars program. That gave her the opportunity to showcase her work in a gallery at MIT.

Mercado’s next stop was medical school at Johns Hopkins (she graduated in 2014). There, too, she gravitated toward opportunities for artistic expression, such as designing T-shirts and posters for an event welcoming prospective students. “That kind of helped me get through some darker days when I was really tired or really overwhelmed by the medical part of it,” she says.

She chose ophthalmology as her specialty in part because she found the eye itself visually appealing. “The first time I saw the fundus, the retina, the back of the eye, it was so beautiful to me,” she says. “Just looking at the optic nerve, the colors, the placement, I thought about how amazing it is that we can get such beautiful and complex imagery of our world from what looks to most people like a blob of jelly.”

Initially, Mercado assumed art would take a backseat to her medical career, but time in Japan—including a MISTI summer internship in Kobe—led her to realize she had other options. She connected with a mentor, Kenji Watanabe, while studying the history of medicine at Keio University in Tokyo during medical school. Watanabe “showed me a very different lifestyle,” she says: He didn’t limit his work to academia. “He had this really cool niche where he could do all this policy work. He was traveling to different countries to meet up with other physicians. It was eye-opening,” Mercado says. “He made me realize you can shape your career and your life to be able to pursue your passions. You shouldn’t just accept the traditional way. Being exposed to that early on probably gave me the courage to do what I’m doing now.”

As a practicing ophthalmologist, she began to involve art in her work by designing patient materials featuring characters she created. Colleagues noticed and offered her commissions. About four years ago, Mercado decided to pursue art full-time. The problem: She wasn’t sure how to promote herself. “I just about tried everything to see what would stick,” she says. She started an Etsy page and social media accounts, and she applied to art shows, art walks, and galleries. After about a year, her efforts paid off, and she started to get invitations for projects.

She has since exhibited her work in juried shows and galleries in the Boston, Orlando, and Seattle areas and has received commissions for public art from several cities in Washington. She even has a piece in the permanent gallery at Japan’s Sobana Museum.

Despite her artistic success, Mercado says she eventually missed the problem-solving and patient care involved in clinical work. She started tinkering with her schedule and settled on a roughly 60-40 split in favor of medicine.

In addition to seeing patients, she continues to pursue art projects, working mostly with acrylics and mixed media on canvas and with digital illustration; her style reflects her experiences with children and her observations of wildlife and folk art around the world, especially in Japan.

“I’ve found a space where I’m happy,” she says, “and where it feels a little bit more balanced for me.”

This story also appears in the July/August issue of MIT Alumni News magazine, published by MIT Technology Review

A shining light in the lab

Sriram “Sri” Srikant was known for insightful questions and irrepressible love of the pursuit of knowledge.

Lillian Eden | Department of Biology
July 24, 2025

Sriram “Sri” Srikant, a postdoctoral Scholar in the Laub Lab in the Department of Biology at MIT, succumbed to cancer in March. He was 35.

Srikant received a degree in Chemical Engineering with a minor in chemistry from the Indian Institute of Technology Madras in 2011, and a PhD in Molecular and Cellular Biology from Harvard University in 2019. Among many accomplishments, Srikant was awarded an HHMI International Student Research Fellowship and a Peralta Prize for an outstanding dissertation proposal, both in 2013.

Srikant is described by mentors and colleagues alike as brilliant — a remarkable researcher who was both knowledgeable and approachable and whose enthusiasm was a bright beacon to all who had the chance to know him.

“There’s a blues line that I love, ‘Let the Midnight Special shine the ever lovin’ light on me,’” says Harvard College Professor Andrew Murray, one of Srikant’s thesis advisors. “For me, Sri was that Midnight Special, and we were lucky to have his ever lovin’ light shine on us.”

Academics are often equally motivated by a mix of a love of the work and a desire to succeed, whether it be by publications, grants, or high-impact findings. According to colleagues, however, Srikant’s passion came entirely from his need to know more.

