KI Gallery Exhibit: Artifacts from a half century of cancer research

Celebrating 50 years of MIT's cancer research program and the individuals who have shaped its journey, the Koch Institute Gallery features 10 significant artifacts, from one of the earliest PCR machine developed by Nobel Laureate H. Robert Horvitz to a preserved zebrafish from the lab of Nancy Hopkins in the Koch Institute Public Galleries. Visit Monday through Friday, 9AM-5PM.

Koch Institute
November 21, 2024

Throughout 2024, MIT’s Koch Institute for Integrative Cancer Research has celebrated 50 years of MIT’s cancer research program and the individuals who have shaped its journey. In honor of this milestone anniversary year, on November 19, the Koch Institute celebrated the opening of a new exhibition: Object Lessons: Celebrating 50 Years of Cancer Research at MIT in 10 Items. Object Lessons invites the public to explore significant artifacts—from one of the earliest PCR machines, developed in the lab of Nobel laureate H. Robert Horvitz, to Greta, a groundbreaking zebrafish from the lab of Professor Nancy Hopkins—in the half century of discoveries and advancements that have positioned MIT at the forefront of the fight against cancer.

50 years of innovation

The exhibition provides a glimpse into the many contributors and advancements that have defined MIT’s cancer research history since the founding of the Center for Cancer Research in 1974. When the National Cancer Act was passed in 1971, very little was understood about the biology of cancer, and it aimed to deepen our understanding of cancer and develop better strategies for the prevention, detection, and treatment of the disease. MIT embraced this call to action, establishing a center where many leading biologists tackled cancer’s fundamental questions. Building on this foundation, the Koch Institute opened its doors in 2011, housing engineers and life scientists from many fields under one roof to accelerate progress against cancer in novel and transformative ways.

In the 13 years since, the Koch Institute’s collaborative and interdisciplinary approach to cancer research has yielded significant advances in our understanding of the underlying biology of cancer and allowed for the translation of these discoveries into meaningful patient impacts. Over 120 spin-out companies—many headquartered nearby in the Kendall Square area—have their roots in Koch Institute research, with nearly half having advanced their technologies to clinical trials or commercial applications. The Koch Institute’s collaborative approach extends beyond its labs: principal investigators often form partnerships with colleagues at world-renowned medical centers, bridging the gap between discovery and clinical impact.

Current Koch Institute Director Matthew Vander Heiden, also a practicing oncologist at the Dana-Farber Cancer Institute, is driven by patient stories.

“It is never lost on us that the work we do in the lab is important to change the reality of cancer for patients,” he says. “We are constantly motivated by the urgent need to translate our research and improve outcomes for those impacted by cancer.”

Symbols of progress

The items on display as part of Object Lessons take viewers on a journey through five decades of MIT cancer research, from the pioneering days of Salvador Luria, founding director of the Center for Cancer Research, to some of the Koch Institute’s newest investigators including Francisco Sánchez-Rivera, Eisen and Chang Career Development Professor and an assistant professor of biology, and Jessica Stark, Underwood-Prescott Career Development Professor and an assistant professor of biological engineering and chemical engineering.

Among the standout pieces is a humble yet iconic object: Salvador Luria’s ceramic mug, emblazoned with “Luria’s broth.” Lysogeny broth, often called—apocryphally—Luria Broth, is a medium for growing bacteria. Still in use today, the recipe was first published in 1951 by a research associate in Luria’s lab. The artifact, on loan from the MIT Museum, symbolizes the foundational years of the Center for Cancer Research and serves as a reminder of Luria’s influence as an early visionary. His work set the stage for a new era of biological inquiry that would shape cancer research at MIT for generations.

Visitors can explore firsthand how the Koch Institute continues to build on the legacy of its predecessors, translating decades of knowledge into new tools and therapies that have the potential to transform patient care and cancer research.

For instance, the PCR machine designed in the Horvitz Lab in the 1980s made genetic manipulation of cells easier, and gene sequencing faster and more cost-effective. At the time of its commercialization, this groundbreaking benchtop unit marked a major leap forward. In the decades since, technological advances have allowed for the visualization of DNA and biological processes at a much smaller scale, as demonstrated by the handheld BioBits® imaging device developed by Stark and on display next door to the Horvitz panel.

 “We created BioBits kits to address a need for increased equity in STEM education,” Stark says. “By making hands-on biology education approachable and affordable, BioBits kits are helping inspire and empower the next generation of scientists.”

While the exhibition showcases scientific discoveries and marvels of engineering, it also aims to underscore the human element of cancer research through personally significant items, such as a messenger bag and Seq-Well device belonging to Alex Shalek, J. W. Kieckhefer Professor in the Institute for Medical Engineering and Science and the Department of Chemistry.

Shalek investigates the molecular differences between individual cells, developing mobile RNA-sequencing devices. He could often be seen toting the bag around the Boston area, and worldwide as he perfected and shared his technology with collaborators near and far. Through his work, Shalek has helped to make single cell sequencing accessible for labs in more than 30 countries across six continents.

“The KI seamlessly brings together students, staff, clinicians, and faculty across multiple different disciplines to collaboratively derive transformative insights into cancer,” Shalek says. “To me, these sorts of partnerships are the best part about being at MIT.”

Around the corner from Shalek’s display, visitors will find an object that serves as a stark reminder of the real people impacted by Koch Institute research: Steven Keating’s SM’12, PhD ’16 3D-printed model of his own brain tumor. Keating, who passed away in 2019, became a fierce advocate for the rights of patients to their medical data, and came to know Vander Heiden through his pursuit to become an expert on his tumor type, IDH-mutant glioma. In the years since, Vander Heiden’s work has contributed to a new therapy to treat Steven’s tumor type. In 2024, the drug, called vorasidenib, gained FDA approval, providing the first therapeutic breakthrough for Keating’s cancer in more than 20 years.

As the Koch Institute looks to the future, Object Lessons stands as a celebration of the people, the science, and the culture that have defined MIT’s first half-century of breakthroughs and contributions to the field of cancer research.

