How a unique class of neurons may set the table for brain development

A new MIT study from the Nedivi Lab finds that somatostatin-expressing neurons follow a unique trajectory when forming connections in the brain’s visual cortex that may help establish the conditions needed for sensory experience to refine circuits.

David Orenstein | The Picower Institute for Learning and Memory
January 14, 2026

The way the brain develops can shape us throughout our lives, so neuroscientists are intensely curious about how it happens. A new study by researchers in The Picower Institute for Learning and Memory at MIT that focused on visual cortex development in mice, reveals that an important class of neurons follows a set of rules that while surprising, might just create the right conditions for circuit optimization.

During early brain development, multiple types of neurons emerge in the visual cortex (where the brain processes vision). Many are “excitatory,” driving the activity of brain circuits, and others are “inhibitory,” meaning they control that activity. Just like a car needs not only an engine and a gas pedal, but also a steering wheel and brakes, a healthy balance between excitation and inhibition is required for proper brain function. During a “critical period” of development in the visual cortex, soon after the eyes first open, excitatory and inhibitory neurons forge and edit millions of connections, or synapses, to adapt nascent circuits to the incoming flood of visual experience. Over many days, in other words, the brain optimizes its attunement to the world.

In the new study in The Journal of Neuroscience, a team led by MIT research scientist Josiah Boivin and Professor Elly Nedivi visually tracked somatostatin (SST)-expressing inhibitory neurons forging synapses with excitatory cells along their sprawling dendrite branches, illustrating the action before, during and after the critical period with unprecedented resolution. Several of the rules the SST cells appeared to follow were unexpected—for instance, unlike other cell types, their activity did not depend on visual input—but now that the scientists know these neurons’ unique trajectory, they have a new idea about how it may enable sensory activity to influence development: SST cells might help usher in the critical period by establishing the baseline level of inhibition needed to ensure that only certain types of sensory input will trigger circuit refinement.

“Why would you need part of the circuit that’s not really sensitive to experience? It could be that it’s setting things up for the experience-dependent components to do their thing,” said Nedivi, William R. and Linda R. Young Professor in The Picower Institute and MIT’s Departments of Biology and Brain and Cognitive Sciences.

Boivin added: “We don’t yet know whether SST neurons play a causal role in the opening of the critical period, but they are certainly in the right place at the right time to sculpt cortical circuitry at a crucial developmental stage.”

A unique trajectory

To visualize SST-to-excitatory synapse development, Nedivi and Boivin’s team used a genetic technique that pairs expression of synaptic proteins with fluorescent molecules to resolve the appearance of the “boutons” SST cells use to reach out to excitatory neurons. They then performed a technique called eMAP, developed by Kwanghun Chung’s lab in the Picower Institute, that expands and clears brain tissue to increase magnification, allowing super-resolution visualization of the actual synapses those boutons ultimately formed with excitatory cells along their dendrites. Co-author and postdoc Bettina Schmerl helped lead the eMAP work.

These new techniques revealed that SST bouton appearance and then synapse formation surged dramatically when the eyes opened and then as the critical period got underway. But while excitatory neurons during this timeframe are still maturing, first in the deepest layers of the cortex and later in its more superficial layers, the SST boutons blanketed all layers simultaneously, meaning that, perhaps counter intuitively, they sought to establish their inhibitory influence regardless of the maturation stage of their intended partners.

Many studies have shown that eye opening and the onset of visual experience sets in motion the development and elaboration of excitatory cells and another major inhibitory neuron type (parvalbumin-expressing cells). Raising mice in the dark for different lengths of time, for instance, can distinctly alter what happens with these cells. Not so for the SST neurons. The new study showed that varying lengths of darkness had no effect on the trajectory of SST bouton and synapse appearance; it remained invariant, suggesting it is pre-ordained by a genetic program or an age-related molecular signal, rather than experience.

Moreover, after the initial frenzy of synapse formation during development, many synapses are then edited, or pruned away, so that only the ones needed for appropriate sensory responses endure. Again, the SST boutons and synapses proved to be exempt from these redactions. Though the pace of new SST synapse formation slowed at the peak of the critical period, the net number of synapses never declined and even continued increasing into adulthood.

“While a lot of people think that the only difference between inhibition and excitation is their valence, this demonstrates that inhibition works by a totally different set of rules,” Nedivi said.

In all, while other cell types were tailoring their synaptic populations to incoming experience, the SST neurons appeared to provide an early but steady inhibitory influence across all layers of the cortex. After excitatory synapses have been pruned back by the time of adulthood, the continued upward trickle of SST inhibition may contribute to the increase in the inhibition to excitation ratio that still allows the adult brain to learn, but not as dramatically or as flexibly as during early childhood.

A platform for future studies

In addition to shedding light on typical brain development, Nedivi said, the study’s techniques can enable side-by-side comparisons in mouse models of neurodevelopmental disorders such as autism or epilepsy where aberrations of excitation and inhibition balance are implicated.

Future studies using the techniques can also look at how different cell types connect with each other in brain regions other than the visual cortex, she added.

Boivin, who will soon open his own lab as a faculty member at Amherst College, said he is eager to apply the work in new ways.

“I’m excited to continue investigating inhibitory synapse formation on genetically defined cell types in my future lab,” Boivin said. “I plan to focus on the development of limbic brain regions that regulate behaviors relevant to adolescent mental health.”

In addition to Nedivi, Boivin and Schmerl, the paper’s other authors are Kendyll Martin, and Chia-Fang Lee.

Funding for the study came from the National Institutes of Health, the Office of Naval Research and the Freedom Together Foundation.

Ron Vale

Education

  • Graduate: PhD, 1985, Stanford University
  • Undergraduate: BA, 1980, Biology and Chemistry, College of Creative Studies, University of California Santa Barbara

Research Summary

The Vale lab uses microscopy, along with biochemical and genetic approaches, to peer into the secret lives of cells and understand how they move, divide, transport materials, and process information. The lab has focused for many years on microtubule-based motor proteins, kinesin and dynein, aiming to understand how they generate movement and transport specific cargos inside of cells. The laboratory also has investigated biochemical mechanisms involved in immune cell signaling. A new area of interest is studying how cells adapt to harsh conditions and stressors such as episodes of heat, cold or drought.

Awards

  • American Association for Cancer Research, Fellow, 2025
  • Royal Society, Foreign Member, 2023
  • Gairdner Award in Biomedical Research, 2019
  • Shaw Prize in Life Sciences and Medicine, 2017
  • Distinguished Scientist of the Marine Biological Laboratory, 2016
  • National Academy of Medicine, Member, 2014
  • Albert Lasker Award for Basic Medical Research, 2012
  • Wiley Prize for Biomedical Sciences, 2012
  • American Academy of Arts and Sciences, Fellow, 2002
  • National Academy of Sciences, Member, 2001
RNA editing study finds many ways for neurons to diversify

When MIT neurobiologists including Troy Littleton tracked how more than 200 motor neurons in fruit flies each edited their RNA, they cataloged hundreds of target sites and widely varying editing rates. Scores of edits altered proteins involved in neural communication and function.