“He told me once that ‘A life without science wouldn’t be worth living,’” said Dia Ghose, PhD ’24, a graduate student in the Laub Lab. “He wanted to move his career forward so he could keep doing science, but he didn’t care about impressing people. He just loved science and wanted to keep doing it.”

In the face of a terminal diagnosis, Srikant kept coming into the lab until his illness made it impossible. His marks on Building 68, however, remain — people are and will continue using the strains he built, the technique he developed, and the expertise he was so generous in sharing.

“There’s so many reminders of him, which is how it should be, because he contributed so much,” Ghose says. “He’s living on in the lab, and we’re still using everything that he gave us every day.”

The generosity of Sri Standard Time

As a graduate student at Harvard, Srikant pursued his thesis work in a joint PhD in the labs of both Murray and Professor of Molecular and Cellular Biology Rachelle Gaudet.

“The experiments in Rachelle’s lab failed utterly, and those in mine failed miserably, but gave enough glimmers of possibility for him to make a series of technical innovations to turn something that looked hopeless into a very nice paper,” recalls Murray. “There was no part of science he wasn’t curious about, there was nothing he wouldn’t discuss, and there was no technical challenge he wouldn’t take on.”

In the Laub Lab, Srikant developed an experimental evolution approach to studying phage, the viruses that infect bacteria. Srikant set up an experimental pipeline to explore how phages can evolve to overcome anti-phage defense systems in bacteria. He was also investigating the broader mechanisms of how phage genomes evolve, and the types of mutations they acquire. In the case of recombination between co-infecting phages, he was developing a new methodology to study exactly how recombination between different phages occurs.

The experimental evolution approach swept through not just the lab at MIT but across the world, and Srikant assisted other labs in implementing his process.

“He was this incredibly selfless, generous guy who was always willing to help out other people,” says Michael Laub, Salvador E. Luria Professor and HHMI Investigator. “He also had this incredible encyclopedic knowledge and memory about all aspects of phages, and he was constantly drawing on that to help people with their projects.”

Srikant was so generous with his time and expertise that he was usually on “SST” or “Sri standard time”—which was, often, running late. He would declare he was heading out or needed to start experiments, and then engage in hours-long conversations with lab mates on topics ranging from physics to visa issues.

Srikant’s hobbies included reading papers from other fields — he was, simply put, interested in the pursuit of knowledge. If he wasn’t an expert on some topic, he could spend hours studying it, just in case he could be helpful. After ChatGPT was released, lab mates joked that ChatGP-Sri was more knowledgeable, had more reliable answers, and was usually available 24/7, says Tong Zhang, PhD ’24, another graduate student in the Laub Lab.

Srikant’s sole area of ignorance was seemingly was pop culture. He didn’t know who Taylor Swift was, and only knew of Lady Gaga from the one time she wore a meat dress more than a decade ago—which, Ghose noted, was a rather niche reference.

Always curious, never quiet

Murray recalls an incident when he was flying from Boston to San Francisco with Srikant, discussing science every minute of the flight. Srikant was so passionate about the subject that his neighbor felt the need to shush him repeatedly, which Srikant took in stride, saying, with a smile, “People have been telling me to be quieter my entire life, and they’re probably right!”

From his first year at Harvard to his final days in the Laub Lab, Srikant was known for his boundless curiosity. Murray says that it’s a rare thing, after a department seminar, for students to ask questions, but Srikant would always put his hand up. That habit continued through graduate school and at science and lab meetings during his too-brief time at MIT.

“It was remarkable,” Laub says. “After any talk, he always had the most probing, incisive, and really helpful questions, across very broad fields.”

Every time he asked a question, whether it was in class during his time at Harvard or at the Building 68 research retreat on the cape, Srikant would begin with, “One of the things I’m curious about.” Ghose says the phrase became something akin to a meme in the lab, and Srikant even commemorated the colloquialism with a bracelet that read ‘I’m curious.’

“For a person that brilliant and knowledgeable, Sri was so special. His impact on me and others will last forever,” Zhang says. “I have always been, and I will continue, looking up to him, honoring his passion for science, his brilliance as a scientist, and his kindness and generosity as a great friend.”