“Working in the uniquely collaborative environment of the Koch Institute and MIT, I am confident that we will continue to unlock key insights in the fight against cancer,” says Vander Heiden. “Our community is poised to embark on our next 50 years with the same passion and innovation that has carried us this far.”

Object Lessons will be on view in the Koch Institute Public Galleries. Visit Monday through Friday, 9 a.m. to 5 p.m., to see the exhibit up close.

A blueprint for better cancer immunotherapies

By examining antigen architectures, MIT researchers built a therapeutic cancer vaccine that may improve tumor response to immune checkpoint blockade treatments.

Bendta Schroeder | Koch Institute
November 25, 2024

Immune checkpoint blockade (ICB) therapies can be very effective against some cancers by helping the immune system recognize cancer cells that are masquerading as healthy cells.

T cells are built to recognize specific pathogens or cancer cells, which they identify from the short fragments of proteins presented on their surface. These fragments are often referred to as antigens. Healthy cells will will not have the same short fragments or antigens on their surface, and thus will be spared from attack.

Even with cancer-associated antigens studding their surfaces, tumor cells can still escape attack by presenting a checkpoint protein, which is built to turn off the T cell. Immune checkpoint blockade therapies bind to these “off-switch” proteins and allow the T cell to attack.

Researchers have established that how cancer-associated antigens are distributed throughout a tumor determines how it will respond to checkpoint therapies. Tumors with the same antigen signal across most of its cells respond well, but heterogeneous tumors with subpopulations of cells that each have different antigens, do not. The overwhelming majority of tumors fall into the latter category and are characterized by heterogenous antigen expression. Because the mechanisms behind antigen distribution and tumor response are poorly understood, efforts to improve ICB therapy response in heterogenous tumors have been hindered.

In a new study, MIT researchers analyzed antigen expression patterns and associated T cell responses to better understand why patients with heterogenous tumors respond poorly to ICB therapies. In addition to identifying specific antigen architectures that determine how immune systems respond to tumors, the team developed an RNA-based vaccine that, when combined with ICB therapies, was effective at controlling tumors in mouse models of lung cancer.

Stefani Spranger, associate professor of biology and member of MIT’s Koch Institute for Integrative Cancer Research, is the senior author of the study, appearing recently in the Journal for Immunotherapy of Cancer. Other contributors include Koch Institute colleague Forest White, the Ned C. (1949) and Janet Bemis Rice Professor and professor of biological engineering at MIT, and Darrell Irvine, professor of immunology and microbiology at Scripps Research Institute and a former member of the Koch Institute.

While RNA vaccines are being evaluated in clinical trials, current practice of antigen selection is based on the predicted stability of antigens on the surface of tumor cells.

“It’s not so black-and-white,” says Spranger. “Even antigens that don’t make the numerical cut-off could be really valuable targets. Instead of just focusing on the numbers, we need to look inside the complex interplays between antigen hierarchies to uncover new and important therapeutic strategies.”

Spranger and her team created mouse models of lung cancer with a number of different and well-defined expression patterns of cancer-associated antigens in order to analyze how each antigen impacts T cell response. They created both “clonal” tumors, with the same antigen expression pattern across cells, and “subclonal” tumors that represent a heterogenous mix of tumor cell subpopulations expressing different antigens. In each type of tumor, they tested different combinations of antigens with strong or weak binding affinity to MHC.

The researchers found that the keys to immune response were how widespread an antigen is expressed across a tumor, what other antigens are expressed at the same time, and the relative binding strength and other characteristics of antigens expressed by multiple cell populations in the tumor

As expected, mouse models with clonal tumors were able to mount an immune response sufficient to control tumor growth when treated with ICB therapy, no matter which combinations of weak or strong antigens were present. However, the team discovered that the relative strength of antigens present resulted in dynamics of competition and synergy between T cell populations, mediated by immune recognition specialists called cross-presenting dendritic cells in tumor-draining lymph nodes. In pairings of two weak or two strong antigens, one resulting T cell population would be reduced through competition. In pairings of weak and strong antigens, overall T cell response was enhanced.

In subclonal tumors, with different cell populations emitting different antigen signals, competition rather than synergy was the rule, regardless of antigen combination. Tumors with a subclonal cell population expressing a strong antigen would be well-controlled under ICB treatment at first, but eventually parts of the tumor lacking the strong antigen began to grow and developed the ability evade immune attack and resist ICB therapy.

Incorporating these insights, the researchers then designed an RNA-based vaccine to be delivered in combination with ICB treatment with the goal of strengthening immune responses suppressed by antigen-driven dynamics. Strikingly, they found that no matter the binding affinity or other characteristics of the antigen targeted, the vaccine-ICB therapy combination was able to control tumors in mouse models. The widespread availability of an antigen across tumor cells determined the vaccine’s success, even if that antigen was associated with weak immune response.

Analysis of clinical data across tumor types showed that the vaccine-ICB therapy combination may be an effective strategy for treating patients with tumors with high heterogeneity. Patterns of antigen architectures in patient tumors correlated with T cell synergy or competition in mice models and determined responsiveness to ICB in cancer patients. In future work with the Irvine laboratory at the Scripps Research Institute, the Spranger laboratory will further optimize the vaccine with the aim of testing the therapy strategy in the clinic.

Cancer biologists discover a new mechanism for an old drug

Study reveals the drug, 5-fluorouracil, acts differently in different types of cancer — a finding that could help researchers design better drug combinations.

Anne Trafton | MIT News
October 7, 2024

Since the 1950s, a chemotherapy drug known as 5-fluorouracil has been used to treat many types of cancer, including blood cancers and cancers of the digestive tract.

Doctors have long believed that this drug works by damaging the building blocks of DNA. However, a new study from MIT has found that in cancers of the colon and other gastrointestinal cancers, it actually kills cells by interfering with RNA synthesis.

