A selfish gene unlike any other

Certain genes are “selfish," cheating the rules of inheritance to increase their chances of being transmitted. Researchers in the Yamashita Lab have uncovered a unique "self-limiting" mechanism keeping the selfish gene Stellate in check

Shafaq Zia | Whitehead Institute
May 7, 2025

When a species reproduces, typically, each parent passes on one of their two versions, or alleles, of a given gene to their offspring. But not all alleles play fair in their quest to be passed onto future generations.

Certain alleles, called meiotic drivers, are “selfish”—they cheat the rules of inheritance to increase their chances of being transmitted, often at the expense of the organism’s fitness.

The lab of Whitehead Institute Member Yukiko Yamashita investigates how genetic information is transmitted across generations through the germline—cells that give rise to egg and sperm. Now, Yamashita and first author Xuefeng Meng, a graduate student in the Yamashita Lab, have discovered a meiotic driver that operates differently from previously known drivers.

The researchers’ findings, published online in Science Advances on May 7, reveal that the Stellate (Ste) gene—which has multiple copies located close to one another—on the X chromosome in Drosophila melanogaster, a fruit fly species, is a meiotic driver that biases the transmission of the X chromosome. However, it also has a unique “self-limiting” mechanism that helps preserve the organism’s ability to have male offspring.

“This mechanism is an inherent remedy to the gene’s selfish drive,” says Yamashita, who is also a professor of biology at Massachusetts Institute of Technology and an investigator of the Howard Hughes Medical Institute. “Without it, the gene could severely skew the sex ratio in a population and drive the species to extinction—a paradox that has been recognized for a long time.”

Fatal success

Meiosis is a key process underlying sexual reproduction. This is when cells from the germline undergo two rounds of specialized cell division—meiosis I and meiosis II—to form gametes (egg and sperm cells). In males, this typically results in an equal number of X-bearing and Y-bearing sperm, which ensures an equal chance of having a male or female offspring.

Meiotic drivers located on sex chromosomes can skew this sex ratio by selectively destroying gametes that do not carry the driver allele. Among them is the meiotic driver Ste.

In male germline cells of fruit flies, Ste is kept in check by small RNA molecules, called piRNAs, produced by Suppressor of Stellate (Su(Ste)) located on the Y chromosome. These RNA molecules recruit special proteins to silence Ste RNA. This prevents the production of Ste protein that would otherwise disrupt the development of Y-bearing sperm, which helps maintain the organism’s ability to have male offspring.

“But the suppressing mechanism isn’t foolproof,” Meng explains. “When the meiotic driver and its suppressor are located on different chromosomes, they can get separated during reproduction, leaving the driver unchecked in the next generation.”

A skewed sex ratio toward females offers a short-term advantage: having more females than males could increase a population’s reproductive potential. But in the long run, the meiotic driver risks fatal success—driving the species toward extinction through depletion of males.

Interestingly, prior research suggests that un-silencing Ste only modestly skews a population’s sex ratio, even in the absence of the suppressor, unlike other meiotic drivers that almost exclusively produce females in the progeny. Could another mechanism be at play, keeping Ste’s selfish drive in check?

Practicing self-restraint

To explore this intriguing possibility, researchers in the Yamashita Lab began by examining the process of sperm development. Under moderate Ste expression, pre-meiotic germ cell development and meiosis proceeded normally but defects in sperm development began to emerge soon after. Specifically, a subset of spermatids—immature sperm cells produced after meiosis—failed to incorporate essential DNA-packaging proteins called protamines, which are required to preserve the integrity of genetic information in sperm.

To confirm if the spermatids impacted were predominantly those that carried the Y chromosome, the researchers used an imaging technique called immunofluorescence staining, which uses antibodies to attach fluorescent molecules to a protein of interest, making it glow. They combined this with a technique called FISH (fluorescence in-situ hybridization), which tags the X and Y chromosomes with fluorescent markers, allowing researchers to distinguish between cells that will become X-bearing or Y-bearing following meiosis.

Indeed, the team found that while Ste protein is present in all spermatocytes before meiosis I, it unevenly divides between the two daughter cells—a phenomenon called asymmetric segregation—during meiosis I and gets concentrated in Y-bearing spermatids, eventually inducing DNA-packaging defects in these spermatids.

These findings clarified Ste’s role as a meiotic driver but the researchers still wondered why expression of Ste only led to a moderate sex ratio distortion. The answer soon became clear when they observed Ste undergo another round of asymmetric segregation during meiosis II. This meant that even if a secondary spermatocyte inherited Ste protein after meiosis I, only half of the spermatids produced in this round of cell division ended up retaining the protein. Hence, only half of the Y-bearing spermatids were going to be killed off.

“This self-limiting mechanism is the ultimate solution to the driver-suppressor separation problem,” says Yamashita. “But the idea is so unconventional that had it been proposed as just a theory, without the evidence we have now, it would’ve been completely dismissed.”

These findings have solved some questions and raised others: Unlike female meiosis, which is known to be asymmetrical, male meiosis has traditionally been considered symmetrical. Does the unequal segregation of Ste suggest there’s an unknown asymmetry in male meiosis? Do meiotic drivers like Ste trigger this asymmetry, or do they simply exploit it to limit their selfish drive?

Answering them is the next big step for Yamashita and her colleagues. “This could fundamentally change our understanding of male meiosis,” she says. “The best moments in science are when textbook knowledge is challenged and it turns out to have been tunnel vision.”

MIT Down syndrome researchers work on ways to ensure a healthy lifespan

An Alana Down Syndrome Center webinar, co-sponsored by the Massachusetts Down Syndrome Congress, presented numerous MIT studies that all share the goal of improving health throughout life for people with trisomy 21.

David Orenstein | The Picower Institute for Learning and Memory
April 24, 2025

In recent decades the life expectancy of people with Down syndrome has surged past 60 years, so the focus of research at the Alana Down Syndrome Center at MIT has been to make sure people can enjoy the best health during that increasing timeframe.

“A person with Down syndrome can live a long and happy life,” said Rosalind Mott Firenze, scientific director of the center founded at MIT in 2019 with a gift from the Alana Foundation. “So the question is now how do we improve health and maximize ability through the years? It’s no longer about lifespan, but about healthspan.”