Student Spotlight: Alexa Mallar ’27

Computer science and molecular biology major Alexa Mallar ’27 has a passion for the visual, pursuing her love of art while also working as an undergraduate researcher in the Cheeseman Lab.

Mark Sullivan | Spectrum
June 4, 2025

“Visual art has been a passion and a core part of my identity since before attending MIT,” says Alexa Mallar ’27, a computer science and molecular biology major from Miami who is a recipient of the Norman L. Greenman (1944) Memorial Scholarship.

As an undergraduate researcher in the lab of Iain Cheeseman, MIT professor of biology and member of the Whitehead Institute, she helps develop computational tools for biological data analysis. Outside the lab, Mallar pursues her love of art, creating detailed graphite pieces in a hyperrealistic-surrealist style and experimenting with various media, including color pencil, charcoal, and multimedia sculpture, sharing her work on Instagram. Expanding her creative interests, she has explored 3-D printing through MIT MakerLodge, has taken 21T.101 Intro to Acting, and is taking 21W.756 Reading and Writing poetry in spring 2025. “Through visual and performing arts and creative writing, I continue to find new ways to express my creativity and grow as an artist,” she says.

What inspires you about creating art?

It’s a multitude of things. It’s a technical fascination with capturing details on a piece of paper and trying really hard to make it look like a photograph. There’s the enjoyment of the technical aspects of the task. There’s also an intellectual satisfaction that comes with creating art.  I like incorporating surrealism into my work often because it lends itself to creating more visual meaning than a purely realistic piece would; there are several artists I follow and try to incorporate aspects of their work into mine, trying different things. There’s the experimental value of trying different media and artistic styles. I love exploring. I love expressing new ideas. Art is really a great way to do it.

Is there a connection between what you do as a scientist and as an artist?

The nature of my art is very visual, and I think about what I do in computer science or in research now in a very visual way. I map a diagram in my head of input and output. Anything I do is inherently visualized.

Sometimes the connection goes the other way—my interest in math and science bleeds into my art. Designing counterweights to balance sculptures or geometrically mapping out perspective and proportions are a few examples. I also love sneaking in little “easter eggs.” A few years ago, I created a piece featuring a woman with a third eye and a tree-branch crown, where the branching levels followed the Fibonacci sequence.

What is the story behind the mermaid drawings on your Instagram page?

“There’s an event every May called MerMay. Artists on Instagram will do successive drawings of different mermaids based on prompts. I wanted to join in, so I designed my own mermaid. I just started by imagining her face, and it evolved into her holding an orb I called the Eye of the Sea. It was really fun.”

After college, will you be pursuing both science and art?

“That’s a good question. I kind of have a 30-degree angle I’m heading in, not a specific path. I know that I will keep drawing in my free time, and the creative thinking and visualization skills will bleed into any other part of my work that I do, whether that be in computer science or research. Maybe designing a front end is where my creative spirit will contribute to the computer science work that I do.

“I plan to work for Amazon [in summer 2025], having received a return offer after working there last summer. I’m getting a sense of the different environments I could go to. If I can find a way to combine [art and career] I will. I’ll find a way to do as many things as I can that interest me.”

How has your MIT experience helped you on your path?

“It has been an amazing resource. MIT offers so many different classes and interdisciplinary opportunities. I was able to explore entrepreneurship through the Martin Trust Center at MIT, enrolling in the Undergraduate Engineering Entrepreneurship Certificate program. That’s one avenue I wouldn’t have been able to explore otherwise without MIT. Acting is not something I would have even tried before having the opportunity to do it at MIT. I’m rediscovering my love for creative writing through classes at MIT, and I’m really enjoying it. If I hadn’t been able to fit a poetry workshop into my class schedule, I probably wouldn’t be writing nearly as much this semester. I’m really glad I have that opportunity.

“MIT is in an amazing spot for someone in my specific major, with the huge presence of biotech in Cambridge. This is an optimal place for both computer science and biological research. We have the Whitehead Institute, Pfizer, Moderna, all within walking distance of campus. There’s a lot to explore, an intersection of interests, and I really appreciate that is available to me at MIT.”

