Adam C. Martin

Adam C. Martin

Associate Professor of Biology

Adam C. Martin studies molecular mechanisms that underlie tissue form and function.

617-324-0074

Phone

68-459

Office

Elizabeth Fong

Assistant

617-253-1809

Assistant Phone

Education

PhD 2006, University of California, Berkeley

Research Summary

We study how cells and tissues change shape during embryonic development, giving rise to different body parts. We visualize these changes to determine how mechanical forces drive massive tissue movements in the fruit fly, Drosophila melanogaster. In addition, we also study the regulation of tissue integrity, investigating the processes that regulate the epithelial-to-mesenchymal transition or EMT.

Key Publications

  1. Actomyosin meshwork mechanosensing enables tissue shape to orient cell force. Chanet, S, Miller, CJ, Vaishnav, ED, Ermentrout, B, Davidson, LA, Martin, AC. 2017. Nat Commun 8, 15014.
    doi: 10.1038/ncomms15014PMID:28504247
  2. Actomyosin-based tissue folding requires a multicellular myosin gradient. Heer, NC, Miller, PW, Chanet, S, Stoop, N, Dunkel, J, Martin, AC. 2017. Development 144, 1876-1886.
    doi: 10.1242/dev.146761PMID:28432215
  3. Apical Sarcomere-like Actomyosin Contracts Nonmuscle Drosophila Epithelial Cells. Coravos, JS, Martin, AC. 2016. Dev. Cell 39, 346-358.
    doi: 10.1016/j.devcel.2016.09.023PMID:27773487
  4. Stable Force Balance between Epithelial Cells Arises from F-Actin Turnover. Jodoin, JN, Coravos, JS, Chanet, S, Vasquez, CG, Tworoger, M, Kingston, ER, Perkins, LA, Perrimon, N, Martin, AC. 2015. Dev. Cell 35, 685-97.
    doi: 10.1016/j.devcel.2015.11.018PMID:26688336
  5. Apical domain polarization localizes actin-myosin activity to drive ratchet-like apical constriction. Mason, FM, Tworoger, M, Martin, AC. 2013. Nat. Cell Biol. 15, 926-36.
    doi: 10.1038/ncb2796PMID:23831726

Recent Publications

  1. Quantitative analysis of cell shape and the cytoskeleton in developmental biology. Yevick, HG, Martin, AC. 2018. Wiley Interdiscip Rev Dev Biol 7, e333.
    doi: 10.1002/wdev.333PMID:30168893
  2. Tension, contraction and tissue morphogenesis. Heer, NC, Martin, AC. 2017. Development 144, 4249-4260.
    doi: 10.1242/dev.151282PMID:29183938
  3. Myosin 2-Induced Mitotic Rounding Enables Columnar Epithelial Cells to Interpret Cortical Spindle Positioning Cues. Chanet, S, Sharan, R, Khan, Z, Martin, AC. 2017. Curr. Biol. 27, 3350-3358.e3.
    doi: 10.1016/j.cub.2017.09.039PMID:29107549
  4. Actomyosin meshwork mechanosensing enables tissue shape to orient cell force. Chanet, S, Miller, CJ, Vaishnav, ED, Ermentrout, B, Davidson, LA, Martin, AC. 2017. Nat Commun 8, 15014.
    doi: 10.1038/ncomms15014PMID:28504247
  5. Actomyosin-based tissue folding requires a multicellular myosin gradient. Heer, NC, Miller, PW, Chanet, S, Stoop, N, Dunkel, J, Martin, AC. 2017. Development 144, 1876-1886.
    doi: 10.1242/dev.146761PMID:28432215
  6. Modular regulation of Rho family GTPases in development. Denk-Lobnig, M, Martin, AC. 2017. Small GTPases , 1-8.
    doi: 10.1080/21541248.2017.1294234PMID:28304230
  7. Drosophila non-muscle myosin II motor activity determines the rate of tissue folding. Vasquez, CG, Heissler, SM, Billington, N, Sellers, JR, Martin, AC. 2016. Elife 5, .
    doi: 10.7554/eLife.20828PMID:28035903
  8. Actomyosin Pulsing in Tissue Integrity Maintenance during Morphogenesis. Coravos, JS, Mason, FM, Martin, AC. 2017. Trends Cell Biol. 27, 276-283.
    doi: 10.1016/j.tcb.2016.11.008PMID:27989655
  9. Loss of Gα12/13 exacerbates apical area dependence of actomyosin contractility. Xie, S, Mason, FM, Martin, AC. 2016. Mol. Biol. Cell 27, 3526-3536.
    doi: 10.1091/mbc.E16-05-0305PMID:27489340
  10. Embryonic ring closure: Actomyosin rings do the two-step. Martin, AC. 2016. J. Cell Biol. 215, 301-303.
    doi: 10.1083/jcb.201610061PMID:27799371
More Publications