The findings could have a significant effect on how doctors treat many cancer patients. Usually, 5-fluorouracil is given in combination with chemotherapy drugs that damage DNA, but the new study found that for colon cancer, this combination does not achieve the synergistic effects that were hoped for. Instead, combining 5-FU with drugs that affect RNA synthesis could make it more effective in patients with GI cancers, the researchers say.

“Our work is the most definitive study to date showing that RNA incorporation of the drug, leading to an RNA damage response, is responsible for how the drug works in GI cancers,” says Michael Yaffe, a David H. Koch Professor of Science at MIT, the director of the MIT Center for Precision Cancer Medicine, and a member of MIT’s Koch Institute for Integrative Cancer Research. “Textbooks implicate the DNA effects of the drug as the mechanism in all cancer types, but our data shows that RNA damage is what’s really important for the types of tumors, like GI cancers, where the drug is used clinically.”

Yaffe, the senior author of the new study, hopes to plan clinical trials of 5-fluorouracil with drugs that would enhance its RNA-damaging effects and kill cancer cells more effectively.

Jung-Kuei Chen, a Koch Institute research scientist, and Karl Merrick, a former MIT postdoc, are the lead authors of the paper, which appears today in Cell Reports Medicine.

An unexpected mechanism

Clinicians use 5-fluorouracil (5-FU) as a first-line drug for colon, rectal, and pancreatic cancers. It’s usually given in combination with oxaliplatin or irinotecan, which damage DNA in cancer cells. The combination was thought to be effective because 5-FU can disrupt the synthesis of DNA nucleotides. Without those building blocks, cells with damaged DNA wouldn’t be able to efficiently repair the damage and would undergo cell death.

Yaffe’s lab, which studies cell signaling pathways, wanted to further explore the underlying mechanisms of how these drug combinations preferentially kill cancer cells.

The researchers began by testing 5-FU in combination with oxaliplatin or irinotecan in colon cancer cells grown in the lab. To their surprise, they found that not only were the drugs not synergistic, in many cases they were less effective at killing cancer cells than what one would expect by simply adding together the effects of 5-FU or the DNA-damaging drug given alone.

“One would have expected that these combinations to cause synergistic cancer cell death because you are targeting two different aspects of a shared process: breaking DNA, and making nucleotides,” Yaffe says. “Karl looked at a dozen colon cancer cell lines, and not only were the drugs not synergistic, in most cases they were antagonistic. One drug seemed to be undoing what the other drug was doing.”

Yaffe’s lab then teamed up with Adam Palmer, an assistant professor of pharmacology at the University of North Carolina School of Medicine, who specializes in analyzing data from clinical trials. Palmer’s research group examined data from colon cancer patients who had been on one or more of these drugs and showed that the drugs did not show synergistic effects on survival in most patients.

“This confirmed that when you give these combinations to people, it’s not generally true that the drugs are actually working together in a beneficial way within an individual patient,” Yaffe says. “Instead, it appears that one drug in the combination works well for some patients while another drug in the combination works well in other patients. We just cannot yet predict which drug by itself is best for which patient, so everyone gets the combination.”

These results led the researchers to wonder just how 5-FU was working, if not by disrupting DNA repair. Studies in yeast and mammalian cells had shown that the drug also gets incorporated into RNA nucleotides, but there has been dispute over how much this RNA damage contributes to the drug’s toxic effects on cancer cells.

Inside cells, 5-FU is broken down into two different metabolites. One of these gets incorporated into DNA nucleotides, and other into RNA nucleotides. In studies of colon cancer cells, the researchers found that the metabolite that interferes with RNA was much more effective at killing colon cancer cells than the one that disrupts DNA.

That RNA damage appears to primarily affect ribosomal RNA, a molecule that forms part of the ribosome — a cell organelle responsible for assembling new proteins. If cells can’t form new ribosomes, they can’t produce enough proteins to function. Additionally, the lack of undamaged ribosomal RNA causes cells to destroy a large set of proteins that normally bind up the RNA to make new functional ribosomes.

The researchers are now exploring how this ribosomal RNA damage leads cells to under programmed cell death, or apoptosis. They hypothesize that sensing of the damaged RNAs within cell structures called lysosomes somehow triggers an apoptotic signal.

“My lab is very interested in trying to understand the signaling events during disruption of ribosome biogenesis, particularly in GI cancers and even some ovarian cancers, that cause the cells to die. Somehow, they must be monitoring the quality control of new ribosome synthesis, which somehow is connected to the death pathway machinery,” Yaffe says.

New combinations

The findings suggest that drugs that stimulate ribosome production could work together with 5-FU to make a highly synergistic combination. In their study, the researchers showed that a molecule that inhibits KDM2A, a suppressor of ribosome production, helped to boost the rate of cell death in colon cancer cells treated with 5-FU.

The findings also suggest a possible explanation for why combining 5-FU with a DNA-damaging drug often makes both drugs less effective. Some DNA damaging drugs send a signal to the cell to stop making new ribosomes, which would negate 5-FU’s effect on RNA. A better approach may be to give each drug a few days apart, which would give patients the potential benefits of each drug, without having them cancel each other out.

“Importantly, our data doesn’t say that these combination therapies are wrong. We know they’re effective clinically. It just says that if you adjust how you give these drugs, you could potentially make those therapies even better, with relatively minor changes in the timing of when the drugs are given,” Yaffe says.

He is now hoping to work with collaborators at other institutions to run a phase 2 or 3 clinical trial in which patients receive the drugs on an altered schedule.

“A trial is clearly needed to look for efficacy, but it should be straightforward to initiate because these are already clinically accepted drugs that form the standard of care for GI cancers. All we’re doing is changing the timing with which we give them,” he says.

The researchers also hope that their work could lead to the identification of biomarkers that predict which patients’ tumors will be more susceptible to drug combinations that include 5-FU. One such biomarker could be RNA polymerase I, which is active when cells are producing a lot of ribosomal RNA.

The research was funded by the Damon Runyon Cancer Research Fund, a Ludwig Center at MIT Fellowship, the National Institutes of Health, the Ovarian Cancer Research Fund, the Holloway Foundation, and the STARR Cancer Consortium.