Student spotlight: Aria Eppinger ’24

The multitalented member of the varsity swim team graduated with her undergraduate degree in computer science and molecular biology in 2024 and will complete her MEng this month.

Jane Halpern | Department of Electrical Engineering and Computer Science
May 9, 2025

This interview is part of a series of short interviews from the MIT Department of Electrical Engineering and Computer Science, called Student Spotlights. Each spotlight features a student answering their choice of questions about themselves and life at MIT. Today’s interviewee, Aria Eppinger ’24, graduated with her undergraduate degree in Course 6-7 (Computer Science and Molecular Biology) last spring. This spring, she will complete her MEng in 6-7. Her thesis, supervised by Ford Professor of Engineering Doug Lauffenburger in the Department of Biological Engineering, investigates the biological underpinnings of adverse pregnancy outcomes, including preterm birth and preeclampsia, by applying polytope-fitting algorithms.

Q: Tell us about one teacher from your past who had an influence on the person you’ve become.

A: There are many teachers who had a large impact on my trajectory. I would first like to thank my elementary and middle school teachers for imbuing in me a love of learning. I would also like to thank my high school teachers for not only teaching me the foundations of writing strong arguments, programming, and designing experiments, but also instilling in me the importance of being a balanced person. It can be tempting to be ruled by studies or work, especially when learning and working are so fun. My high school teachers encouraged me to pursue my hobbies, make memories with friends, and spend time with family. As life continues to be hectic, I’m so grateful for this lesson (even if I’m still working on mastering it).

Q: Describe one conversation that changed the trajectory of your life.

A: A number of years ago, I had the opportunity to chat with Warren Buffett. I was nervous at first, but soon put to ease by his descriptions of his favorite foods — hamburgers, French fries, and ice cream — and his hitchhiking stories. His kindness impressed and inspired me, which is something I carry with me and aim to emulate all these years later.

Q: Do you have any pets?

A: I have one dog who lives at home with my parents. Dodger, named after “Artful Dodger” in Oliver Twist, is as mischievous as beagles tend to be. We adopted him from a rescue shelter when I was in elementary school.

Q: Are you a re-reader or a re-watcher — and if so, what are your comfort books, shows, or movies?

A: I don’t re-read many books or re-watch many movies, but I never tire of Jane Austen’s “Pride and Prejudice.” I bought myself an ornately bound copy when I was interning in New York City last summer. Austen’s other novels, especially “Sense and Sensibility,” “Persuasion,” and “Emma,” are also favorites, and I’ve seen a fair number of their movie and miniseries adaptations. My favorite adaptation is the 1995 BBC production of “Pride and Prejudice” because of the cohesion with the original book and the casting of the leads, as well as the touches and plot derivations added by the producer and director to bring the work to modern audiences. The adaptation is quite long, but I have fond memories of re-watching it with some fellow Austinites at MIT.

Q: If you had to teach a really in-depth class about one niche topic, what would you pick?

A: There are two types of people in the world: those who eat to live, and those who live to eat. As one of the latter, I would have to teach some sort of in-depth class on food. Perhaps I would teach the science behind baking chocolate cake, or churning the perfect ice cream. Or maybe I would teach the biochemistry of digesting. In any case, I would have to have lots of hands-on demos and reserve plenty for taste-testing!

Q: What was the last thing you changed your mind about?

A: Brisket! I never was a big fan of brisket until I went to a Texas BBQ restaurant near campus, The Smoke Shop BBQ. Growing up, I had never had true BBQ, so I was quite skeptical. However, I enjoyed not only the brisket but also the other dishes. The Brussels sprouts with caramelized onions is probably my favorite dish, but it feels like a crime to say that about a BBQ place!

Q: What are you looking forward to about life after graduation? What do you think you’ll miss about MIT?

A: I’m looking forward to new adventures after graduation, including working in New York City and traveling to new places. I cross-registered to take Intensive Italian at Harvard this semester and am planning a trip to Italy to practice my Italian, see the historic sites, visit the Vatican, and taste the food. Non vedo l’ora di viaggiare all’Italia! [I can’t wait to travel to Italy!]