Firenze and three of the center’s Alana Fellows scientists spoke during a webinar, hosted on April 17th, where they described the center’s work toward that goal. An audience of 99 people signed up to hear the webinar titled “Building a Better Tomorrow for Down Syndrome Through Research and Technology,” with many viewers hailing from the Massachusetts Down Syndrome Congress, which co-sponsored the event.

The research they presented covered ways to potentially improve health from stages before birth to adulthood in areas such as brain function, heart development, and sleep quality.

Boosting brain waves

One of the center’s most important areas of research involves testing whether boosting the power of a particular frequency of brain activity—“gamma” brain waves of 40Hz—can improve brain development and function. The lab of the center’s Director Li-Huei Tsai, Picower Professor in The Picower Institute for Learning and Memory and the Department of Brain and Cognitive Sciences, uses light that flickers and sound that clicks 40 times a second to increase that rhythm in the brain. In early studies of people with Alzheimer’s disease, which is a major health risk for people with Down syndrome, the non-invasive approach has proved safe, and appears to improve memory while preventing brain cells from dying. The reason it works appears to be because it promotes a healthy response among many types of brain cells.

Working with mice that genetically model Down syndrome, Alana Fellow Dong Shin Park has been using the sensory stimulation technology to study whether the healthy cellular response can affect brain development in a fetus while a mother is pregnant. In ongoing research, he said, he’s finding that exposing pregnant mice to the light and sound appears to improve fetal brain development and brain function in the pups after they are born.

In his research, Postdoctoral Associate Md. Rezaul Islam worked with 40Hz sensory stimulation and Down syndrome model mice at a much later stage in life—when they are adult aged. Together with former Tsai Lab member Brennan Jackson, he found that when the mice were exposed to the light and sound, their memory improved. The underlying reason seemed to be an increase not only in new connections among their brain cells, but also an increase in the generation of new ones. The research, currently online as a preprint, is set to publish in a peer-reviewed journal very soon.

Firenze said the Tsai lab has also begun to test the sensory stimulation in human adults with Down syndrome. In that testing, which is led by Dr. Diane Chan, it is proving safe and well tolerated, so the lab is hoping to do a year-long study with volunteers to see if the stimulation can delay or prevent the onset of Alzheimer’s disease.

Studying cells

Many Alana Center researchers are studying other aspects of the biology of cells in Down syndrome to improve healthspan. Leah Borden, an Alana Fellow in the lab of Biology Professor Laurie Boyer, is studying differences in heart development. Using advanced cultures of human heart tissues grown from trisomy 21 donors, she is finding that tissue tends to be stiffer than in cultures made from people without the third chromosome copy. The stiffness, she hypothesizes, might affect cellular function and migration during development, contributing to some of the heart defects that are common in the Down syndrome population.

Firenze pointed to several other advanced cell biology studies going on in the center. Researchers in the lab of Computer Science Professor Manolis Kellis, for instance, have used machine learning and single cell RNA sequencing to map the gene expression of more than 130,000 cells in the brains of people with or without Down syndrome to understand differences in their biology.

Researchers the lab of Y. Eva Tan Professor Edward Boyden, meanwhile, are using advanced tissue imaging techniques to look into the anatomy of cells in mice, Firenze said. They are finding differences in the structures of key organelles called mitochondria that provide cells with energy.

And in 2022, Firenze recalled, Tsai’s lab published a study showing that brain cells in Down syndrome mice exhibited a genome-wide disruption in how genes are expressed, leading them to take on a more senescent, or aged-like, state.

Striving for better sleep

One other theme of the Alana Center’s research that Firenze highlighted focuses on ways to understand and improve sleep for people with Down syndrome. In mouse studies in Tsai’s lab, they’ve begun to measure sleep differences between model and neurotypical mice to understand more about the nature of sleep disruptions.

“Sleep is different and we need to address this because it’s a key factor in your health,” Firenze said.

Firenze also highlighted how the Alana Center has collaborated with MIT’s Desphande Center for Technological Innovation to help advance a new device for treating sleep apnea in people with Down syndrome. Led by Mechanical Engineering Associate Professor Ellen Roche, the ZzAlign device improves on current technology by creating a custom-fit oral prosthesis accompanied by just a small tube to provide the needed air pressure to stabilize mouth muscles and prevent obstruction of the airway.

Through many examples of research projects aimed at improving brain and heart health and enhancing sleep, the webinar presented how MIT’s Alana Down Syndrome Center is working to advance the healthspan of people with Down syndrome.

 

New study reveals how cleft lip and cleft palate can arise

MIT biologists have found that defects in some transfer RNA molecules can lead to the formation of these common conditions.

Anne Trafton | MIT News
April 17, 2025

Cleft lip and cleft palate are among the most common birth defects, occurring in about one in 1,050 births in the United States. These defects, which appear when the tissues that form the lip or the roof of the mouth do not join completely, are believed to be caused by a mix of genetic and environmental factors.

In a new study, MIT biologists have discovered how a genetic variant often found in people with these facial malformations leads to the development of cleft lip and cleft palate.

Their findings suggest that the variant diminishes cells’ supply of transfer RNA, a molecule that is critical for assembling proteins. When this happens, embryonic face cells are unable to fuse to form the lip and roof of the mouth.

“Until now, no one had made the connection that we made. This particular gene was known to be part of the complex involved in the splicing of transfer RNA, but it wasn’t clear that it played such a crucial role for this process and for facial development. Without the gene, known as DDX1, certain transfer RNA can no longer bring amino acids to the ribosome to make new proteins. If the cells can’t process these tRNAs properly, then the ribosomes can’t make protein anymore,” says Michaela Bartusel, an MIT research scientist and the lead author of the study.

Eliezer Calo, an associate professor of biology at MIT, is the senior author of the paper, which appears today in the American Journal of Human Genetics.

Genetic variants

Cleft lip and cleft palate, also known as orofacial clefts, can be caused by genetic mutations, but in many cases, there is no known genetic cause.

“The mechanism for the development of these orofacial clefts is unclear, mostly because they are known to be impacted by both genetic and environmental factors,” Calo says. “Trying to pinpoint what might be affected has been very challenging in this context.”