Study reveals the benefits and downside of fasting

Fasting helps intestinal stem cells regenerate and heal injuries but also leads to a higher risk of cancer in mice, MIT researchers report.

Anne Trafton | MIT News
August 21, 2024

Low-calorie diets and intermittent fasting have been shown to have numerous health benefits: They can delay the onset of some age-related diseases and lengthen lifespan, not only in humans but many other organisms.

Many complex mechanisms underlie this phenomenon. Previous work from MIT has shown that one way fasting exerts its beneficial effects is by boosting the regenerative abilities of intestinal stem cells, which helps the intestine recover from injuries or inflammation.

In a study of mice, MIT researchers have now identified the pathway that enables this enhanced regeneration, which is activated once the mice begin “refeeding” after the fast. They also found a downside to this regeneration: When cancerous mutations occurred during the regenerative period, the mice were more likely to develop early-stage intestinal tumors.

“Having more stem cell activity is good for regeneration, but too much of a good thing over time can have less favorable consequences,” says Omer Yilmaz, an MIT associate professor of biology, a member of MIT’s Koch Institute for Integrative Cancer Research, and the senior author of the new study.

Yilmaz adds that further studies are needed before forming any conclusion as to whether fasting has a similar effect in humans.

“We still have a lot to learn, but it is interesting that being in either the state of fasting or refeeding when exposure to mutagen occurs can have a profound impact on the likelihood of developing a cancer in these well-defined mouse models,” he says.

MIT postdocs Shinya Imada and Saleh Khawaled are the lead authors of the paper, which appears today in Nature.

Driving regeneration

For several years, Yilmaz’s lab has been investigating how fasting and low-calorie diets affect intestinal health. In a 2018 study, his team reported that during a fast, intestinal stem cells begin to use lipids as an energy source, instead of carbohydrates. They also showed that fasting led to a significant boost in stem cells’ regenerative ability.

However, unanswered questions remained: How does fasting trigger this boost in regenerative ability, and when does the regeneration begin?

“Since that paper, we’ve really been focused on understanding what is it about fasting that drives regeneration,” Yilmaz says. “Is it fasting itself that’s driving regeneration, or eating after the fast?”

In their new study, the researchers found that stem cell regeneration is suppressed during fasting but then surges during the refeeding period. The researchers followed three groups of mice — one that fasted for 24 hours, another one that fasted for 24 hours and then was allowed to eat whatever they wanted during a 24-hour refeeding period, and a control group that ate whatever they wanted throughout the experiment.

The researchers analyzed intestinal stem cells’ ability to proliferate at different time points and found that the stem cells showed the highest levels of proliferation at the end of the 24-hour refeeding period. These cells were also more proliferative than intestinal stem cells from mice that had not fasted at all.

“We think that fasting and refeeding represent two distinct states,” Imada says. “In the fasted state, the ability of cells to use lipids and fatty acids as an energy source enables them to survive when nutrients are low. And then it’s the postfast refeeding state that really drives the regeneration. When nutrients become available, these stem cells and progenitor cells activate programs that enable them to build cellular mass and repopulate the intestinal lining.”

Further studies revealed that these cells activate a cellular signaling pathway known as mTOR, which is involved in cell growth and metabolism. One of mTOR’s roles is to regulate the translation of messenger RNA into protein, so when it’s activated, cells produce more protein. This protein synthesis is essential for stem cells to proliferate.

The researchers showed that mTOR activation in these stem cells also led to production of large quantities of polyamines — small molecules that help cells to grow and divide.

“In the refed state, you’ve got more proliferation, and you need to build cellular mass. That requires more protein, to build new cells, and those stem cells go on to build more differentiated cells or specialized intestinal cell types that line the intestine,” Khawaled says.

Too much of a good thing

The researchers also found that when stem cells are in this highly regenerative state, they are more prone to become cancerous. Intestinal stem cells are among the most actively dividing cells in the body, as they help the lining of the intestine completely turn over every five to 10 days. Because they divide so frequently, these stem cells are the most common source of precancerous cells in the intestine.

In this study, the researchers discovered that if they turned on a cancer-causing gene in the mice during the refeeding stage, they were much more likely to develop precancerous polyps than if the gene was turned on during the fasting state. Cancer-linked mutations that occurred during the refeeding state were also much more likely to produce polyps than mutations that occurred in mice that did not undergo the cycle of fasting and refeeding.

“I want to emphasize that this was all done in mice, using very well-defined cancer mutations. In humans it’s going to be a much more complex state,” Yilmaz says. “But it does lead us to the following notion: Fasting is very healthy, but if you’re unlucky and you’re refeeding after a fasting, and you get exposed to a mutagen, like a charred steak or something, you might actually be increasing your chances of developing a lesion that can go on to give rise to cancer.”

Yilmaz also noted that the regenerative benefits of fasting could be significant for people who undergo radiation treatment, which can damage the intestinal lining, or other types of intestinal injury. His lab is now studying whether polyamine supplements could help to stimulate this kind of regeneration, without the need to fast.

“This fascinating study provides insights into the complex interplay between food consumption, stem cell biology, and cancer risk,” says Ophir Klein, a professor of medicine at the University of California at San Francisco and Cedars-Sinai Medical Center, who was not involved in the study. “Their work lays a foundation for testing polyamines as compounds that may augment intestinal repair after injuries, and it suggests that careful consideration is needed when planning diet-based strategies for regeneration to avoid increasing cancer risk.”

The research was funded, in part, by a Pew-Stewart Trust Scholar award, the Marble Center for Cancer Nanomedicine, the Koch Institute-Dana Farber/Harvard Cancer Center Bridge Project, and the MIT Stem Cell Initiative.

New technique reveals how gene transcription is coordinated in cells

By capturing short-lived RNA molecules, scientists can map relationships between genes and the regulatory elements that control them.