While I’m excited for what lies ahead, I will miss MIT. What a joy it is to spend most of the day learning information from a fire hose, taking a class on a foreign topic because the course catalog description looked fun, talking to people whose viewpoint is very similar or very different from my own, and making friends that will last a lifetime.

Staff Spotlight: Lighting up biology’s basement lab

Senior Technical Instructor Vanessa Cheung ’02 brings the energy, experience, and excitement needed to educate students in the biology teaching lab.

Samantha Edelen | Department of Biology
April 29, 2025

For more than 30 years, Course 7 (Biology) students have descended to the expansive, windowless basement of Building 68 to learn practical skills that are the centerpiece of undergraduate biology education at the Institute. The lines of benches and cabinets of supplies that make up the underground MIT Biology Teaching Lab could easily feel dark and isolated.

In the corner of this room, however, sits Senior Technical Instructor Vanessa Cheung ’02, who manages to make the space seem sunny and communal.

“We joke that we could rig up a system of mirrors to get just enough daylight to bounce down from the stairwell,” Cheung says with a laugh. “It is a basement, but I am very lucky to have this teaching lab space. It is huge and has everything we need.”

This optimism and gratitude fostered by Cheung is critical, as MIT undergrad students enrolled in classes 7.002 (Fundamentals of Experimental Molecular Biology) and 7.003 (Applied Molecular Biology Laboratory) spend four-hour blocks in the lab each week, learning the foundations of laboratory technique and theory for biological research from Cheung and her colleagues.

Running toward science education

Cheung’s love for biology can be traced back to her high school cross country and track coach, who also served as her second-year biology teacher. The sport and the fundamental biological processes she was learning about in the classroom were, in fact, closely intertwined.

“He told us about how things like ATP [adenosine triphosphate] and the energy cycle would affect our running,” she says. “Being able to see that connection really helped my interest in the subject.”

That inspiration carried her through a move from her hometown of Pittsburgh, Pennsylvania, to Cambridge, Massachusetts, to pursue an undergraduate degree at MIT, and through her thesis work to earn a PhD in genetics at Harvard Medical School. She didn’t leave running behind either: To this day, she can often be found on the Charles River Esplanade, training for her next marathon.

She discovered her love of teaching during her PhD program. She enjoyed guiding students so much that she spent an extra semester as a teaching assistant, outside of the one required for her program.

“I love research, but I also really love telling people about research,” Cheung says.

Cheung herself describes lab instruction as the “best of both worlds,” enabling her to pursue her love of teaching while spending every day at the bench, doing experiments. She emphasizes for students the importance of being able not just to do the hands-on technical lab work, but also to understand the theory behind it.

“The students can tend to get hung up on the physical doing of things — they are really concerned when their experiments don’t work,” she says. “We focus on teaching students how to think about being in a lab — how to design an experiment and how to analyze the data.”

Although her talent for teaching and passion for science led her to the role, Cheung doesn’t hesitate to identify the students as her favorite part of the job.

“It sounds cheesy, but they really do keep the job very exciting,” she says.

Using mind and hand in the lab

Cheung is the type of person who lights up when describing how much she “loves working with yeast.”

“I always tell the students that maybe no one cares about yeast except me and like three other people in the world, but it is a model organism that we can use to apply what we learn to humans,” Cheung explains.

Though mastering basic lab skills can make hands-on laboratory courses feel “a bit cookbook,” Cheung is able to get the students excited with her enthusiasm and clever curriculum design.

“The students like things where they can get their own unique results, and things where they have a little bit of freedom to design their own experiments,” she says. So, the lab curriculum incorporates opportunities for students to do things like identify their own unique yeast mutants and design their own questions to test in a chemical engineering module.

Part of what makes theory as critical as technique is that new tools and discoveries are made frequently in biology, especially at MIT. For example, there has been a shift from a focus on RNAi to CRISPR as a popular lab technique in recent years, and Cheung muses that CRISPR itself may be overshadowed within only a few more years — keeping students learning at the cutting edge of biology is always on Cheung’s mind.