To discover genetic factors that influence a particular disease, scientists often perform genome-wide association studies (GWAS), which can reveal variants that are found more often in people who have a particular disease than in people who don’t.

For orofacial clefts, some of the genetic variants that have regularly turned up in GWAS appeared to be in a region of DNA that doesn’t code for proteins. In this study, the MIT team set out to figure out how variants in this region might influence the development of facial malformations.

Their studies revealed that these variants are located in an enhancer region called e2p24.2. Enhancers are segments of DNA that interact with protein-coding genes, helping to activate them by binding to transcription factors that turn on gene expression.

The researchers found that this region is in close proximity to three genes, suggesting that it may control the expression of those genes. One of those genes had already been ruled out as contributing to facial malformations, and another had already been shown to have a connection. In this study, the researchers focused on the third gene, which is known as DDX1.

DDX1, it turned out, is necessary for splicing transfer RNA (tRNA) molecules, which play a critical role in protein synthesis. Each transfer RNA molecule transports a specific amino acid to the ribosome — a cell structure that strings amino acids together to form proteins, based on the instructions carried by messenger RNA.

While there are about 400 different tRNAs found in the human genome, only a fraction of those tRNAs require splicing, and those are the tRNAs most affected by the loss of DDX1. These tRNAs transport four different amino acids, and the researchers hypothesize that these four amino acids may be particularly abundant in proteins that embryonic cells that form the face need to develop properly.

When the ribosomes need one of those four amino acids, but none of them are available, the ribosome can stall, and the protein doesn’t get made.

The researchers are now exploring which proteins might be most affected by the loss of those amino acids. They also plan to investigate what happens inside cells when the ribosomes stall, in hopes of identifying a stress signal that could potentially be blocked and help cells survive.

Malfunctioning tRNA

While this is the first study to link tRNA to craniofacial malformations, previous studies have shown that mutations that impair ribosome formation can also lead to similar defects. Studies have also shown that disruptions of tRNA synthesis — caused by mutations in the enzymes that attach amino acids to tRNA, or in proteins involved in an earlier step in tRNA splicing — can lead to neurodevelopmental disorders.

“Defects in other components of the tRNA pathway have been shown to be associated with neurodevelopmental disease,” Calo says. “One interesting parallel between these two is that the cells that form the face are coming from the same place as the cells that form the neurons, so it seems that these particular cells are very susceptible to tRNA defects.”

The researchers now hope to explore whether environmental factors linked to orofacial birth defects also influence tRNA function. Some of their preliminary work has found that oxidative stress — a buildup of harmful free radicals — can lead to fragmentation of tRNA molecules. Oxidative stress can occur in embryonic cells upon exposure to ethanol, as in fetal alcohol syndrome, or if the mother develops gestational diabetes.

“I think it is worth looking for mutations that might be causing this on the genetic side of things, but then also in the future, we would expand this into which environmental factors have the same effects on tRNA function, and then see which precautions might be able to prevent any effects on tRNAs,” Bartusel says.

The research was funded by the National Science Foundation Graduate Research Program, the National Cancer Institute, the National Institute of General Medical Sciences, and the Pew Charitable Trusts.

Restoring healthy gene expression with programmable therapeutics

CAMP4 Therapeutics is targeting regulatory RNA, whose role in gene expression was first described by co-founder and MIT Professor Richard Young.

Zach Winn | MIT News
April 16, 2025

Many diseases are caused by dysfunctional gene expression that leads to too much or too little of a given protein. Efforts to cure those diseases include everything from editing genes to inserting new genetic snippets into cells to injecting the missing proteins directly into patients.

CAMP4 is taking a different approach. The company is targeting a lesser-known player in the regulation of gene expression known as regulatory RNA. CAMP4 co-founder and MIT Professor Richard Young has shown that by interacting with molecules called transcription factors, regulatory RNA plays an important role in controlling how genes are expressed. CAMP4’s therapeutics target regulatory RNA to increase the production of proteins and put patients’ levels back into healthy ranges.

The company’s approach holds promise for treating diseases caused by defects in gene expression, such as metabolic diseases, heart conditions, and neurological disorders. Targeting regulatory RNAs as opposed to genes could also offer more precise treatments than existing approaches.

“If I just want to fix a single gene’s defective protein output, I don’t want to introduce something that makes that protein at high, uncontrolled amounts,” says Young, who is also a core member of the Whitehead Institute. “That’s a huge advantage of our approach: It’s more like a correction than sledgehammer.”

CAMP4’s lead drug candidate targets urea cycle disorders (UCDs), a class of chronic conditions caused by a genetic defect that limits the body’s ability to metabolize and excrete ammonia. A phase 1 clinical trial has shown CAMP4’s treatment is safe and tolerable for humans, and in preclinical studies the company has shown its approach can be used to target specific regulatory RNA in the cells of humans with UCDs to restore gene expression to healthy levels.

“This has the potential to treat very severe symptoms associated with UCDs,” says Young, who co-founded CAMP4 with cancer genetics expert Leonard Zon, a professor at Harvard Medical School. “These diseases can be very damaging to tissues and causes a lot of pain and distress. Even a small effect in gene expression could have a huge benefit to patients, who are generally young.”

Mapping out new therapeutics

Young, who has been a professor at MIT since 1984, has spent decades studying how genes are regulated. It’s long been known that molecules called transcription factors, which orchestrate gene expression, bind to DNA and proteins. Research published in Young’s lab uncovered a previously unknown way in which transcription factors can also bind to RNA. The finding indicated RNA plays an underappreciated role in controlling gene expression.

CAMP4 was founded in 2016 with the initial idea of mapping out the signaling pathways that govern the expression of genes linked to various diseases. But as Young’s lab discovered and then began to characterize the role of regulatory RNA in gene expression around 2020, the company pivoted to focus on targeting regulatory RNA using therapeutic molecules known as antisense oligonucleotides (ASOs), which have been used for years to target specific messenger RNA sequences.

CAMP4 began mapping the active regulatory RNAs associated with the expression of every protein-coding gene and built a database, which it calls its RAP Platform, that helps it quickly identify regulatory RNAs to target  specific diseases and select ASOs that will most effectively bind to those RNAs.