David Orenstein | The Picower Institute for Learning and Memory
November 20, 2025

All starting from the same DNA, neurons ultimately take on individual characteristics in the brain and body. Differences in which genes they transcribe into RNA help determine which type of neuron they become, and from there, a new MIT study shows, individual cells edit a selection of sites in those RNA transcripts, each at their own widely varying rates.

The new study surveyed the whole landscape of RNA editing in more than 200 individual cells commonly used as models of fundamental neural biology: tonic and phasic motor neurons of the fruit fly. One of the main findings is that most sites were edited at rates between the “all or nothing” extremes many scientists have assumed based on more limited studies in mammals, said senior author Troy Littleton, Menicon Professor in the Departments of Biology and Brain and Cognitive Sciences. The resulting dataset and analyses published in eLife set the table for discoveries about how RNA editing affects neural function and what enzymes implement those edits.

“We have this ‘alphabet’ now for RNA editing in these neurons,” Littleton said. “We know which genes are edited in these neurons so we can go in and begin to ask questions as to what is that editing doing to the neuron at the most interesting targets.”

Andres Crane, who earned his PhD in Littleton’s lab based on this work, is the study’s lead author.

From a genome of about 15,000 genes, Littleton and Crane’s team found, the neurons made hundreds of edits in transcripts from hundreds of genes. For example, the team documented “canonical” edits of 316 sites in 210 genes. Canonical means that the edits were made by the well-studied enzyme ADAR, which is also found in mammals including humans. Of the 316 edits, 175 occurred in regions that encode the contents of proteins. Analysis indeed suggested 60 are likely to significantly alter amino acids. But they also found 141 more editing sites in areas that don’t code for proteins but instead affect their production, which means they could affect protein levels, rather than their contents.

The team also found many “non-canonical” edits that ADAR didn’t make. That’s important, Littleton said, because that information could aid in discovering more enzymes involved in RNA editing, potentially across species. That, in turn, could expand the possibilities for future genetic therapies.

“In the future, if we can begin to understand in flies what the enzymes are that make these other non-canonical edits, it would give us broader coverage for thinking about doing things like repairing human genomes where a mutation has broken a protein of interest,” Littleton said.

Moreover, by looking specifically at fly larvae, the team found many edits that were specific to juveniles vs. adults, suggesting potential significance during development. And because they looked at full gene transcripts of individual neurons, the team was also able to find editing targets that had not been cataloged before.

Widely varying rates

Some of the most heavily edited RNAs were from genes that make critical contributions to neural circuit communication such as neurotransmitter release, and the channels that cells form to regulate the flow of chemical ions that vary their electrical properties. The study identified 27 sites in 18 genes that were edited more than 90 percent of the time.

Yet neurons sometimes varied quite widely in whether they would edit a site, which suggests that even neurons of the same type can still take on significant degrees of individuality.

“Some neurons displayed ~100 percent editing at certain sites, while others displayed no editing for the same target,” the team wrote in eLife. “Such dramatic differences in editing rate at specific target sites is likely to contribute to the heterogeneous features observed within the same neuronal population.”

On average, any given site was edited about two-thirds of the time, and most sites were edited within a range well between all or nothing extremes.

“The vast majority of editing events we found were somewhere between 20% and 70%,” Littleton said. “We were seeing mixed ratios of edited and unedited transcripts within a single cell.”

Also, the more a gene was expressed, the less editing it experienced, suggesting that ADAR could only keep up so much with its editing opportunities.

Potential impacts on function

One of the key questions the data enables scientists to ask is what impact RNA edits have on the function of the cells. In a 2023 study, Littleton’s lab began to tackle this question by looking at just two edits they found in the most heavily edited gene: Complexin. Complexin’s protein product restrains release of the neurotransmitter glutamate, making it a key regulator of neural circuit communication. They found that by mixing and matching edits, neurons produced up to eight different versions of the protein with significant effects on their glutamate release and synaptic electrical current. But in the new study, the team reports 13 more edits in Complexin that are yet to be studied.

Littleton said he’s intrigued by another key protein, called Arc1, that the study shows experienced a non-canonical edit. Arc is a vitally important gene in “synaptic plasticity,” which is the property neurons have of adjusting the strength or presence of their “synapse” circuit connections in response to nervous system activity. Such neural nimbleness is hypothesized to be the basis of how the brain can responsively encode new information in learning and memory. Notably, Arc1 editing fails to occur in fruit flies that model Alzheimer’s disease.

Littleton said the lab is now working hard to understand how the RNA edits they’ve documented affect function in the fly motor neurons.

In addition to Crane and Littleton, the study’s other authors are Michiko Inouye and Suresh Jetti.

The National Institutes of Health, The Freedom Together Foundation and The Picower Institute for Learning and Memory provided support for the study.

Research:

Andrés B CraneMichiko O InouyeSuresh K JettiJ Troy Littleton (2025) A stochastic RNA editing process targets a select number of sites in individual Drosophila glutamatergic motoneurons eLife 14:RP108282.
https://doi.org/10.7554/eLife.108282.2

Alternate proteins from the same gene contribute differently to health and rare disease

Whitehead Institute Member Iain Cheeseman, graduate student Jimmy Ly, and colleagues propose that researchers and clinicians may be able to get more information from patients’ genomes by looking at them in a different way.

Greta Friar | Whitehead Institute
November 7, 2025

In a paper published in Molecular Cell on November 7, Whitehead Institute Member Iain Cheeseman, graduate student Jimmy Ly, and colleagues propose that researchers and clinicians may be able to get more information from patients’ genomes by looking at them in a different way.

The common wisdom is that each gene codes for one protein. Someone studying whether a patient has a mutation or version of a gene that contributes to their disease will therefore look for mutations that affect the “known” protein product of that gene. However, Cheeseman and others are finding that the majority of genes code for more than one protein. That means that a mutation that may seem insignificant because it does not appear to affect the known protein could nonetheless alter a different protein made by the same gene. Now, Cheeseman and Ly have shown that mutations affecting one or multiple proteins from the same gene can contribute differently to disease.

In their paper, the researchers first share what they have learned about how cells make use of the ability to generate different versions of proteins from the same gene. Then, they examine how mutations that affect these proteins contribute to disease. Through a collaboration with co-author Mark Fleming, the pathologist-in-chief at Boston Children’s Hospital, they provide two case studies of patients with atypical presentations of a rare anemia linked to mutations that selectively affect only one of two proteins produced by the gene implicated in the disease.

“We hope this work demonstrates the importance of considering whether a gene of interest makes multiple versions of a protein, and what the role of each version is in health and disease,” Ly says. “This information could lead to better understanding of the biology of disease, better diagnostics, and perhaps one day to tailored therapies to treat these diseases.”

Rethinking how cells use genes

Cells have several ways to make different versions of a protein, but the variation that Cheeseman and Ly study happens during protein production from genetic code. Cellular machines build each protein according to the instructions within a genetic sequence that begins at a “start codon” and ends at a “stop codon.” However, some genetic sequences contain more than one start codon, many that are hiding in plain sight. If the cellular machinery skips the first start codon and detects a second one, it may build a shorter version of the protein. In other cases, the machinery may detect a section that closely resembles a start codon at a point earlier in the sequence than its typical starting place, and build a longer version of the protein.