Anne Trafton | MIT News
June 5, 2024

The human genome contains about 23,000 genes, but only a fraction of those genes are turned on inside a cell at any given time. The complex network of regulatory elements that controls gene expression includes regions of the genome called enhancers, which are often located far from the genes that they regulate.

This distance can make it difficult to map the complex interactions between genes and enhancers. To overcome that, MIT researchers have invented a new technique that allows them to observe the timing of gene and enhancer activation in a cell. When a gene is turned on around the same time as a particular enhancer, it strongly suggests the enhancer is controlling that gene.

Learning more about which enhancers control which genes, in different types of cells, could help researchers identify potential drug targets for genetic disorders. Genomic studies have identified mutations in many non-protein-coding regions that are linked to a variety of diseases. Could these be unknown enhancers?

“When people start using genetic technology to identify regions of chromosomes that have disease information, most of those sites don’t correspond to genes. We suspect they correspond to these enhancers, which can be quite distant from a promoter, so it’s very important to be able to identify these enhancers,” says Phillip Sharp, an MIT Institute Professor Emeritus and member of MIT’s Koch Institute for Integrative Cancer Research.

Sharp is the senior author of the new study, which appears today in Nature. MIT Research Assistant D.B. Jay Mahat is the lead author of the paper.

Hunting for eRNA

Less than 2 percent of the human genome consists of protein-coding genes. The rest of the genome includes many elements that control when and how those genes are expressed. Enhancers, which are thought to turn genes on by coming into physical contact with gene promoter regions through transiently forming a complex, were discovered about 45 years ago.

More recently, in 2010, researchers discovered that these enhancers are transcribed into RNA molecules, known as enhancer RNA or eRNA. Scientists suspect that this transcription occurs when the enhancers are actively interacting with their target genes. This raised the possibility that measuring eRNA transcription levels could help researchers determine when an enhancer is active, as well as which genes it’s targeting.

“That information is extraordinarily important in understanding how development occurs, and in understanding how cancers change their regulatory programs and activate processes that lead to de-differentiation and metastatic growth,” Mahat says.

However, this kind of mapping has proven difficult to perform because eRNA is produced in very small quantities and does not last long in the cell. Additionally, eRNA lacks a modification known as a poly-A tail, which is the “hook” that most techniques use to pull RNA out of a cell.

One way to capture eRNA is to add a nucleotide to cells that halts transcription when incorporated into RNA. These nucleotides also contain a tag called biotin that can be used to fish the RNA out of a cell. However, this current technique only works on large pools of cells and doesn’t give information about individual cells.

While brainstorming ideas for new ways to capture eRNA, Mahat and Sharp considered using click chemistry, a technique that can be used to join two molecules together if they are each tagged with “click handles” that can react together.

The researchers designed nucleotides labeled with one click handle, and once these nucleotides are incorporated into growing eRNA strands, the strands can be fished out with a tag containing the complementary handle. This allowed the researchers to capture eRNA and then purify, amplify, and sequence it. Some RNA is lost at each step, but Mahat estimates that they can successfully pull out about 10 percent of the eRNA from a given cell.

Using this technique, the researchers obtained a snapshot of the enhancers and genes that are being actively transcribed at a given time in a cell.

“You want to be able to determine, in every cell, the activation of transcription from regulatory elements and from their corresponding gene. And this has to be done in a single cell because that’s where you can detect synchrony or asynchrony between regulatory elements and genes,” Mahat says.

Timing of gene expression

Demonstrating their technique in mouse embryonic stem cells, the researchers found that they could calculate approximately when a particular region starts to be transcribed, based on the length of the RNA strand and the speed of the polymerase (the enzyme responsible for transcription) — that is, how far the polymerase transcribes per second. This allowed them to determine which genes and enhancers were being transcribed around the same time.

The researchers used this approach to determine the timing of the expression of cell cycle genes in more detail than has previously been possible. They were also able to confirm several sets of known gene-enhancer pairs and generated a list of about 50,000 possible enhancer-gene pairs that they can now try to verify.

Learning which enhancers control which genes would prove valuable in developing new treatments for diseases with a genetic basis. Last year, the U.S. Food and Drug Administration approved the first gene therapy treatment for sickle cell anemia, which works by interfering with an enhancer that results in activation of a fetal globin gene, reducing the production of sickled blood cells.

The MIT team is now applying this approach to other types of cells, with a focus on autoimmune diseases. Working with researchers at Boston Children’s Hospital, they are exploring immune cell mutations that have been linked to lupus, many of which are found in non-coding regions of the genome.

“It’s not clear which genes are affected by these mutations, so we are beginning to tease apart the genes these putative enhancers might be regulating, and in what cell types these enhancers are active,” Mahat says. “This is a tool for creating gene-to-enhancer maps, which are fundamental in understanding the biology, and also a foundation for understanding disease.”

The findings of this study also offer evidence for a theory that Sharp has recently developed, along with MIT professors Richard Young and Arup Chakraborty, that gene transcription is controlled by membraneless droplets known as condensates. These condensates are made of large clusters of enzymes and RNA, which Sharp suggests may include eRNA produced at enhancer sites.

“We picture that the communication between an enhancer and a promoter is a condensate-type, transient structure, and RNA is part of that. This is an important piece of work in building the understanding of how RNAs from enhancers could be active,” he says.

The research was funded by the National Cancer Institute, the National Institutes of Health, and the Emerald Foundation Postdoctoral Transition Award.

“Rosetta Stone” of cell signaling could expedite precision cancer medicine

An atlas of human protein kinases enables scientists to map cell signaling pathways with unprecedented speed and detail. Michael Yaffe, the David H. Koch Professor of Science at MIT, the director of the MIT Center for Precision Cancer Medicine, a member of MIT’s Koch Institute for Integrative Cancer Research, and a senior author of the new study published in Nature, is hoping to apply the comprehensive atlas of enzymes that regulate a wide variety of cellular activities to individual patients’ tumors to learn more about how the signaling states differ in cancer cancer, which could reveal new

Megan Scudellari | Koch Institute
June 3, 2024

A newly complete database of human protein kinases and their preferred binding sites provides a powerful new platform to investigate cell signaling pathways.