Today, CAMP4 is using its platform to develop therapeutic candidates it believes can restore healthy protein levels to patients.

“The company has always been focused on modulating gene expression,” says CAMP4 Chief Financial Officer Kelly Gold MBA ’09. “At the simplest level, the foundation of many diseases is too much or too little of something being produced by the body. That is what our approach aims to correct.”

Accelerating impact

CAMP4 is starting by going after diseases of the liver and the central nervous system, where the safety and efficacy of ASOs has already been proven. Young believes correcting genetic expression without modulating the genes themselves will be a powerful approach to treating a range of complex diseases.

“Genetics is a powerful indicator of where a deficiency lies and how you might reverse that problem,” Young says. “There are many syndromes where we don’t have a complete understanding of the underlying mechanism of disease. But when a mutation clearly affects the output of a gene, you can now make a drug that can treat the disease without that complete understanding.”

As the company continues mapping the regulatory RNAs associated with every gene, Gold hopes CAMP4 can eventually minimize its reliance on wet-lab work and lean more heavily on machine learning to leverage its growing database and quickly identify regRNA targets for every disease it wants to treat.

In addition to its trials in urea cycle disorders, the company plans to launch key preclinical safety studies for a candidate targeting seizure disorders with a genetic basis, this year. And as the company continues exploring drug development efforts around the thousands of genetic diseases where increasing protein levels are can have a meaningful impact, it’s also considering collaborating with others to accelerate its impact.

“I can conceive of companies using a platform like this to go after many targets, where partners fund the clinical trials and use CAMP4 as an engine to target any disease where there’s a suspicion that gene upregulation or downregulation is the way to go,” Young says.

A planarian’s guide to growing a new head

Researchers at the Whitehead Institute have described a pathyway by which planarians, freshwater flatworms with spectacular regenerative capabilities, can restore large portions of their nervous system, even regenerating a new head with a fully functional brain.

Shafaq Zia | Whitehead Institute
February 6, 2025

Cut off any part of this worm’s body and it will regrow. This is the spectacular yet mysterious regenerative ability of freshwater flatworms known as planarians. The lab of Whitehead Institute Member Peter Reddien investigates the principles underlying this remarkable feat. In their latest study, published in PLOS Genetics on February 6, first author staff scientist M. Lucila Scimone, Reddien, and colleagues describe how planarians restore large portions of their nervous system—even regenerating a new head with a fully functional brain—by manipulating a signaling pathway.

This pathway, called the Delta-Notch signaling pathway, enables neurons to guide the differentiation of a class of progenitors—immature cells that will differentiate into specialized types—into glia, the non-neuronal cells that support and protect neurons. The mechanism ensures that the spatial pattern and relative numbers of neurons and glia at a given location are precisely restored following injury.

“This process allows planarians to regenerate neural circuits more efficiently because glial cells form only where needed, rather than being produced broadly within the body and later eliminated,” said Reddien, who is also a professor of biology at Massachusetts Institute of Technology and an Investigator with the Howard Hughes Medical Institute.

Coordinating regeneration

Multiple cell types work together to form a functional human brain. These include neurons and a more abundant group of cells called glial cells—astrocytes, microglia, and oligodendrocytes. Although glial cells are not the fundamental units of the nervous system, they perform critical functions in maintaining the connections between neurons, called synapses, clearing away dead cells and other debris, and regulating neurotransmitter levels, effectively holding the nervous system together like glue. A few years ago, Reddien and colleagues discovered cells in planarians that looked like glial cells and performed similar neuro-supportive functions. This led to the first characterization of glial cells in planarians in 2016.

Unlike in mammals where the same set of neural progenitors give rise to both neurons and glia, glial cells in planarians originate from a separate, specialized group of progenitors. These progenitors, called phagocytic progenitors, can not only give rise to glial cells but also pigment cells that determine the worm’s coloration, as well as other, lesser understood cell types.

Why neurons and glia in planarians originate from distinct progenitors—and what factors ultimately determine the differentiation of phagocytic progenitors into glia—are questions that still puzzled Reddien and team members. Then, a study showing that planarian neurons regenerate before glia formation led the researchers to wonder whether a signaling mechanism between neurons and phagocytic progenitors guides the specification of glia in planarians.

The first step to unravel this mystery was to look at the Notch signaling pathway, which is known to play a crucial role in the development of neurons and glia in other organisms, and determine its role in planarian glia regeneration. To do this, the researchers used RNA interference (RNAi)—a technique that decreases or completely silences the expression of genes—to turn off key genes involved in the Notch pathway and amputated the planarian’s head. It turned out Notch signaling is essential for glia regeneration and maintenance in planarians—no glial cells were found in the animal following RNAi, while the differentiation of other types of phagocytic cells was unaffected.

Of the different Notch signaling pathway components the researchers tested, turning of the genes notch-1delta-2, and suppressor of hairless produced this phenotype. Interestingly, the signaling molecules Delta-2 was found on the surface of neurons, whereas Notch-1 was expressed in phagocytic progenitors.

With these findings in hand, the researchers hypothesized that interaction between Delta-2 on neurons and Notch-1 on phagocytic progenitors could be governing the final fate determination of glial cells in planarians.

To test the hypothesis, the researchers transplanted eyes either from planarians lacking the notch-1 gene or from planarians lacking the delta-2 gene into wild-type animals and assessed the formation of glial cells around the transplant site. They observed that glial cells still formed around the notch-1 deficient eyes, as notch-1 was still active in the glial progenitors of the host wild-type animal. However, no glial cells formed around the delta-2 deficient eyes, even with the Notch signaling pathway intact in phagocytic progenitors, confirming that delta-2 in the photoreceptor neurons is required for the differentiation of phagocytic progenitors into glia near the eye.

“This experiment really showed us that you have two faces of the same coin—one is the phagocytic progenitors expressing Notch-1, and one is the neurons expressing Delta-2—working together to guide the specification of glia in the organism,”said Scimone.

The researchers have named this phenomenon coordinated regeneration, as it allows neurons to influence the pattern and number of glia at specific locations without the need for a separate mechanism to adjust the relative numbers of neurons and glia.

The group is now interested in investigating whether the same phenomenon might also be involved in the regeneration of other tissue types.