These events may sound like mistakes: the cell’s machinery accidentally creating the wrong version of the correct protein. To the contrary, protein production from these alternate starting places is an important feature of cell biology that exists across species. When Ly traced when certain genes evolved to produce multiple proteins, he found that this is a common, robust process that has been preserved throughout evolutionary history for millions of years.

Ly shows that one function this serves is to send versions of a protein to different parts of the cell. Many proteins contain zip code-like sequences that tell the cell’s machinery where to deliver them so the proteins can do their jobs. Ly found many examples in which longer and shorter versions of the same protein contained different zip codes and ended up in different places within the cell.

In particular, Ly found many cases in which one version of a protein ended up in mitochondria, structures that provide energy to cells, while another version ended up elsewhere. Because of the mitochondria’s role in the essential process of energy production, mutations to mitochondrial genes are often implicated in disease.

Ly wondered what would happen when a disease-causing mutation eliminates one version of a protein but leaves the other intact, causing the protein to only reach one of its two intended destinations. He looked through a database containing genetic information from people with rare diseases to see if such cases existed, and found that they did. In fact, there may be tens of thousands of such cases. However, without access to the people, Ly had no way of knowing what the consequences of this were in terms of symptoms and severity of disease.

Meanwhile, Cheeseman had begun working with Boston Children’s Hospital to foster collaborations between Whitehead Institute and the hospital’s researchers and clinicians to accelerate the pathway from research discovery to clinical application. Through these efforts, Cheeseman and Ly met Fleming.

One group of Fleming’s patients have a type of anemia called SIFD—Sideroblastic Anemia with B-Cell Immunodeficiency, Periodic Fevers, and Developmental Delay—that is caused by mutations to the TRNT1 gene. TRNT1 is one of the genes Ly had identified as producing a mitochondrial version of its protein and another version that ends up elsewhere: in the nucleus.

Fleming shared anonymized patient data with Ly, and Ly found two cases of interest in the genetic data. Most of the patients had mutations that impaired both versions of the protein, but one patient had a mutation that eliminated only the mitochondrial version of the protein, while another patient had a mutation that eliminated only the nuclear version.

When Ly shared his results, Fleming revealed that both of those patients had very atypical presentations of SIFD, supporting Ly’s hypothesis that mutations affecting different versions of a protein would have different consequences. The patient who only had the mitochondrial version was anemic but developmentally normal. The patient missing the mitochondrial version of the protein did not have developmental delays or chronic anemia but did have other immune symptoms, and was not correctly diagnosed until his fifties. There are likely other factors contributing to each patient’s exact presentation of the disease, but Ly’s work begins to unravel the mystery of their atypical symptoms.

Cheeseman and Ly want to make more clinicians aware of the prevalence of genes coding for more than one protein, so they know to check for mutations affecting any of the protein versions that could contribute to disease. For example, several TRNT1 mutations that only eliminate the shorter version of the protein are not flagged as disease-causing by current assessment tools. Cheeseman lab researchers including Ly and graduate student Matteo Di Bernardo are now developing a new assessment tool for clinicians, called SwissIsoform, that will identify relevant mutations that affect specific protein versions, including mutations that would otherwise be missed.

“Jimmy and Iain’s work will globally support genetic disease variant interpretation and help with connecting genetic differences to variation in disease symptoms,” Fleming says. “In fact, we have recently identified two other patients with mutations affecting only the mitochondrial versions of two other proteins, who similarly have milder symptoms than patients with mutations that affect both versions.”

Long term, the researchers hope that their discoveries could aid in understanding the molecular basis of disease and in developing new gene therapies: once researchers understand what has gone wrong within a cell to cause disease, they are better equipped to devise a solution. More immediately, the researchers hope that their work will make a difference by providing better information to clinicians and people with rare diseases.

“As a basic researcher who doesn’t typically interact with patients, there’s something very satisfying about knowing that the work you are doing is helping specific people,” Cheeseman says. “As my lab transitions to this new focus, I’ve heard many stories from people trying to navigate a rare disease and just get answers, and that has been really motivating to us, as we work to provide new insights into the disease biology.”

Jimmy Ly, Matteo Di Bernardo, Yi Fei Tao, Ekaterina Khalizeva, Christopher J. Giuliano, Sebastian Lourido, Mark D. Fleming, Iain M. Cheeseman. “Alternative start codon selection shapes mitochondrial function and rare human diseases.” Molecular Cell, November 7, 2025. DOI: https://10.0.3.248/j.molcel.2025.10.013

Q&A: Picower researchers including MIT Biology faculty Sara Prescott join effort to investigate the ‘Biology of Adversity’

Assistant Professor Sara Prescott and Research Affiliate Ravikiran Raju are key collaborators in a new Broad Institute research project to better understand physiological and medical effects of acute and chronic life stressors.

David Orenstein | The Picower Institute for Learning and Memory
November 3, 2025

Adverse experiences such as abuse and violence or poverty and deprivation have always been understood to be harmful, but the tools to understand how they may cause specific medical conditions and outcomes have only emerged recently. Technologies such as RNA or chromatin sequencing, for instance, can help scientists observe how stressors change gene expression, which can help establish mechanistic biological explanations for why people who’ve suffered adversity also experience higher risks of conditions such as stroke or Alzheimer’s disease.

Advancing scientific understanding of the physiological connections between adversity and disease can help pharmaceutical developers, physicians and public officials to develop meaningful interventions. Led by researcher Jason Buenrostro, the Broad Institute has launched a new research program, the “Biology of Adversity” project.. As leading collaborators in the effort, Picower Institute investigator Sara Prescott, assistant professor of biology, and Tsai Lab research affiliate Ravikiran Raju, a pediatrician at Boston Children’s Hospital, plan research projects in their Picower Institute labs to better elucidate how life stress leads to medical distress.

How can biology and neuroscience studies help people who’ve experienced adversity?

Prescott: Adversity comes in many flavors. But across different types of adversity, there is a common theme that it leads to psychological and emotional distress. If you were to ask a random person on the street, they’d probably tell you that distress is simply a feeling that exists only in the mind, rather than a biological process. But this is not true. We now appreciate that stress has predictable effects on the body, and there are severe long-term health consequences of experiencing chronic stress. Unfortunately, it’s been difficult to argue based on epidemiological data that stress itself (rather than other lifestyle factors like diet, smoking or access to health care services) is causally linked to poor health outcomes. This is confounded by the fact that we haven’t had good ways to empirically measure people’s levels of adversity and stress. This is part of what we want to address at the Biology of Adversity Project.

From a scientific perspective, there is still much to be understood about stress and the biological processes that lead to stress-associated diseases. And so that’s hopefully where efforts like the Biology of Adversity Project are going to come in. We can use scientific practices to come up with better guidelines for ways to track levels of stress, develop diagnostics, and then, hopefully, one day this will turn into actionable interventions. It’s not a random process of things going awry. There are going to be biological programs that are engaged in predictable ways. And we’re trying to understand, what exactly are these neural or biological programs? How many different types of programs are there? And how do each of those programs actually work down to the cellular and molecular level?