Culminating 25 years of research, MIT, Harvard University, and Yale University scientists and collaborators have unveiled a comprehensive atlas of human tyrosine kinases — enzymes that regulate a wide variety of cellular activities — and their binding sites.

The addition of tyrosine kinases to a previously published dataset from the same group now completes a free, publicly available atlas of all human kinases and their specific binding sites on proteins, which together orchestrate fundamental cell processes such as growth, cell division, and metabolism.

Now, researchers can use data from mass spectrometry, a common laboratory technique, to identify the kinases involved in normal and dysregulated cell signaling in human tissue, such as during inflammation or cancer progression.

“I am most excited about being able to apply this to individual patients’ tumors and learn about the signaling states of cancer and heterogeneity of that signaling,” says Michael Yaffe, who is the David H. Koch Professor of Science at MIT, the director of the MIT Center for Precision Cancer Medicine, a member of MIT’s Koch Institute for Integrative Cancer Research, and a senior author of the new study. “This could reveal new druggable targets or novel combination therapies.”

The study, published in Nature, is the product of a long-standing collaboration with senior authors Lewis Cantley at Harvard Medical School and Dana-Farber Cancer Institute, Benjamin Turk at Yale School of Medicine, and Jared Johnson at Weill Cornell Medical College.

The paper’s lead authors are Tomer Yaron-Barir at Columbia University Irving Medical Center, and MIT’s Brian Joughin, with contributions from Kontstantin Krismer, Mina Takegami, and Pau Creixell.

Kinase kingdom

Human cells are governed by a network of diverse protein kinases that alter the properties of other proteins by adding or removing chemical compounds called phosphate groups. Phosphate groups are small but powerful: When attached to proteins, they can turn proteins on or off, or even dramatically change their function. Identifying which of the almost 400 human kinases phosphorylate a specific protein at a particular site on the protein was traditionally a lengthy, laborious process.

Beginning in the mid 1990s, the Cantley laboratory developed a method using a library of small peptides to identify the optimal amino acid sequence — called a motif, similar to a scannable barcode — that a kinase targets on its substrate proteins for the addition of a phosphate group. Over the ensuing years, Yaffe, Turk, and Johnson, all of whom spent time as postdocs in the Cantley lab, made seminal advancements in the technique, increasing its throughput, accuracy, and utility.

Johnson led a massive experimental effort exposing batches of kinases to these peptide libraries and observed which kinases phosphorylated which subsets of peptides. In a corresponding Nature paper published in January 2023, the team mapped more than 300 serine/threonine kinases, the other main type of protein kinase, to their motifs. In the current paper, they complete the human “kinome” by successfully mapping 93 tyrosine kinases to their corresponding motifs.

Next, by creating and using advanced computational tools, Yaron-Barir, Krismer, Joughin, Takegami, and Yaffe tested whether the results were predictive of real proteins, and whether the results might reveal unknown signaling events in normal and cancer cells. By analyzing phosphoproteomic data from mass spectrometry to reveal phosphorylation patterns in cells, their atlas accurately predicted tyrosine kinase activity in previously studied cell signaling pathways.

For example, using recently published phosphoproteomic data of human lung cancer cells treated with two targeted drugs, the atlas identified that treatment with erlotinib, a known inhibitor of the protein EGFR, downregulated sites matching a motif for EGFR. Treatment with afatinib, a known HER2 inhibitor, downregulated sites matching the HER2 motif. Unexpectedly, afatinib treatment also upregulated the motif for the tyrosine kinase MET, a finding that helps explain patient data linking MET activity to afatinib drug resistance.

Actionable results

There are two key ways researchers can use the new atlas. First, for a protein of interest that is being phosphorylated, the atlas can be used to narrow down hundreds of kinases to a short list of candidates likely to be involved. “The predictions that come from using this will still need to be validated experimentally, but it’s a huge step forward in making clear predictions that can be tested,” says Yaffe.

Second, the atlas makes phosphoproteomic data more useful and actionable. In the past, researchers might gather phosphoproteomic data from a tissue sample, but it was difficult to know what that data was saying or how to best use it to guide next steps in research. Now, that data can be used to predict which kinases are upregulated or downregulated and therefore which cellular signaling pathways are active or not.

“We now have a new tool now to interpret those large datasets, a Rosetta Stone for phosphoproteomics,” says Yaffe. “It is going to be particularly helpful for turning this type of disease data into actionable items.”

In the context of cancer, phosophoproteomic data from a patient’s tumor biopsy could be used to help doctors quickly identify which kinases and cell signaling pathways are involved in cancer expansion or drug resistance, then use that knowledge to target those pathways with appropriate drug therapy or combination therapy.

Yaffe’s lab and their colleagues at the National Institutes of Health are now using the atlas to seek out new insights into difficult cancers, including appendiceal cancer and neuroendocrine tumors. While many cancers have been shown to have a strong genetic component, such as the genes BRCA1 and BRCA2 in breast cancer, other cancers are not associated with any known genetic cause. “We’re using this atlas to interrogate these tumors that don’t seem to have a clear genetic driver to see if we can identify kinases that are driving cancer progression,” he says.

Biological insights

In addition to completing the human kinase atlas, the team made two biological discoveries in their recent study. First, they identified three main classes of phosphorylation motifs, or barcodes, for tyrosine kinases. The first class is motifs that map to multiple kinases, suggesting that numerous signaling pathways converge to phosphorylate a protein boasting that motif. The second class is motifs with a one-to-one match between motif and kinase, in which only a specific kinase will activate a protein with that motif. This came as a partial surprise, as tyrosine kinases have been thought to have minimal specificity by some in the field.

The final class includes motifs for which there is no clear match to one of the 78 classical tyrosine kinases. This class includes motifs that match to 15 atypical tyrosine kinases known to also phosphorylate serine or threonine residues. “This means that there’s a subset of kinases that we didn’t recognize that are actually playing an important role,” says Yaffe. It also indicates there may be other mechanisms besides motifs alone that affect how a kinase interacts with a protein.