AI model deciphers the code in proteins that tells them where to go

Whitehead Institute and CSAIL researchers created a machine-learning model to predict and generate protein localization, with implications for understanding and remedying disease.

Greta Friar | Whitehead Institute
February 13, 2025

Proteins are the workhorses that keep our cells running, and there are many thousands of types of proteins in our cells, each performing a specialized function. Researchers have long known that the structure of a protein determines what it can do. More recently, researchers are coming to appreciate that a protein’s localization is also critical for its function. Cells are full of compartments that help to organize their many denizens. Along with the well-known organelles that adorn the pages of biology textbooks, these spaces also include a variety of dynamic, membrane-less compartments that concentrate certain molecules together to perform shared functions. Knowing where a given protein localizes, and who it co-localizes with, can therefore be useful for better understanding that protein and its role in the healthy or diseased cell, but researchers have lacked a systematic way to predict this information.

Meanwhile, protein structure has been studied for over half-a-century, culminating in the artificial intelligence tool AlphaFold, which can predict protein structure from a protein’s amino acid code, the linear string of building blocks within it that folds to create its structure. AlphaFold and models like it have become widely used tools in research.

Proteins also contain regions of amino acids that do not fold into a fixed structure, but are instead important for helping proteins join dynamic compartments in the cell. MIT Professor Richard Young and colleagues wondered whether the code in those regions could be used to predict protein localization in the same way that other regions are used to predict structure. Other researchers have discovered some protein sequences that code for protein localization, and some have begun developing predictive models for protein localization. However, researchers did not know whether a protein’s localization to any dynamic compartment could be predicted based on its sequence, nor did they have a comparable tool to AlphaFold for predicting localization.

Now, Young, also member of the Whitehead Institute for Biological Research; Young lab postdoc Henry Kilgore; Regina Barzilay, the School of Engineering Distinguished Professor for AI and Health at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL); and colleagues have built such a model, which they call ProtGPS. In a paper published on Feb. 6 in the journal Science, with first authors Kilgore and Barzilay lab graduate students Itamar Chinn, Peter Mikhael, and Ilan Mitnikov, the cross-disciplinary team debuts their model. The researchers show that ProtGPS can predict to which of 12 known types of compartments a protein will localize, as well as whether a disease-associated mutation will change that localization. Additionally, the research team developed a generative algorithm that can design novel proteins to localize to specific compartments.

“My hope is that this is a first step towards a powerful platform that enables people studying proteins to do their research,” Young says, “and that it helps us understand how humans develop into the complex organisms that they are, how mutations disrupt those natural processes, and how to generate therapeutic hypotheses and design drugs to treat dysfunction in a cell.”

The researchers also validated many of the model’s predictions with experimental tests in cells.

“It really excited me to be able to go from computational design all the way to trying these things in the lab,” Barzilay says. “There are a lot of exciting papers in this area of AI, but 99.9 percent of those never get tested in real systems. Thanks to our collaboration with the Young lab, we were able to test, and really learn how well our algorithm is doing.”

Developing the model

The researchers trained and tested ProtGPS on two batches of proteins with known localizations. They found that it could correctly predict where proteins end up with high accuracy. The researchers also tested how well ProtGPS could predict changes in protein localization based on disease-associated mutations within a protein. Many mutations — changes to the sequence for a gene and its corresponding protein — have been found to contribute to or cause disease based on association studies, but the ways in which the mutations lead to disease symptoms remain unknown.

Figuring out the mechanism for how a mutation contributes to disease is important because then researchers can develop therapies to fix that mechanism, preventing or treating the disease. Young and colleagues suspected that many disease-associated mutations might contribute to disease by changing protein localization. For example, a mutation could make a protein unable to join a compartment containing essential partners.

They tested this hypothesis by feeding ProtGOS more than 200,000 proteins with disease-associated mutations, and then asking it to both predict where those mutated proteins would localize and measure how much its prediction changed for a given protein from the normal to the mutated version. A large shift in the prediction indicates a likely change in localization.

The researchers found many cases in which a disease-associated mutation appeared to change a protein’s localization. They tested 20 examples in cells, using fluorescence to compare where in the cell a normal protein and the mutated version of it ended up. The experiments confirmed ProtGPS’s predictions. Altogether, the findings support the researchers’ suspicion that mis-localization may be an underappreciated mechanism of disease, and demonstrate the value of ProtGPS as a tool for understanding disease and identifying new therapeutic avenues.

“The cell is such a complicated system, with so many components and complex networks of interactions,” Mitnikov says. “It’s super interesting to think that with this approach, we can perturb the system, see the outcome of that, and so drive discovery of mechanisms in the cell, or even develop therapeutics based on that.”

The researchers hope that others begin using ProtGPS in the same way that they use predictive structural models like AlphaFold, advancing various projects on protein function, dysfunction, and disease.

Moving beyond prediction to novel generation

The researchers were excited about the possible uses of their prediction model, but they also wanted their model to go beyond predicting localizations of existing proteins, and allow them to design completely new proteins. The goal was for the model to make up entirely new amino acid sequences that, when formed in a cell, would localize to a desired location. Generating a novel protein that can actually accomplish a function — in this case, the function of localizing to a specific cellular compartment — is incredibly difficult. In order to improve their model’s chances of success, the researchers constrained their algorithm to only design proteins like those found in nature. This is an approach commonly used in drug design, for logical reasons; nature has had billions of years to figure out which protein sequences work well and which do not.

Because of the collaboration with the Young lab, the machine learning team was able to test whether their protein generator worked. The model had good results. In one round, it generated 10 proteins intended to localize to the nucleolus. When the researchers tested these proteins in the cell, they found that four of them strongly localized to the nucleolus, and others may have had slight biases toward that location as well.

“The collaboration between our labs has been so generative for all of us,” Mikhael says. “We’ve learned how to speak each other’s languages, in our case learned a lot about how cells work, and by having the chance to experimentally test our model, we’ve been able to figure out what we need to do to actually make the model work, and then make it work better.”