Raju: Efforts to combat adversity and stress have largely remained in the social space to date. But what we know from a growing body of epidemiological literature is that social stressors can have profound biological impact. They cause increases in mental health disorders, physical disorders like cancer, stroke, and heart disease. Individuals who experience chronic and high levels of stress are dying sooner. I think there is an imperative to understand what these forces are doing to our biology and how they’re dysregulating our physiology. Armed with that information, we can start to be more mechanistic and evidence-based in our promotion of resilience. What are the pathways that are made vulnerable when individuals are stressed? How do we rescue those deficiencies, whether it be through existing practices or novel interventions? A lot of the research we’re doing here at Picower is focusing on pathways that could be targeted and leveraged using specific micronutrients or specific small molecules that help promote resilience and prevent the onset of premature illness in individuals who are stress exposed.

What is the Biology of Adversity Project and how are each of you involved?

Prescott: My lab studies the autonomic nervous system, and we’re involved in the project’s animal studies. We think of stress as an adaptive response to prepare the body for an impending threat. When people experience stress, what happens? You engage a fight or flight response—you sweat, start to breathe harder, your heart rate goes up, your pupils dilate. This is protective in acute settings, but can become very maladaptive when these systems are activated for too long or in inappropriate settings, like when someone is having a panic attack. We predict that a lot of the long-term health consequences associated with adversity could relate to dysregulated autonomic stress responses.

And so that’s where our lab’s tools come in. We have good ways in animals to measure their heart rate and breathing in response to stress. We also have a wide range of genetic tools to specifically target different neural pathways in the periphery, possibly blocking stress pathways at the source. With these tools, we can explore what role those circuits have in long-term changes in these animals with greater precision than what was possible in the past.

Raju: My involvement came through my work on the Environmental and Social Determinants of Child Mental Health Conference in 2023, which I co-hosted with Li-Huei Tsai. I think this conference made the scientific community in Boston more aware that this was something of deep interest to researchers at Picower and MIT. In the creation of the Biology of Adversity Project, the center director, Jason Buenrostro, was doing a survey of the landscape of folks who were studying stress and adversity, and who were passionate about it and connected with us because of that symposium. Since then, I’ve been engaged in really exciting conversations with him and a exciting group of collaborators, including Sara Prescott. And so I’m really excited that a few of our projects are being showcased as flagship projects. We are currently using animal models of early life stress to try and build preclinical models to deepen our understanding of how stress dysregulates physiology. We’re developing pipelines for trying to think about promoting resilience through targeted interventions, using those preclinical models.

What research questions do you each plan to tackle?

Prescott: Broadly, we’re interested in the body-brain connection and how this relates to stress. How do different cues from within the body—like diet, or taking a deep breath–promote or regulate stress levels? These are interesting questions about how sensory inputs from the body feed into stress circuits in the brain. We’re also interested in the other direction—understanding how stress causes changes to peripheral organs, for example, by engaging the sympathetic nervous system. It’s well understood that sympathetic neurons are responsible for making you sweat and your heart race, but do they do other things as well? For example, the field is starting to appreciate that these same neurons regulate the immune system, and can signal to stem cells to promote or suppress tissue repair. These are important pathways to understand, as they could explain some of the links between chronic stress (where sympathetic neurons are over-activated) and increased rates of diseases like cancer. It also may have therapeutic applications down the road. I’m incredibly excited for the opportunity to work with people like Ravi, and others in the project, to apply our expertise in physiology and autonomic signaling towards this immensely important problem. I’m hoping that through this work we can move to an era where we can, from a societal perspective, understand how much our stress levels are damaging our body, be able to track that, and then find better ways to prevent the damage that’s happening.

Raju:  We are leveraging three key mouse models of environmental perturbations in this work: environmental enrichment, social isolation and resource deprivation. In studying enrichment, we are trying to better study the factors that promote resilience to stress. In our previous work on resilience, for example, we identified a transcription factor that’s specifically recruited to help ensure that neurons are resilient to the onset of Alzheimer’s pathology. So we’ve leveraged these enrichment models to study that mechanism and are able to then think of how that pathway might be leveraged in stress-exposed individuals. We are also using models of stress, specifically social isolation and resource deprivation. The idea here is that because mice are social mammals and rely on resources and social interactions and social networks in order to thrive, we can modulate these in a species-relevant way, and then study the pathways that are dysregulated. This will allow us to define vulnerable pathways in these preclinical models, and then assess if those same pathways are dysregulated in humans that are experiencing analagous environmental conditions. Armed with the right model, we can then determine how to reverse the physiological derangements induced by environmental stressors.

Research Threads: One lab’s detective work reveals secrets of immortal cells

Most cells in our body live and die. But the germline, the cells that produce eggs and sperm, must carry on forever. How the germline successfully produces the next generation is a long-studied question. Through a string of discoveries made over years, the Yamashita lab is teasing apart how the germline remains immortal.

Madeleine Turner | Whitehead Institute
October 7, 2025

Most cells in our body live and die. But the germline, the cells that produce eggs and sperm, must carry on forever. How the germline successfully produces the next generation is a long-studied question. Research Threads examines how answering one question uncovers more questions to be solved. In our first installment of Research Threads, we follow the research of Whitehead Institute Member Yukiko Yamashita. Through a string of discoveries made over years, the Yamashita lab is teasing apart how the germline remains immortal.

“The germline is the only cell type responsible for transmitting the genome from generation to generation,” Whitehead Institute Member Yukiko Yamashita says. “We’ve done that for 1.5 billion years.”

The germline is the population of cells in an organism that give rise to gametes, either egg or sperm cells. These gametes contain genetic information, encoded in DNA, needed to produce the next generation. The act of transmitting this information — the instructions that a new individual needs to develop and function — is like a relay race that never ends. While a skin or gut cell may be prone to genetic errors and is generally replaceable, germline stem cells (GSCs) must maintain their genomes with precision. Otherwise, any mistakes or imbalances would be inherited by offspring and accumulated over generations, potentially driving a species to extinction. In other words, to keep passing the baton in this relay, the germline must be faithfully preserved.

Although germline preservation is paramount to the existence and survival of a species, some fundamental parts of its biology have remained a mystery. Yamashita, who is also a professor of biology at the Massachusetts Institute of Technology and a Howard Hughes Medical Institute Investigator, has focused her research on unraveling the secrets of the germline. To study these cells’ immortality, her lab utilizes the model organism Drosophila melanogaster, or the fruit fly. Along the way, research in the Yamashita lab has highlighted how the process of scientific discovery can be circuitous, often pulling scientists in surprising directions, revealing new questions and avenues to explore.

For decades, scientists had observed an aspect of germline behavior that was hard to explain. Most cells in the body divide to produce two identical copies, or daughter cells. GSCs in male fruit flies, however, divide “asymmetrically,” meaning they yield two daughter cells that are not identical. Instead, one daughter cell becomes a new GSC, while the other goes on to become a gamete, in this case a sperm cell. It might be easy to assume that asymmetric cell division is about producing gametes while maintaining a pool of stem cells. But an additional detail complicates this theory: when a daughter cell is on the path to becoming sperm, it can loop back around to become another stem cell, instead of continuing differentiation to become a sperm cell.

“If it can do that, why divide asymmetrically in the first place?” Yamashita says.