The team also discovered that tyrosine kinase motifs are tightly conserved between humans and the worm species C. elegans, despite the species being separated by more than 600 million years of evolution. In other words, a worm kinase and its human homologue are phosphorylating essentially the same motif. That sequence preservation suggests that tyrosine kinases are highly critical to signaling pathways in all multicellular organisms, and any small change would be harmful to an organism.

The research was funded by the Charles and Marjorie Holloway Foundation, the MIT Center for Precision Cancer Medicine, the Koch Institute Frontier Research Program via L. Scott Ritterbush, the Leukemia and Lymphoma Society, the National Institutes of Health, Cancer Research UK, the Brain Tumour Charity, and the Koch Institute Support (core) grant from the National Cancer Institute.

Scientists develop a rapid gene-editing screen to find effects of cancer mutations

With the new technique, MIT researchers hope to identify mutations that could be targeted with new cancer therapies.

Anne Trafton | MIT News
March 12, 2024

Tumors can carry mutations in hundreds of different genes, and each of those genes may be mutated in different ways — some mutations simply replace one DNA nucleotide with another, while others insert or delete larger sections of DNA.

Until now, there has been no way to quickly and easily screen each of those mutations in their natural setting to see what role they may play in the development, progression, and treatment response of a tumor. Using a variant of CRISPR genome-editing known as prime editing, MIT researchers have now come up with a way to screen those mutations much more easily.

The researchers demonstrated their technique by screening cells with more than 1,000 different mutations of the tumor suppressor gene p53, all of which have been seen in cancer patients. This method, which is easier and faster than any existing approach, and edits the genome rather than introducing an artificial version of the mutant gene, revealed that some p53 mutations are more harmful than previously thought.

This technique could also be applied to many other cancer genes, the researchers say, and could eventually be used for precision medicine, to determine how an individual patient’s tumor will respond to a particular treatment.

“In one experiment, you can generate thousands of genotypes that are seen in cancer patients, and immediately test whether one or more of those genotypes are sensitive or resistant to any type of therapy that you’re interested in using,” says Francisco Sanchez-Rivera, an MIT assistant professor of biology, a member of the Koch Institute for Integrative Cancer Research, and the senior author of the study.

MIT graduate student Samuel Gould is the lead author of the paper, which appears today in Nature Biotechnology.

Editing cells

The new technique builds on research that Sanchez-Rivera began 10 years ago as an MIT graduate student. At that time, working with Tyler Jacks, the David H. Koch Professor of Biology, and then-postdoc Thales Papagiannakopoulos, Sanchez-Rivera developed a way to use CRISPR genome-editing to introduce into mice genetic mutations linked to lung cancer.

In that study, the researchers showed that they could delete genes that are often lost in lung tumor cells, and the resulting tumors were similar to naturally arising tumors with those mutations. However, this technique did not allow for the creation of point mutations (substitutions of one nucleotide for another) or insertions.

“While some cancer patients have deletions in certain genes, the vast majority of mutations that cancer patients have in their tumors also include point mutations or small insertions,” Sanchez-Rivera says.

Since then, David Liu, a professor in the Harvard University Department of Chemistry and Chemical Biology and a core institute member of the Broad Institute, has developed new CRISPR-based genome editing technologies that can generate additional types of mutations more easily. With base editing, developed in 2016, researchers can engineer point mutations, but not all possible point mutations. In 2019, Liu, who is also an author of the Nature Biotechnology study, developed a technique called prime editing, which enables any kind of point mutation to be introduced, as well as insertions and deletions.

“Prime editing in theory solves one of the major challenges with earlier forms of CRISPR-based editing, which is that it allows you to engineer virtually any type of mutation,” Sanchez-Rivera says.

When they began working on this project, Sanchez-Rivera and Gould calculated that if performed successfully, prime editing could be used to generate more than 99 percent of all small mutations seen in cancer patients.

However, to achieve that, they needed to find a way to optimize the editing efficiency of the CRISPR-based system. The prime editing guide RNAs (pegRNAs) used to direct CRISPR enzymes to cut the genome in certain spots have varying levels of efficiency, which leads to “noise” in the data from pegRNAs that simply aren’t generating the correct target mutation. The MIT team devised a way to reduce that noise by using synthetic target sites to help them calculate how efficiently each guide RNA that they tested was working.

“We can design multiple prime-editing guide RNAs with different design properties, and then we get an empirical measurement of how efficient each of those pegRNAs is. It tells us what percentage of the time each pegRNA is actually introducing the correct edit,” Gould says.

Analyzing mutations

The researchers demonstrated their technique using p53, a gene that is mutated in more than half of all cancer patients. From a dataset that includes sequencing information from more than 40,000 patients, the researchers identified more than 1,000 different mutations that can occur in p53.

“We wanted to focus on p53 because it’s the most commonly mutated gene in human cancers, but only the most frequent variants in p53 have really been deeply studied. There are many variants in p53 that remain understudied,” Gould says.

Using their new method, the researchers introduced p53 mutations in human lung adenocarcinoma cells, then measured the survival rates of these cells, allowing them to determine each mutation’s effect on cell fitness.

Among their findings, they showed that some p53 mutations promoted cell growth more than had been previously thought. These mutations, which prevent the p53 protein from forming a tetramer — an assembly of four p53 proteins — had been studied before, using a technique that involves inserting artificial copies of a mutated p53 gene into a cell.

Those studies found that these mutations did not confer any survival advantage to cancer cells. However, when the MIT team introduced those same mutations using the new prime editing technique, they found that the mutation prevented the tetramer from forming, allowing the cells to survive. Based on the studies done using overexpression of artificial p53 DNA, those mutations would have been classified as benign, while the new work shows that under more natural circumstances, they are not.

