Adam C. Martin

Adam C. Martin

Associate Professor of Biology; Undergraduate Officer

Adam C. Martin studies molecular mechanisms that underlie tissue form and function.





Meg Rheault



Assistant Phone


  • PhD, 2006, University of California, Berkeley
  • BS, 2000, Biology and Genetics, Cornell University

Research Summary

We study how cells and tissues change shape during embryonic development, giving rise to different body parts. We visualize these changes to determine how mechanical forces drive massive tissue movements in the fruit fly, Drosophila melanogaster. In addition, we also study the regulation of tissue integrity, investigating the processes that regulate the epithelial-to-mesenchymal transition or EMT.

Key Publications

  1. Actomyosin meshwork mechanosensing enables tissue shape to orient cell force. Chanet, S, Miller, CJ, Vaishnav, ED, Ermentrout, B, Davidson, LA, Martin, AC. 2017. Nat Commun 8, 15014.
    doi: 10.1038/ncomms15014PMID:28504247
  2. Actomyosin-based tissue folding requires a multicellular myosin gradient. Heer, NC, Miller, PW, Chanet, S, Stoop, N, Dunkel, J, Martin, AC. 2017. Development 144, 1876-1886.
    doi: 10.1242/dev.146761PMID:28432215
  3. Apical Sarcomere-like Actomyosin Contracts Nonmuscle Drosophila Epithelial Cells. Coravos, JS, Martin, AC. 2016. Dev Cell 39, 346-358.
    doi: 10.1016/j.devcel.2016.09.023PMID:27773487
  4. Stable Force Balance between Epithelial Cells Arises from F-Actin Turnover. Jodoin, JN, Coravos, JS, Chanet, S, Vasquez, CG, Tworoger, M, Kingston, ER, Perkins, LA, Perrimon, N, Martin, AC. 2015. Dev Cell 35, 685-97.
    doi: 10.1016/j.devcel.2015.11.018PMID:26688336
  5. Apical domain polarization localizes actin-myosin activity to drive ratchet-like apical constriction. Mason, FM, Tworoger, M, Martin, AC. 2013. Nat Cell Biol 15, 926-36.
    doi: 10.1038/ncb2796PMID:23831726

Recent Publications

  1. Dynamics of hydraulic and contractile wave-mediated fluid transport during Drosophila oogenesis. Imran Alsous, J, Romeo, N, Jackson, JA, Mason, FM, Dunkel, J, Martin, AC. 2021. Proc Natl Acad Sci U S A 118, .
    doi: 10.1073/pnas.2019749118PMID:33658367
  2. Self-organized cytoskeletal alignment during Drosophila mesoderm invagination. Martin, AC. 2020. Philos Trans R Soc Lond B Biol Sci 375, 20190551.
    doi: 10.1098/rstb.2019.0551PMID:32829683
  3. Divergent and combinatorial mechanical strategies that promote epithelial folding during morphogenesis. Denk-Lobnig, M, Martin, AC. 2020. Curr Opin Genet Dev 63, 24-29.
    doi: 10.1016/j.gde.2020.02.014PMID:32171160
  4. The Physical Mechanisms of Drosophila Gastrulation: Mesoderm and Endoderm Invagination. Martin, AC. 2020. Genetics 214, 543-560.
    doi: 10.1534/genetics.119.301292PMID:32132154
  5. Apical Constriction Reversal upon Mitotic Entry Underlies Different Morphogenetic Outcomes of Cell Division. Ko, CS, Kalakuntla, P, Martin, AC. 2020. Mol Biol Cell 31, 1663-1674.
    doi: 10.1091/mbc.E19-12-0673PMID:32129704
  6. The cellular and molecular mechanisms that establish the mechanics of Drosophila gastrulation. Ko, CS, Martin, AC. 2020. Curr Top Dev Biol 136, 141-165.
    doi: 10.1016/bs.ctdb.2019.08.003PMID:31959286
  7. Structural Redundancy in Supracellular Actomyosin Networks Enables Robust Tissue Folding. Yevick, HG, Miller, PW, Dunkel, J, Martin, AC. 2019. Dev Cell 50, 586-598.e3.
    doi: 10.1016/j.devcel.2019.06.015PMID:31353314
  8. Microtubules promote intercellular contractile force transmission during tissue folding. Ko, CS, Tserunyan, V, Martin, AC. 2019. J Cell Biol 218, 2726-2742.
    doi: 10.1083/jcb.201902011PMID:31227595
  9. ZnUMBA Crosses the Border. Imran Alsous, J, Martin, AC. 2019. Dev Cell 48, 423-424.
    doi: 10.1016/j.devcel.2019.02.007PMID:30782409
  10. Quantitative analysis of cell shape and the cytoskeleton in developmental biology. Yevick, HG, Martin, AC. 2018. Wiley Interdiscip Rev Dev Biol 7, e333.
    doi: 10.1002/wdev.333PMID:30168893
More Publications