To shed light on why GSCs divide asymmetrically, researchers wanted to know how genetic information was actually divvied up between daughter cells. “After I started my own lab, there was this question hanging in the field,” Yamashita says. It made sense to find some difference in inheritance, DNA-based or otherwise: something to distinguish between the daughter fated to become a gamete, and the other that would remain in the GSC pool.

Preparing for division, a cell duplicates its DNA. Chromosomes happen to be shaped like the letter “X” as a result of this duplication: the left and right sides of the “X” are called matching sister chromatids, each a copy of the other. Later in cell division, these two sister chromatids part ways, winding up in separate daughter cells.

In 2013, Yamashita and her former graduate student, Swathi Yadlapalli, made a strange but important discovery. In fruit flies, for the X and Y chromosomes (the sex chromosomes), sister chromatids were not being sorted randomly. Instead, one was more likely to go to the daughter cell that would become a gamete; the other to the daughter on the GSC track. There had to be a reason for this preference, but no one had an explanation.

Initial experiments did not reveal obvious differences between these sister chromatid pairs. “Everyone would say, ‘oh, there’s probably some sort of epigenetic information in there,” Yamashita says, referring to heritable changes not carried in DNA. With few promising leads, the lab decided to take a systematic approach. George Watase, then a postdoc in the lab, began the painstaking work of removing different a parts of flies’ X chromosomes, seeing if the absence of any particular element would disrupt the pattern of preferential segregation.

“We thought it was going to be satellite DNA,” Yamashita says, referring to large swathes of DNA in the genome that are highly repetitive but don’t code for any genes. (While this initial guess was wrong, it kickstarted a separate project in the lab — one which led to discovering the unexpected role that satellite DNA plays when one species forks into two.)

Eventually the team narrowed in on the true culprit: ribosomal DNA (rDNA). The primary role of rDNA is to produce the components that make up ribosomes. Ribosomes, in turn, perform the crucial task of synthesizing proteins.

“We didn’t like this finding in the beginning. I always say that ribosomal DNA is ‘too important to be interesting.’ You don’t get excited about something you really need, like toilet paper,” Yamashita says. “In the case of ribosomal DNA, bacteria needs it, humans need it, everybody needs it.”

But what did rDNA have to do with asymmetric cell division in the germline?

“Around that time, we started reading lots of papers,” Yamashita says. “Then we discovered a phenomenon called rDNA magnification. These were studies from the 1960s and ’80s — most of the people in my lab were not even born yet.”

These studies from decades ago described mutant flies that lacked a sufficient amount of rDNA and, as a result, had a “bobbed” phenotype, or appearance. Since these flies possessed fewer ribosomes to produce proteins, the bristles on their back were shorter; the protective cuticle covering their bodies weakened. But when they reproduced, many of their offspring possessed a normal amount of rDNA. These observations pointed towards a mechanism that allowed flies to replenish their supply of rDNA.

At the time rDNA magnification was first observed, the phenomenon was regarded as an oddity, something that only happened in mutant flies and did not have physiological relevance. But Yamashita realized there was a connection between rDNA magnification and asymmetric division in the germline.

To make enough protein, a cell must produce ample ribosomes. To do that, the fruit fly genome contains hundreds of copies of rDNA in a row. But the DNA replication process can struggle to handle so many rDNA copies strung together, and can sometimes experience a hiccup, resulting in the loss of rDNA copies with each new division. It’s an outcome that might be okay on occasion, but would wreak havoc over many generations.

“All of a sudden, [rDNA magnification] was not about a mutant chromosome,” Yamashita says. “We were like, holy moly. This is about germline immortality.”

Soon many different pieces became part of a cohesive story: asymmetric cell division is not about producing a balance of gametes and stem cells; it’s about maintaining rDNA in the germline. Sister chromatids are almost identical — but one contains more copies of rDNA than the other, and that copy is fated to stay in the GSC pool. Through this asymmetry, the germline is replenished of rDNA; it can pass the baton to the next generation.

“For quite some time, for so many observations that everyone knew in the field, we felt we had an explanation. But from that ‘aha!’ moment, we took multiple years to test everything,” Yamashita says.

In subsequent years, the Yamashita lab pinned down additional details about how rDNA is diverted back to the germline. First, in 2022, the team identified a specific protein, which they named Indra, which binds to rDNA. The presence of Indra helps assign the sister chromatid containing more rDNA copies to the GSC daughter cell.

Their next discovery was another plot twist. If one sister chromatid contained more rDNA than the other, and those rDNA copies weren’t appearing out of thin air, it meant that one chromatid needed to be stealing rDNA from its sister. The lab discovered a genetic element that facilitated this transfer: a retrotransposon.

Retrotransposons are usually considered “genetic parasites,” copying and pasting themselves into the genome. In an attempt to reinsert itself, this particular retrotransposon, called R2, slices open sections containing rDNA on both chromatids. As the cell repairs these breaks, it may inadvertently stitch copies of rDNA from one chromosome to the other, creating an unequal number of copies between the two.

“Not many people thought retrotransposons could be beneficial to the host. They’re seen as parasites,” Yamashita says. “But it turns out that they are essential for germline immortality.”

Sometimes, one research project is a spin off of a spin off. That was true for Xuefeng Meng, a graduate student in the lab who was working on satellite DNA, the genetic element that turned out to be unrelated to asymmetric cell division, but was interesting in its own right.

While studying satellite DNA, Meng noticed that a particular stock of flies had a problem producing normal sperm, that their cells’ nuclei were abnormally packaged. The problem had to do with a gene called Stellate on the flies’ X chromosome. While most flies have few copies of Stellate, these flies had a higher number of copies.

Stellate was already known in the field as a meiotic driver, or “selfish-gene”: a genetic element that has evolved ways to preferentially transmit itself to the next generation. Some meiotic drivers, including Stellate, are on the sex chromosomes and, when not suppressed, cause an excess of either male or female progeny. In this case, Stellate produces a protein, Ste, which is found to concentrate in Y-carrying cells during meiosis, the specialized type of cell division that produces gametes (meiosis follows the earlier round of asymmetric cell division described above). High concentrations of Ste impede the proper packaging of nuclei in cells, leading to their eventual death. When Stellate is widely expressed, fewer male flies emerge in the next generation.

But here lies an inherent tension: if a selfish gene is too good at propagating itself, and produces only males or females, its host species would go extinct — and so would the gene. Meng and Yamashita were interested in this paradox. Through this work, they identified a novel mechanism that keeps Stellate in check. To balance selfish propagation with the host species’ survival, Stellate has a built-in system for pumping the brakes. After Ste concentrates in Y-carrying cells during the first meiotic division, the protein is unevenly distributed a second time. This second step spares a portion of Y-carrying cells that go on to create males.

How the germline is able to counter disruptive forces, thereby renewing itself, continues to be a ripe research area. Researchers still don’t know all the secrets to how a line of cells can achieve perpetuity — but the Yamashita lab continues to investigate the question.

“What I really like about people in my lab is that they don’t jump to the easiest conclusion,” Yamashita says. “If you start embracing surprise, then good things happen. Because you are surprised, you start testing your finding in multiple ways. Then you can build confidence about the result.”