Being able to generate functional proteins in this way could improve researchers’ ability to develop therapies. For example, if a drug must interact with a target that localizes within a certain compartment, then researchers could use this model to design a drug to also localize there. This should make the drug more effective and decrease side effects, since the drug will spend more time engaging with its target and less time interacting with other molecules, causing off-target effects.

The machine learning team members are enthused about the prospect of using what they have learned from this collaboration to design novel proteins with other functions beyond localization, which would expand the possibilities for therapeutic design and other applications.

“A lot of papers show they can design a protein that can be expressed in a cell, but not that the protein has a particular function,” Chinn says. “We actually had functional protein design, and a relatively huge success rate compared to other generative models. That’s really exciting to us, and something we would like to build on.”

All of the researchers involved see ProtGPS as an exciting beginning. They anticipate that their tool will be used to learn more about the roles of localization in protein function and mis-localization in disease. In addition, they are interested in expanding the model’s localization predictions to include more types of compartments, testing more therapeutic hypotheses, and designing increasingly functional proteins for therapies or other applications.

“Now that we know that this protein code for localization exists, and that machine learning models can make sense of that code and even create functional proteins using its logic, that opens up the door for so many potential studies and applications,” Kilgore says.

Cellular interactions help explain vascular complications due to COVID-19 virus infection

Whitehead Institute Founding Member Rudolf Jaenisch and colleagues have found that cellular interactions help explain how SARS-CoV-2, the virus that causes COVID-19, could have such significant vascular complications, including blood clots, heart attacks, and strokes.

Greta Friar | Whitehead Institute
December 31, 2024

COVID-19 is a respiratory disease primarily affecting the lungs. However, the SARS-CoV-2 virus that causes COVID-19 surprised doctors and scientists by triggering an unusually large percentage of patients to experience vascular complications – issues related to blood flow, such as blood clots, heart attacks, and strokes.

Whitehead Institute Founding Member Rudolf Jaenisch and colleagues wanted to understand how this respiratory virus could have such significant vascular effects. They used pluripotent stem cells to generate three relevant vascular and perivascular cell types—cells that surround and help maintain blood vessels—so they could closely observe the effects of SARS-CoV-2 on the cells. Instead of using existing methods to generate the cells, the researchers developed a new approach, providing them with fresh insights into the mechanisms by which the virus causes vascular problems. The researchers found that SARS-CoV-2 primarily infects perivascular cells and that signals from these infected cells are sufficient to cause dysfunction in neighboring vascular cells, even when the vascular cells are not themselves infected. In a paper published in the journal Nature Communications on December 30, Jaenisch, postdoc in his lab Alexsia Richards, Harvard University Professor and Wyss Institute for Biologically Inspired Engineering Member David Mooney, and then-postdoc in the Jaenisch and Mooney labs Andrew Khalil share their findings and present a scalable stem cell-derived model system with which to study vascular cell biology and test medical therapies.

A new problem requires a new approach

When the COVID-19 pandemic began, Richards, a virologist, quickly pivoted her focus to SARS-CoV-2. Khalil, a bioengineer, had already been working on a new approach to generate vascular cells. The researchers realized that a collaboration could provide Richards with the research tool she needed and Khalil with an important research question to which his tool could be applied.

The three cell types that Khalil’s approach generated were endothelial cells, the vascular cells that form the lining of blood vessels; and smooth muscle cells and pericytes, perivascular cells that surround blood vessels and provide them with structure and maintenance, among other functions. Khalil’s biggest innovation was to generate all three cell types in the same media—the mixture of nutrients and signaling molecules in which stem cell-derived cells are grown.

The combination of signals in the media determines the final cell type into which a stem cell will mature, so it is much easier to grow each cell type separately in specially tailored media than to find a mixture that works for all three. Typically, Richards explains, virologists will generate a desired cell type using the easiest method, which means growing each cell type and then observing the effects of viral infection on it in isolation. However, this approach can limit results in several ways. Firstly, it can make it challenging to distinguish the differences in how cell types react to a virus from the differences caused by the cells being grown in different media.

“By making these cells under identical conditions, we could see in much higher resolution the effects of the virus on these different cell populations, and that was essential in order to form a strong hypothesis of the mechanisms of vascular symptom risk and progression,” Khalil says.

Secondly, infecting isolated cell types with a virus does not accurately represent what happens in the body, where cells are in constant communication as they react to viral exposure. Indeed, Richards’ and Khalil’s work ultimately revealed that the communication between infected and uninfected cell types plays a critical role in the vascular effects of COVID-19.

“The field of virology often overlooks the importance of considering how cells influence other cells and designing models to reflect that,” Richards says. “Cells do not get infected in isolation, and the value of our model is that it allows us to observe what’s happening between cells during infection.”

Viral infection of smooth muscle cells has broader, indirect effects

When the researchers exposed their cells to SARS-CoV-2, the smooth muscle cells and pericytes became infected—the former at especially high levels, and this infection resulted in strong inflammatory gene expression—but the endothelial cells resisted infection. Endothelial cells did show some response to viral exposure, likely due to interactions with proteins on the virus’ surface. Typically, endothelial cells press tightly together to form a firm barrier that keeps blood inside of blood vessels and prevents viruses from getting out. When exposed to SARS-CoV-2, the junctions between endothelial cells appeared to weaken slightly. The cells also had increased levels of reactive oxygen species, which are damaging byproducts of certain cellular processes.

However, big changes in endothelial cells only occurred after the cells were exposed to infected smooth muscle cells. This triggered high levels of inflammatory signaling within the endothelial cells. It led to changes in the expression of many genes relevant to immune response. Some of the genes affected were involved in coagulation pathways, which thicken blood and so can cause blood clots and related vascular events. The junctions between endothelial cells experienced much more significant weakening after exposure to infected smooth muscle cells, which would lead to blood leakage and viral spread. All of these changes occurred without SARS-CoV-2 ever infecting the endothelial cells.

This work shows that viral infection of smooth muscle cells, and their resultant signaling to endothelial cells, is the lynchpin in the vascular damage caused by SARS-CoV-2. This would not have been apparent if the researchers had not been able to observe the cells interacting with each other.