“Vanessa is the heart, soul, and mind of the biology lab courses here at MIT, embodying ‘mens et manus’ [‘mind and hand’],” says technical lab instructor and Biology Teaching Lab Manager Anthony Fuccione.

Support for all students

Cheung’s ability to mentor and guide students earned her a School of Science Dean’s Education and Advising Award in 2012, but her focus isn’t solely on MIT undergraduate students.

In fact, according to Cheung, the earlier students can be exposed to science, the better. In addition to her regular duties, Cheung also designs curriculum and teaches in the LEAH Knox Scholars Program. The two-year program provides lab experience and mentorship for low-income Boston- and Cambridge-area high school students.

Paloma Sanchez-Jauregui, outreach programs coordinator who works with Cheung on the program, says Cheung has a standout “growth mindset” that students really appreciate.

“Vanessa teaches students that challenges — like unexpected PCR results — are part of the learning process,” Sanchez-Jauregui says. “Students feel comfortable approaching her for help troubleshooting experiments or exploring new topics.”

Cheung’s colleagues report that they admire not only her talents, but also her focus on supporting those around her. Technical Instructor and colleague Eric Chu says Cheung “offers a lot of help to me and others, including those outside of the department, but does not expect reciprocity.”

Professor of biology and co-director of the Department of Biology undergraduate program Adam Martin says he “rarely has to worry about what is going on in the teaching lab.” According to Martin, Cheung is ”flexible, hard-working, dedicated, and resilient, all while being kind and supportive to our students. She is a joy to work with.”

Staff Spotlight: Always looking to home

Mingmar Sherpa, a researcher in the Martin Lab in the Department of Biology, has remained connected to his home in Nepal at every step of his career.

Ekaterina Khalizeva | Department of Biology
April 29, 2025

For Mingmar Sherpa, a senior research support associate in the Martin Lab in the Department of Biology, community is more than just his colleagues in the lab, where he studies how mechanical forces affect cell division timing during embryogenesis. On his long and winding path to MIT, he never left behind the people he grew up among in Nepal. Sherpa has been dedicated, every step of his career — from rural Solukhumbu to Kathmandu to Alabama to Cambridge — to advancing education and health care among his people in any way he can.

Despite working more than 7,000 miles away from home, Mingmar Sherpa makes every effort to keep himself connected to his community in Nepal. Every month, for example, he sends home money to support a computer lab that he established in his hometown in rural Solukhumbu, the district of Nepal that houses Mount Everest — just $250 a month covers the costs of a teacher’s salary, electricity, internet, and a space to teach. In this lab, almost 250 students thus far have learned computer skills essential to working in today’s digitally driven world. In college, Sherpa also started The Bright Vision Foundation (The Bright Future), an organization to support health and education in Nepal, and during the pandemic raised funds to provide personal protective equipment (PPE) and health care services across his home country.

While Sherpa’s ambition to help his home can be traced back to his childhood, he didn’t have it all figured out from the start, and found inspiration at each step of his career.

“This mindset of giving back to the community, helping policymakers or establishing an organization to help people do science, helping the scientific community to find cures for diseases — all these ideas came to me along the way,” Sherpa says. “It is the journey that matters.”

A journey driven by hope and optimism

“Sherpa” is a reference to the ethnic group native to the mountainous regions of Nepal and Tibet, whose members are well-known for their mountaineering skills, which they use to guide and assist tourists who want to climb Mount Everest. Growing up in rural Solukhumbu, Sherpa was surrounded by people working in the tourism industry; few other occupations appeared feasible. There was just one hospital for the whole district, requiring locals to walk for days to get medical assistance.

The youngest of seven siblings, Sherpa went to an English-language middle school, which he had to walk for over an hour to get to. He excelled there, soon becoming the top student in his class and passing the national exam with distinction — success that allowed him to both dream of and accomplish a move to Kathmandu, the capital city of Nepal, to study in the best school in the country.