Notes

Xuefeng Meng and Yukiko Yamashita (2025). “Intrinsically weak sex chromosome drive through sequential asymmetric meiosis.” Science Advanceshttps://doi.org/10.1126/sciadv.adv7089

Jonathan O. Nelson, Tomohiro Kumon, Yukiko M. Yamashita. (2023) “rDNA magnification is a unique feature of germline stem cells.” PNAShttps://doi.org/10.1073/pnas.2314440120

Jonathan O. Nelson, Alyssa Slicko, Yukiko M. Yamashita. (2023) “The retrotransposon R2 maintains Drosophila ribosomal DNA repeats.” PNAShttps://doi.org/10.1073/pnas.2221613120

George J. Watase, Jonathan O. Nelson, Yukiko M. Yamashita. (2022) “Nonrandom sister chromatid segregation mediates rDNA copy number maintenance in Drosophila.” Science Advanceshttps://www.science.org/doi/10.1126/sciadv.abo4443

Madhav Jagannathan and Yukiko Yamashita. (2021) “Defective satellite DNA clustering into chromocenters underlies hybrid incompatibility in Drosophila.” Molecular Biology and Evolutionhttps://doi.org/10.1093/molbev/msab221

Swathi Yadlapalli and Yukiko Yamashita (2013) “Chromosome-specific nonrandom sister chromatid segregation during stem-cell division.” Nature10.1038/nature12106

Neural activity helps circuit connections mature into optimal signal transmitters

By carefully tracking the formation and maturation of synaptic active zones in fruit flies, MIT scientists have discovered how neural activity helps circuit connections become tuned to the right size and degree of signal transmission capability over a period of days.

David Orenstein | The Picower Institute for Learning and Memory
October 14, 2025

Nervous system functions, from motion to perception to cognition, depend on the active zones of neural circuit connections, or “synapses,” sending out the right amount of their chemical signals at the right times. By tracking how synaptic active zones form and mature in fruit flies, researchers at The Picower Institute for Learning and Memory at MIT have revealed a fundamental model for how neural activity during development builds properly working connections.

Understanding how that happens is important, not only for advancing fundamental knowledge about how nervous systems develop, but also because many disorders such as epilepsy, autism, or intellectual disability can arise from aberrations of synaptic transmission, said senior author Troy Littleton, Menicon Professor in The Picower Institute and MIT’s Department of Biology. The new findings, funded in part by a 2021 grant from the National Institutes of Health, provide insights into how active zones develop the ability to send neurotransmitters across synapses to their circuit targets. It’s not instant or predestined, the study shows. It can take days to fully mature and that is regulated by neural activity.

If scientists can fully understand the process, Littleton said, then they can develop molecular strategies to intervene to tweak synaptic transmission when it’s happening too much or too little in disease.

“We’d like to have the levers to push to make synapses stronger or weaker, that’s for sure,” Littleton said. “And so knowing the full range of levers we can tug on to potentially change output would be exciting.”

Littleton Lab research scientist Yuliya Akbergenova led the study published Oct. 14 in the Journal of Neuroscience.

How newborn synapses grow up 

In the study, the researchers examined neurons that send the neurotransmitter glutamate across synapses to control muscles in the fly larvae. To study how the active zones in the animals matured, the scientists needed to keep track of their age. That hasn’t been possible before, but Akbergenova overcame the barrier by cleverly engineering the fluorescent protein mMaple, which changes its glow from green to red when zapped with 15 seconds of ultraviolet light, into a component of the glutamate receptors on the receiving side of the synapse. Then, whenever she wanted, she could shine light and all the synapses already formed before that time would glow red and any new once that formed subsequently would glow green.

With the ability to track each active zone’s birthday, the authors could then document how active zones developed their ability to increase output over the course of days after birth. The researchers actually watched as synapses were built over many hours by tagging each of eight kinds of proteins that make up an active zone. At first, the active zones couldn’t transmit anything. Then, as some essential early proteins accumulated, they could send out glutamate spontaneously, but not if evoked by electrical stimulation of their host neuron (simulating how that neuron might be signaled naturally in a circuit). Only after several more proteins arrived did active zones possess the mature structure for calcium ions to trigger the fusion of glutamate vesicles to the cell membrane for evoked release across the synapse.

Activity matters

Of course, construction does not go on forever. At some point, the fly larva stops building one synapse and then builds new ones further down the line as the neuronal axon expands to keep up with growing muscles. The researchers wondered whether neural activity had a role in driving that process of finishing up one active zone and moving on to build the next.

To find out, they employed two different interventions to block active zones from being able to release glutamate, thereby preventing synaptic activity. Notably, one of the methods they chose was blocking the action of a protein called Synaptotagmin 1. That’s important because mutations that disrupt the protein in humans are associated with severe intellectual disability and autism. Moreover, the researchers tailored the activity-blocking interventions to just one neuron in each larva because blocking activity in all their neurons would have proved lethal.

In neurons where the researchers blocked activity, they observed two consequences: the neurons stopped building new active zones and instead kept making existing active zones larger and larger. It was as if the neuron could tell the active zone wasn’t releasing glutamate and tried to make it work by giving it more protein material to work with. That effort came at the expense of starting construction on new active zones.

“I think that what it’s trying to do is compensate for the loss of activity,” Littleton said.

Testing indicated that the enlarged active zones the neurons built in hopes of restarting activity were functional (or would have been if the researchers weren’t artificially blocking them). This suggested that the way the neuron sensed that glutamate wasn’t being released was therefore likely to be a feedback signal from the muscle side of the synapse. To test that, the scientists knocked out a glutamate receptor component in the muscle and when they did, they found that the neurons no longer made their active zones larger.

Littleton said the lab is already looking into the new questions the discoveries raise. In particular, what are the molecular pathways that initiate synapse formation in the first place, and what are the signals that tell an active zone it has finished growing? Finding those answers will bring researchers closer to understanding how to intervene when synaptic active zones aren’t developing properly.

In addition to Littleton and Akbergenova, the paper’s other authors are Jessica Matthias and Sofya Makeyeva.

In addition to the National Institutes of Health, The Freedom Together Foundation provided funding for the study.

A more precise way to edit the genome

MIT researchers have dramatically lowered the error rate of prime editing, a technique that holds potential for treating many genetic disorders.

Anne Trafton | MIT News
September 17, 2025

A genome-editing technique known as prime editing holds potential for treating many diseases by transforming faulty genes into functional ones. However, the process carries a small chance of inserting errors that could be harmful.

MIT researchers have now found a way to dramatically lower the error rate of prime editing, using modified versions of the proteins involved in the process. This advance could make it easier to develop gene therapy treatments for a variety of diseases, the researchers say.

“This paper outlines a new approach to doing gene editing that doesn’t complicate the delivery system and doesn’t add additional steps, but results in a much more precise edit with fewer unwanted mutations,” says Phillip Sharp, an MIT Institute Professor Emeritus, a member of MIT’s Koch Institute for Integrative Cancer Research, and one of the senior authors of the new study.

With their new strategy, the MIT team was able to improve the error rate of prime editors from about one error in seven edits to one in 101 for the most-used editing mode, or from one error in 122 edits to one in 543 for a high-precision mode.