“This is a case where you could only observe these variant-induced phenotypes if you’re engineering the variants in their natural context and not with these more artificial systems,” Gould says. “This is just one example, but it speaks to a broader principle that we’re going to be able to access novel biology using these new genome-editing technologies.”

Because it is difficult to reactivate tumor suppressor genes, there are few drugs that target p53, but the researchers now plan to investigate mutations found in other cancer-linked genes, in hopes of discovering potential cancer therapies that could target those mutations. They also hope that the technique could one day enable personalized approaches to treating tumors.

“With the advent of sequencing technologies in the clinic, we’ll be able to use this genetic information to tailor therapies for patients suffering from tumors that have a defined genetic makeup,” Sanchez-Rivera says. “This approach based on prime editing has the potential to change everything.”

The research was funded, in part, by the National Institute of General Medical Sciences, an MIT School of Science Fellowship in Cancer Research, a Howard Hughes Medical Institute Hanna Gray Fellowship, the V Foundation for Cancer Research, a National Cancer Institute Cancer Center Support Grant, the Ludwig Center at MIT, a Koch Institute Frontier Award, the MIT Research Support Committee, and the Koch Institute Support (core) Grant from the National Cancer Institute.

How early-stage cancer cells hide from the immune system

A new study finds precancerous colon cells turn on a gene called SOX17, which helps them evade detection and develop into more advanced tumors.

Anne Trafton | MIT News
February 28, 2024

One of the immune system’s primary roles is to detect and kill cells that have acquired cancerous mutations. However, some early-stage cancer cells manage to evade this surveillance and develop into more advanced tumors.

A new study from MIT and Dana-Farber Cancer Institute has identified one strategy that helps these precancerous cells avoid immune detection. The researchers found that early in colon cancer development, cells that turn on a gene called SOX17 can become essentially invisible to the immune system.

If scientists could find a way to block SOX17 function or the pathway that it activates, this may offer a new way to treat early-stage cancers before they grow into larger tumors, the researchers say.

“Activation of the SOX17 program in the earliest innings of colorectal cancer formation is a critical step that shields precancerous cells from the immune system. If we can inhibit the SOX17 program, we might be better able to prevent colon cancer, particularly in patients that are prone to developing colon polyps,” says Omer Yilmaz, an MIT associate professor of biology, a member of MIT’s Koch Institute for Integrative Cancer Research, and one of the senior authors of the study.

Judith Agudo, a principal investigator at Dana-Farber Cancer Institute and an assistant professor at Harvard Medical School, is also a senior author of the study, which appears today in Nature. The paper’s lead author is MIT Research Scientist Norihiro Goto. Other collaborators include Tyler Jacks, a professor of biology and a member of MIT’s Koch Institute; Peter Westcott, a former Jacks lab postdoc who is now an assistant professor at Cold Spring Harbor Laboratory; and Saori Goto, an MIT postdoc in the Yilmaz lab.

Immune evasion

Colon cancer usually arises in long-lived cells called intestinal stem cells, whose job is to continually regenerate the lining of the intestines. Over their long lifetime, these cells can accumulate cancerous mutations that lead to the formation of polyps, a type of premalignant growth that can eventually become metastatic colon cancer.

To learn more about how these precancerous growths evade the immune system, the researchers used a technique they had previously developed for growing mini colon tumors in a lab dish and then implanting them into mice. In this case, the researchers engineered the tumors to express mutated versions of cancer-linked genes Kras, p53, and APC, which are often found in human colon cancers.

Once these tumors were implanted in mice, the researchers observed a dramatic increase in the tumors’ expression of SOX17. This gene encodes a transcription factor that is normally active only during embryonic development, when it helps to control development of the intestines and the formation of blood vessels.

The researchers’ experiments revealed that when SOX17 is turned on in cancer cells, it helps the cells to create an immunosuppressive environment. Among its effects, SOX17 prevents cells from synthesizing the receptor that normally detects interferon gamma, a molecule that is one of the immune system’s primary weapons against cancer cells.

Without those interferon gamma receptors, cancerous and precancerous cells can simply ignore messages from the immune system, which would normally direct them to undergo programmed cell death.

“One of SOX17’s main roles is to turn off the interferon gamma signaling pathway in colorectal cancer cells and in precancerous adenoma cells. By turning off interferon gamma receptor signaling in the tumor cells, the tumor cells become hidden from T cells and can grow in the presence of an immune system,” Yilmaz says.

Without interferon gamma signaling, cancer cells also minimize their production of molecules called MHC proteins, which are responsible for displaying cancerous antigens to the immune system. The cells’ insensitivity to interferon gamma also prevents them from producing immune molecules called chemokines, which normally recruit T cells that would help destroy the cancerous cells.

Targeting SOX17

When the researchers generated colon tumor organoids with SOX17 knocked out, and implanted those into mice, the immune system was able to attack those tumors much more effectively. This suggests that preventing cancer cells from turning off SOX17 could offer a way to treat colon cancer in its earliest stages.

“Just by turning off SOX17 in fairly complex tumors, we were able to essentially obliterate the ability of these tumor cells to persist,” Goto says.

As part of their study, the researchers also analyzed gene expression data from patients with colon cancer and found that SOX17 tended to be highly expressed in early-stage colon cancers but dropped off as the tumors became more invasive and metastatic.

“We think this makes a lot of sense because as colorectal cancers become more invasive and metastatic, there are other mechanisms that create an immunosuppressive environment,” Yilmaz says. “As the colon cancer becomes more aggressive and activates these other mechanisms, then there’s less importance for SOX17.”

Transcription factors such as SOX17 are considered difficult to target using drugs, in part because of their disorganized structure, so the researchers now plan to identify other proteins that SOX17 interacts with, in hopes that it might be easier to block some of those interactions.

The researchers also plan to investigate what triggers SOX17 to turn on in precancerous cells.

The research was funded by the MIT Stem Cell Initiative via Fondation MIT, the National Institutes of Health/National Cancer Institute, and a Koch Institute-Dana Farber Harvard Cancer Center Bridge Project grant.