It was an overwhelming transition, surrounded as he was for the first time by people from a very different social class, privileged with far more technological resources. The gaps between this well-equipped community and the one he left back home became increasingly obvious and left a strong impression on Sherpa.

There, he started thinking about how to use his newly acquired access to education and technology to uplift his community at home. He was especially fascinated by questions surrounding biology and human health, and next set his sights on attending college in the United States.

“If I came to the U.S., I could learn skills which I could not learn in Nepal,” he says. “I could prepare myself to solve the problems that I want to solve.”

At the University of Alabama in Birmingham, Sherpa continued to deepen his passion for biological science and joined a research lab. Through that work, he discovered the joys of basic research and the diverse set of skills it fosters.

“I joined the lab to learn science, but to do science, you need other skills, like research communication,” he says. “I was learning unintentionally from being in a research position.”

When Covid-19 spread around the globe, Sherpa wanted to apply the expertise and resources he had gained to help his people address the crisis. It was then that he started The Bright Vision Foundation, an organization aiming to raise the standards of health care and education in underserved communities in Nepal. Through the foundation, he raised funds to distribute PPE, provide health care services, and set up the computer lab in his childhood home.

“Today’s world is all about technology and innovation, but here are good people in my community who don’t even know about computers,” he says.

With the help of his brother, who serves as the lab instructor, and his parents, who provide the space and support the lab, and Sherpa’s own fundraising, he aims to help youths from backgrounds similar to his own be better prepared for the technologically advanced, globalized world of today.

The MIT chapter

Now, at MIT, Sherpa speaks with deep appreciation of the opportunities that the university has opened up for him — the people he has been meeting here, and the skills he has been learning.

Professor of biology Adam C. Martin, Sherpa’s principal investigator, views making sure that international trainees like Mingmar are aware of the wide range of opportunities MIT offers — whether it be workshops, collaborations, networking and funding possibilities, or help with the pathway toward graduate school — as a key part of creating a supportive environment.

Understanding the additional burdens on international trainees gives Martin extra appreciation for Sherpa’s perseverance, motivation, and desire to share his culture with the lab, sharing Nepalese food and providing context for Nepalese customs.

Being at such a research-intensive institution as MIT has helped Sherpa further clarify his goals and his view of the paths he can take to achieve them. Since college, his three passions have been intertwined: leadership, research, and human health.

Sherpa will pursue a PhD in biomedical and biological sciences with a focus in cancer biology at Cornell University in the fall. In the longer term, he plans to focus on developing policy to improve public health.

Although Sherpa recognizes that Nepal is not the only place that might need his help, he has a sharp focus and an acute sense of what he is best positioned to do now. Sherpa is gearing up to organize a health camp in the spring to bring doctors to rural areas in Nepal, not only to provide care, but also to gather data on nutrition and health in different regions of the country.

“I cannot, in a day, or even a year, bring the living conditions of people in vulnerable communities up to a higher level, but I can slowly increase the living standard of people in less-developed communities, especially in Nepal,” he says. “There might be other parts of the world which are even more vulnerable than Nepal, but I haven’t explored them yet. But I know my community in Nepal, so I want to help improve people’s lives there.”

At the core of problem-solving

Stuart Levine ’97, director of MIT’s BioMicro Center, keeps departmental researchers at the forefront of systems biology.

Samantha Edelen | Department of Biology
March 19, 2025

As director of the MIT BioMicro Center (BMC), Stuart Levine ’97 wholeheartedly embraces the variety of challenges he tackles each day. One of over 50 core facilities providing shared resources across the Institute, the BMC supplies integrated high-throughput genomics, single-cell and spatial transcriptomic analysis, bioinformatics support, and data management to researchers across MIT.

“Every day is a different day,” Levine says, “there are always new problems, new challenges, and the technology is continuing to move at an incredible pace.” After more than 15 years in the role, Levine is grateful that the breadth of his work allows him to seek solutions for so many scientific problems.

By combining bioinformatics expertise with biotech relationships and a focus on maximizing the impact of the center’s work, Levine brings the broad range of skills required to match the diversity of questions asked by researchers in MIT’s Department of Biology.