“For any drug, what you want is something that is effective, but with as few side effects as possible,” says Robert Langer, the David H. Koch Institute Professor at MIT, a member of the Koch Institute, and one of the senior authors of the new study. “For any disease where you might do genome editing, I would think this would ultimately be a safer, better way of doing it.”

Koch Institute research scientist Vikash Chauhan is the lead author of the paper, which appears today in Nature.

The potential for error

The earliest forms of gene therapy, first tested in the 1990s, involved delivering new genes carried by viruses. Subsequently, gene-editing techniques that use enzymes such as zinc finger nucleases to correct genes were developed. These nucleases are difficult to engineer, however, so adapting them to target different DNA sequences is a very laborious process.

Many years later, the CRISPR genome-editing system was discovered in bacteria, offering scientists a potentially much easier way to edit the genome. The CRISPR system consists of an enzyme called Cas9 that can cut double-stranded DNA at a particular spot, along with a guide RNA that tells Cas9 where to cut. Researchers have adapted this approach to cut out faulty gene sequences or to insert new ones, following an RNA template.

In 2019, researchers at the Broad Institute of MIT and Harvard reported the development of prime editing: a new system, based on CRISPR, that is more precise and has fewer off-target effects. A recent study reported that prime editors were successfully used to treat a patient with chronic granulomatous disease (CGD), a rare genetic disease that affects white blood cells.

“In principle, this technology could eventually be used to address many hundreds of genetic diseases by correcting small mutations directly in cells and tissues,” Chauhan says.

One of the advantages of prime editing is that it doesn’t require making a double-stranded cut in the target DNA. Instead, it uses a modified version of Cas9 that cuts just one of the complementary strands, opening up a flap where a new sequence can be inserted. A guide RNA delivered along with the prime editor serves as the template for the new sequence.

Once the new sequence has been copied, however, it must compete with the old DNA strand to be incorporated into the genome. If the old strand outcompetes the new one, the extra flap of new DNA hanging off may accidentally get incorporated somewhere else, giving rise to errors.

Many of these errors might be relatively harmless, but it’s possible that some could eventually lead to tumor development or other complications. With the most recent version of prime editors, this error rate ranges from one per seven edits to one per 121 edits for different editing modes.

“The technologies we have now are really a lot better than earlier gene therapy tools, but there’s always a chance for these unintended consequences,” Chauhan says.

Precise editing

To reduce those error rates, the MIT team decided to take advantage of a phenomenon they had observed in a 2023 study. In that paper, they found that while Cas9 usually cuts in the same DNA location every time, some mutated versions of the protein show a relaxation of those constraints. Instead of always cutting the same location, those Cas9 proteins would sometimes make their cut one or two bases further along the DNA sequence.

This relaxation, the researchers discovered, makes the old DNA strands less stable, so they get degraded, making it easier for the new strands to be incorporated without introducing any errors.

In the new study, the researchers were able to identify Cas9 mutations that dropped the error rate to 1/20th its original value. Then, by combining pairs of those mutations, they created a Cas9 editor that lowered the error rate even further, to 1/36th the original amount.

To make the editors even more accurate, the researchers incorporated their new Cas9 proteins into a prime editing system that has an RNA binding protein that stabilizes the ends of the RNA template more efficiently. This final editor, which the researchers call vPE, had an error rate just 1/60th of the original, ranging from one in 101 edits to one in 543 edits for different editing modes. These tests were performed in mouse and human cells.

The MIT team is now working on further improving the efficiency of prime editors, through further modifications of Cas9 and the RNA template. They are also working on ways to deliver the editors to specific tissues of the body, which is a longstanding challenge in gene therapy.

They also hope that other labs will begin using the new prime editing approach in their research studies. Prime editors are commonly used to explore many different questions, including how tissues develop, how populations of cancer cells evolve, and how cells respond to drug treatment.

“Genome editors are used extensively in research labs,” Chauhan says. “So the therapeutic aspect is exciting, but we are really excited to see how people start to integrate our editors into their research workflows.”

The research was funded by the Life Sciences Research Foundation, the National Institute of Biomedical Imaging and Bioengineering, the National Cancer Institute, and the Koch Institute Support (core) Grant from the National Cancer Institute.

Little picture, large revelations

A summer intensive using microscopy to study a unique type of yeast was a dream come true for BSG-MSRP-Bio student Adryanne Gonzalez.

Lillian Eden | Department of Biology
September 11, 2025

For Adryanne Gonzalez, studying yeast using microscopy at MIT this summer has been a dream come true. 

“Whatever world we’re living in, there’s an even smaller one,” Gonzalez says. “Knowing and understanding the smaller one can help us learn about the bigger stuff, and I think that’s so fascinating.” 

Gonzalez was part of the Bernard S. and Sophie G. Gould MIT Summer Research Program in Biology, working in the Lew Lab this summer. The program offers talented undergraduates from institutions with limited research opportunities at their home institutions the chance to spend 10 weeks at MIT, where they gain experience, hone skills, and create the types of connections with potential collaborators and future colleagues that are critical for success in academia. 

Gonzalez was so excited about the opportunity that she didn’t apply for any other summer programs.  

“I really wanted to work on becoming more independent in the lab, and this program was research-intensive, and you get to lead your own project,” she says. “It was this or nothing.”

two people standing at a bench in front of a computer
Adryanne Gonzalez, right, with her mentor, Lew Lab graduate student Clara Fikry, left. Gonzalez spent the summer studying Aureobasidium pullulans, a type of yeast that produces large, root-like networks. Photo credit: Mandana Sassanfar/MIT Department of Biology

The fun of science & the rigors of mentoring

The Lew Lab works with two different specimens: a model baker’s yeast that multiplies by producing a round growth called a bud that eventually separates into a separate, daughter cell; and Aureobasidium pullulans, which is unusual because it can create multiple buds at the same time, and can also spread in large networks of branching, rootlike growths called hyphae. A. pullulans is an emerging model system, meaning that researchers are still defining what normal growth and behavior is for the fungus, like how it senses and responds to obstacles, and how resources and molecular machinery are allocated to its branching structures.  

“I’m really interested in all the diversity of biology that we don’t get to study if we’re only focused on the model species,” says Clara Fikry, a graduate student in the Lew Lab and Gonzalez’s mentor for the summer. 

On the mentoring side, Fikry learned how to balance providing a rigorous workload while not overwhelming her mentee with information. 

“Science should be fun,” Fikry says. “The goal of this isn’t to produce as much data as possible; it’s to learn what the process of science is like.”

Although her day-to-day work was with Fikry, Gonzalez also received guidance from Daniel Lew himself. For example, his advice was invaluable for honing a draft of her research statement for potential graduate school applications, which she’d previously written as part of a class assignment.

“It was an assignment where I needed to hit a page count, and he pointed out that I kind of wrote the same thing three times in the first paragraph,” she shares with a laugh. He helped her understand that “when you’re writing something professionally, you want your writing to be concise and understandable to a broad spectrum of readers.” 

Life in the cohort

The BSG-MSRP-Bio program gives undergraduate students a taste of what the day-to-day life of graduate school might feel like, from balancing one’s workload and reading research papers to learning new techniques and troubleshooting when experiments don’t go as planned. Gonzalez recalls that the application process felt very “adult” and “professional” because she was responsible for reaching out to the faculty member of the lab she was interested in on her own behalf, rather than going through a program intermediary. 