Clinical relevance of stem cell results

The effects that the researchers observed were consistent with patient data. Some of the genes whose expression changed in their stem cell-derived model had been identified as markers of high risk for vascular complications in COVID-19 patients with severe infections. Additionally, the researchers found that a later strain of SARS-CoV-2, an Omicron variant, had much weaker effects on the vascular and perivascular cells than did the original viral strain. This is consistent with the reduced levels of vascular complications seen in COVID-19 patients infected with recent strains.

Having identified smooth muscle cells as the main site of SARS-Cov-2 infection in the vascular system, the researchers next used their model system to test one drug’s ability to prevent infection of smooth muscle cells. They found that the drug, N, N-Dimethyl-D-erythro-sphingosine, could reduce infection of the cell type without harming smooth muscle or endothelial cells. Although preventing vascular complications of COVID-19 is not as pressing a need with current viral strains, the researchers see this experiment as proof that their stem cell model could be used for future drug development. New coronaviruses and other pathogens are frequently evolving, and when a future virus causes vascular complications, this model could be used to quickly test drugs to find potential therapies while the need is still high. The model system could also be used to answer other questions about vascular cells, how these cells interact, and how they respond to viruses.

“By integrating bioengineering strategies into the analysis of a fundamental question in viral pathology, we addressed important practical challenges in modeling human disease in culture and gained new insights into SARS-CoV-2 infection,” Mooney says.

“Our interdisciplinary approach allowed us to develop an improved stem cell model for infection of the vasculature,” says Jaenisch, who is also a professor of biology at the Massachusetts Institute of Technology. “Our lab is already applying this model to other questions of interest, and we hope that it can be a valuable tool for other researchers.”

Cellular traffic congestion in chronic diseases suggests new therapeutic targets

Many chronic diseases have a common denominator that could be driving their dysfunction: reduced protein mobility, which in turn reduces protein function. A new paper from the Young Lab describes this pervasive mobility defect.

Greta Friar | Whitehead Institute
November 26, 2024

Chronic diseases like type 2 diabetes and inflammatory disorders have a huge impact on humanity. They are a leading cause of disease burden and deaths around the globe, are physically and economically taxing, and the number of people with such diseases is growing.

Treating chronic disease has proven difficult because there is not one simple cause, like a single gene mutation, that a treatment could target. At least, that’s how it has appeared to scientists. However, research from Whitehead Institute Member Richard Young and colleagues, published in the journal Cell on November 27, reveals that many chronic diseases have a common denominator that could be driving their dysfunction: reduced protein mobility. What this means is that around half of all proteins active in cells slow their movement when cells are in a chronic disease state, reducing the proteins’ functions. The researchers’ findings suggest that protein mobility may be a linchpin for decreased cellular function in chronic disease, making it a promising therapeutic target.

In this paper, Young and colleagues in his lab, including postdoc Alessandra Dall’Agnese, graduate students Shannon Moreno and Ming Zheng, and research scientist Tong Ihn Lee, describe their discovery of this common mobility defect, which they call proteolethargy; explain what causes the defect and how it leads to dysfunction in cells; and propose a new therapeutic hypothesis for treating chronic diseases.

“I’m excited about what this work could mean for patients,” says Dall’Agnese. “My hope is that this will lead to a new class of drugs that restore protein mobility, which could help people with many different diseases that all have this mechanism as a common denominator.”

“This work was a collaborative, interdisciplinary effort that brought together biologists, physicists, chemists, computer scientists and physician-scientists,” Lee says. “Combining that expertise is a strength of the Young lab. Studying the problem from different viewpoints really helped us think about how this mechanism might work and how it could change our understanding of the pathology of chronic disease.”

Commuter delays cause work stoppages in the cell

How do proteins moving more slowly through a cell lead to widespread and significant cellular dysfunction? Dall’Agnese explains that every cell is like a tiny city, with proteins as the workers who keep everything running. Proteins have to commute in dense traffic in the cell, traveling from where they are created to where they work. The faster their commute, the more work they get done. Now, imagine a city that starts experiencing traffic jams along all the roads. Stores don’t open on time, groceries are stuck in transit, meetings are postponed. Essentially all operations in the city are slowed.

The slow down of operations in cells experiencing reduced protein mobility follows a similar progression. Normally, most proteins zip around the cell bumping into other molecules until they locate the molecule they work with or act on. The slower a protein moves, the fewer other molecules it will reach, and so the less likely it will be able to do its job. Young and colleagues found that such protein slow-downs lead to measurable reductions in the functional output of the proteins. When many proteins fail to get their jobs done in time, cells begin to experience a variety of problems—as they are known to do in chronic diseases.

Discovering the protein mobility problem

Young and colleagues first suspected that cells affected in chronic disease might have a protein mobility problem after observing changes in the behavior of the insulin receptor, a signaling protein that reacts to the presence of insulin and causes cells to take in sugar from blood. In people with diabetes, cells become less responsive to insulin — a state called insulin resistance — causing too much sugar to remain in the blood. In research published on insulin receptors in Nature Communications in 2022, Young and colleagues reported that insulin receptor mobility might be relevant to diabetes.

Knowing that many cellular functions are altered in diabetes, the researchers considered the possibility that altered protein mobility might somehow affect many proteins in cells. To test this hypothesis, they studied proteins involved in a broad range of cellular functions, including MED1, a protein involved in gene expression; HP1α, a protein involved in gene silencing; FIB1, a protein involved in production of ribosomes; and SRSF2, a protein involved in splicing of messenger RNA. They used single-molecule tracking and other methods to measure how each of those proteins moves in healthy cells and in cells in disease states. All but one of the proteins showed reduced mobility (about 20-35%) in the disease cells.

“I’m excited that we were able to transfer physics-based insight and methodology, which are commonly used to understand the single-molecule processes like gene transcription in normal cells, to a disease context and show that they can be used to uncover unexpected mechanisms of disease,” Zheng says. “This work shows how the random walk of proteins in cells is linked to disease pathology.”

Moreno concurs: “In school, we’re taught to consider changes in protein structure or DNA sequences when looking for causes of disease, but we’ve demonstrated that those are not the only contributing factors. If you only consider a static picture of a protein or a cell, you miss out on discovering these changes that only appear when molecules are in motion.”