Expansive expertise

Biology first appealed to Levine as an MIT undergraduate taking class 7.012 (Introduction to Biology), thanks to the charisma of instructors Professor Eric Lander and Amgen Professor Emerita Nancy Hopkins. After earning his PhD in biochemistry from Harvard University and Massachusetts General Hospital, Levine returned to MIT for postdoctoral work with Professor Richard Young, core member at the Whitehead Institute for Biomedical Research.

In the Young Lab, Levine found his calling as an informaticist and ultimately decided to stay at MIT. Here, his work has a wide-ranging impact: the BMC serves over 100 labs annually, from the the Computer Science and Artificial Intelligence Laboratory and the departments of Brain and Cognitive Sciences; Earth, Atmospheric and Planetary Sciences; Chemical Engineering; Mechanical Engineering; and, of course, Biology.

“It’s a fun way to think about science,” Levine says, noting that he applies his knowledge and streamlines workflows across these many disciplines by “truly and deeply understanding the instrumentation complexities.”

This depth of understanding and experience allows Levine to lead what longtime colleague Professor Laurie Boyer describes as “a state-of-the-art core that has served so many faculty and provides key training opportunities for all.” He and his team work with cutting-edge, finely tuned scientific instruments that generate vast amounts of bioinformatics data, then use powerful computational tools to store, organize, and visualize the data collected, contributing to research on topics ranging from host-parasite interactions to proposed tools for NASA’s planetary protection policy.

Staying ahead of the curve

With a scientist directing the core, the BMC aims to enable researchers to “take the best advantage of systems biology methods,” says Levine. These methods use advanced research technologies to do things like prepare large sets of DNA and RNA for sequencing, read DNA and RNA sequences from single cells, and localize gene expression to specific tissues.

Levine presents a lightweight, clear rectangle about the width of a cell phone and the length of a VHS cassette.

“This is a flow cell that can do 20 human genomes to clinical significance in two days — 8 billion reads,” he says. “There are newer instruments with several times that capacity available as well.”

The vast majority of research labs do not need that kind of power, but the Institute, and its researchers as a whole, certainly do. Levine emphasizes that “the ROI [return on investment] for supporting shared resources is extremely high because whatever support we receive impacts not just one lab, but all of the labs we support. Keeping MIT’s shared resources at the bleeding edge of science is critical to our ability to make a difference in the world.”

To stay at the edge of research technology, Levine maintains company relationships, while his scientific understanding allows him to educate researchers on what is possible in the space of modern systems biology. Altogether, these attributes enable Levine to help his researcher clients “push the limits of what is achievable.”

The man behind the machines

Each core facility operates like a small business, offering specialized services to a diverse client base across academic and industry research, according to Amy Keating, Jay A. Stein (1968) Professor of Biology and head of the Department of Biology. She explains that “the PhD-level education and scientific and technological expertise of MIT’s core directors are critical to the success of life science research at MIT and beyond.”

While Levine clearly has the education and expertise, the success of the BMC “business” is also in part due to his tenacity and focus on results for the core’s users.

He was recognized by the Institute with the MIT Infinite Mile Award in 2015 and the MIT Excellence Award in 2017, for which one nominator wrote, “What makes Stuart’s leadership of the BMC truly invaluable to the MIT community is his unwavering dedication to producing high-quality data and his steadfast persistence in tackling any type of troubleshooting needed for a project. These attributes, fostered by Stuart, permeate the entire culture of the BMC.”

“He puts researchers and their research first, whether providing education, technical services, general tech support, or networking to collaborators outside of MIT,” says Noelani Kamelamela, lab manager of the BMC. “It’s all in service to users and their projects.”

Tucked into the far back corner of the BMC lab space, Levine’s office is a fitting symbol of his humility. While his guidance and knowledge sit at the center of what elevates the BMC beyond technical support, he himself sits away from the spotlight, resolutely supporting others to advance science.

“Stuart has always been the person, often behind the scenes, that pushes great science, ideas, and people forward,” Boyer says. “His knowledge and advice have truly allowed us to be at the leading edge in our work.”