Gonzalez is one of just three students from Massachusetts participating in the program this year—the program draws students from across the globe to study at MIT. 

Every student also arrives with different levels of experience, from Gonzalez, who can only work in a lab during the school year about once a week, to Calo Lab student Adriana Camacho-Badillo, who is in her third consecutive summer in the program, and continuing work on a project she began last year.

“We’re all different levels of novice, and we’re coming together, and we’re all really excited about research,” Gonzalez says.

Gonzalez is a Gould Fellow, supported at MIT through the generous donations of Mike Gould and Sara Moss. The program funding was initiated in 2015 to honor the memory of Gould’s parents, Bernard S. and Sophie G. Gould. Gould and Moss take the time to come to campus and meet the students they’re supporting every year. 

“You don’t often get to meet the person that’s helping you,” Gonzalez said. “They were so warm and welcoming, and at the end, when they were giving everyone a nice, firm handshake, Mike Gould said, ‘Make sure you keep going. Don’t give up,’ which was so sweet.” 

Gonzalez is also supported by Cedar Tree, a Boston-based family foundation that primarily funds local environmental initiatives. In the interest of building a pipeline for future scientists with potential interest in the environmental sciences and beyond, Cedar Tree recently established a grant program for local high school and undergraduate students pursuing STEM research and training opportunities. 

Gonzalez discusses her summer research with attendees of the poster session that serves as the culmination of the 10-week summer research intensive for talented non-MIT undergraduate students from around the world. Photo credit: Lillian Eden/MIT Department of Biology.

Preparing for the future

The BSG-MSRP-Bio program culminates with a lively poster session where students present their summer projects to the MIT community—the first time some students are presenting their data to the public in that format.

Although the program is aimed at students who foresee a career in academia, the majority of students who participate are uncertain about the specific field, organism, or process they’ll eventually want to study during a PhD program. For Gonzalez, the program has helped her feel more prepared for the potential rigors of academic research.

“I think the hardest thing about this program is convincing yourself to apply,” she says. “Don’t let that hinder you from exploring opportunities that may seem out of reach.” 

Inflammation jolts “sleeping” cancer cells awake, enabling them to multiply again

A paper from the Weinberg Lab indicates that inflammation may be a factor in how metastatic cancer cells, those that have broken away from the original tumor, can erupt into a frenzy of growth and division months, years, or decades after initial treatment, seeding new, life-threatening tumors.

Shafaq Zia | Whitehead Institute
September 3, 2025

This migration of cancer cells, called metastasis, is especially common in breast cancer. For many patients, the disease can return months—or even decades—after initial treatment, this time in an entirely different organ.

Whitehead Institute Founding Member Robert Weinberg, also the Daniel K. Ludwig Professor for Cancer Research at Massachusetts Institute of Technology (MIT), has spent decades unraveling the complex biology of metastasis and pursuing research that could improve survival rates among patients with metastatic breast cancer—or prevent metastasis altogether.

In their latest study, Weinberg, postdoctoral fellow Jingwei Zhang, and colleagues ask a critical question: what causes these dormant cancer cells to erupt into a frenzy of growth and division? The group’s findings, published Sept. 1 in The Proceedings of the National Academy of Sciences (PNAS), point to a unique culprit.

This awakening of dormant cancer cells, they’ve discovered, isn’t a spontaneous process. Instead, the wake-up call comes from the inflamed tissue surrounding the cells. One trigger for this inflammation is bleomycin, a common chemotherapy drug that can scar and thicken lung tissue.

“The inflammation jolts the dormant cancer cells awake,” Weinberg says. “Once awakened, they start multiplying again, seeding new life-threatening tumors in the body.”

Decoding metastasis

There’s a lot that scientists still don’t know about metastasis, but this much is clear: cancer cells must undergo a long and arduous journey to achieve it. The first step is to break away from their neighbors within the original tumor.

Normally, cells stick to one another using surface proteins that act as molecular “velcro” but some cancer cells can acquire genetic changes that disrupt the production of these proteins and make them more mobile and invasive, allowing them to detach from the parent tumor.

Once detached, they can penetrate blood vessels and lymphatic channels, which act as highways to distant organs.

While most cancer cells die at some point during this journey, a few persist. These cells exit the bloodstream and invade different tissues—lungs, liver, bone, and even the brain—to give birth to new, often more aggressive tumors.

“Almost 90% of cancer-related deaths occur not from the original tumor but when cancer cells spread to other parts of the body,” says Weinberg. “This is why it’s so important to understand how these ‘sleeping’ cancer cells can wake up and start growing again.”

Setting up shop in new tissue comes with changes in surroundings—the “tumor microenvironment”—to which the cancer cells may not be well-suited. These cells face constant threats, including detection and attack by the immune system.

To survive, they often enter a protective state of dormancy that puts a pause on growth and division. This dormant state also makes them resistant to conventional cancer treatments, which often target rapidly dividing cells.

To investigate what makes this dormancy reversible months or years down the line, researchers in the Weinberg Lab injected human breast cancer cells into mice. These cancer cells were modified to produce a fluorescent protein, allowing the scientists to track their behavior in the body.

The group then focused on cancer cells that had lodged themselves in the lung tissue. By examining them for specific proteins—Ki67, ITGB4 and p63—that act as markers of cell activity and state, the researchers were able to confirm that these cells were in a non-dividing, dormant state.

Previous work from the Weinberg Lab had shown that inflammation in organ tissue can provoke dormant breast cancer cells to start growing again. In this study, the team tested bleomycin—a chemotherapy drug known to cause lung inflammation—that can be given to patients after surgery to lower the risk of cancer recurrence.

The researchers found that lung inflammation from bleomycin was sufficient to trigger the growth of large lung cancer colonies in treated mice—and to shift the character of these once dormant cells to those that are more invasive and mobile.

Zeroing in on the tumor microenvironment, the team identified a type of immune cells, called M2 macrophages, as drivers of this process. These macrophages release molecules called epidermal growth factor receptor (EGFR) ligands, which bind to receptors on the surface of dormant cancer cells. This activates a cascade of signals that provoke dormant cancer cells to start multiplying rapidly.

But EGFR signaling is only the initial spark that ignites the fire. “We found that once dormant cancer cells are awakened, they retain what we call an ‘awakening memory,’” Zhang says. “They no longer require ongoing inflammatory signals from the microenvironment to stay active [growing and multiplying]—they remember the awakened state.”

While signals related to inflammation are necessary to awaken dormant cancer cells, exactly how much signaling is needed remains unclear. “This aspect of cancer biology is particularly challenging because multiple signals contribute to the state change in these dormant cells,” Zhang says.

The team has already identified one key player in the awakening process but understanding the full set of signals and how each contributes is far more complex—a question they are continuing to investigate in their new work.

Studying these pivotal changes in the lives of cancer cells—such as their transition from dormancy to active growth—will deepen our scientific understanding of metastasis and, as researchers in the Weinberg Lab hope, lead to more effective treatments for patients with metastatic cancers.