 Can’t commute across the cell, I’m all tied up right now

Next, the researchers needed to determine what was causing the proteins to slow down. They suspected that the defect had to do with an increase in cells of the level of reactive oxygen species (ROS), molecules that are highly prone to interfering with other molecules and their chemical reactions. Many types of chronic-disease-associated triggers, such as higher sugar or fat levels, certain toxins, and inflammatory signals, lead to an increase in ROS, also known as an increase in oxidative stress. The researchers measured the mobility of the proteins again, in cells that had high levels of ROS and were not otherwise in a disease state, and saw comparable mobility defects, suggesting that oxidative stress was to blame for the protein mobility defect.

The final part of the puzzle was why some, but not all, proteins slow down in the presence of ROS. SRSF2 was the only one of the proteins that was unaffected in the experiments, and it had one clear difference from the others: its surface did not contain any cysteines, an amino acid building block of many proteins. Cysteines are especially susceptible to interference from ROS because it will cause them to bond to other cysteines. When this bonding occurs between two protein molecules, it slows them down because the two proteins cannot move through the cell as quickly as either protein alone.

About half of the proteins in our cells contain surface cysteines, so this single protein mobility defect can impact many different cellular pathways. This makes sense when one considers the diversity of dysfunctions that appear in cells of people with chronic diseases: dysfunctions in cell signaling, metabolic processes, gene expression and gene silencing, and more. All of these processes rely on the efficient functioning of proteins—including the diverse proteins studied by the researchers. Young and colleagues performed several experiments to confirm that decreased protein mobility does in fact decrease a protein’s function. For example, they found that when an insulin receptor experiences decreased mobility, it acts less efficiently on IRS1, a molecule to which it usually adds a phosphate group.

From understanding a mechanism to treating a disease

Discovering that decreased protein mobility in the presence of oxidative stress could be driving many of the symptoms of chronic disease provides opportunities to develop therapies to rescue protein mobility. In the course of their experiments, the researchers treated cells with an antioxidant drug—something that reduces ROS—called N-acetyl cysteine and saw that this partially restored protein mobility.

The researchers are pursuing a variety of follow ups to this work, including the search for drugs that safely and efficiently reduce ROS and restore protein mobility. They developed an assay that can be used to screen drugs to see if they restore protein mobility by comparing each drug’s effect on a simple biomarker with surface cysteines to one without. They are also looking into other diseases that may involve protein mobility, and are exploring the role of reduced protein mobility in aging.

“The complex biology of chronic diseases has made it challenging to come up with effective therapeutic hypotheses,” says Young, who is also a professor of biology at the Massachusetts Institute of Technology. “The discovery that diverse disease-associated stimuli all induce a common feature, proteolethargy, and that this feature could contribute to much of the dysregulation that we see in chronic disease, is something that I hope will be a real game changer for developing drugs that work across the spectrum of chronic diseases.”

A cell protector collaborates with a killer

New research from the Horvitz Lab reveals what it takes for a protein that is best known for protecting cells against death to take on the opposite role.

Jennifer Michalowski | McGovern Institute
November 1, 2024

From early development to old age, cell death is a part of life. Without enough of a critical type of cell death known as apoptosis, animals wind up with too many cells, which can set the stage for cancer or autoimmune disease. But careful control is essential, because when apoptosis eliminates the wrong cells, the effects can be just as dire, helping to drive many kinds of neurodegenerative disease.

By studying the microscopic roundworm Caenorhabditis elegans—which was honored with its fourth Nobel Prize last month—scientists at MIT’s McGovern Institute have begun to unravel a longstanding mystery about the factors that control apoptosis: how a protein capable of preventing programmed cell death can also promote it. Their study, led by McGovern Investigator Robert Horvitz and reported October 9, 2024, in the journal Science Advances, sheds light on the process of cell death in both health and disease.

“These findings, by graduate student Nolan Tucker and former graduate student, now MIT faculty colleague, Peter Reddien, have revealed that a protein interaction long thought to block apoptosis in C. elegans, likely instead has the opposite effect,” says Horvitz, who shared the 2002 Nobel Prize for discovering and characterizing the genes controlling cell death in C. elegans.

Mechanisms of cell death

Horvitz, Tucker, Reddien and colleagues have provided foundational insights in the field of apoptosis by using C. elegans to analyze the mechanisms that drive apoptosis as well as the mechanisms that determine how cells ensure apoptosis happens when and where it should. Unlike humans and other mammals, which depend on dozens of proteins to control apoptosis, these worms use just a few. And when things go awry, it’s easy to tell: When there’s not enough apoptosis, researchers can see that there are too many cells inside the worms’ translucent bodies. And when there’s too much, the worms lack certain biological functions or, in more extreme cases, can’t reproduce or die during embryonic development.

Work in the Horvitz lab defined the roles of many of the genes and proteins that control apoptosis in worms. These regulators proved to have counterparts in human cells, and for that reason studies of worms have helped reveal how human cells govern cell death and pointed toward potential targets for treating disease.

A protein’s dual role

Three of C. elegans’ primary regulators of apoptosis actively promote cell death, whereas just one, CED-9, reins in the apoptosis-promoting proteins to keep cells alive. As early as the 1990s, however, Horvitz and colleagues recognized that CED-9 was not exclusively a protector of cells. Their experiments indicated that the protector protein also plays a role in promoting cell death. But while researchers thought they knew how CED-9 protected against apoptosis, its pro-apoptotic role was more puzzling.

CED-9’s dual role means that mutations in the gene that encode it can impact apoptosis in multiple ways. Most ced-9 mutations interfere with the protein’s ability to protect against cell death and result in excess cell death. Conversely, mutations that abnormally activate ced-9 cause too little cell death, just like mutations that inactivate any of the three killer genes.

An atypical ced-9 mutation, identified by Reddien when he was a PhD student in Horvitz’s lab, hinted at how CED-9 promotes cell death. That mutation altered the part of the CED-9 protein that interacts with the protein CED-4, which is proapoptotic. Since the mutation specifically leads to a reduction in apoptosis, this suggested that CED-9 might need to interact with CED-4 to promote cell death.

The idea was particularly intriguing because researchers had long thought that CED-9’s interaction with CED-4 had exactly the opposite effect: In the canonical model, CED-9 anchors CED-4 to cells’ mitochondria, sequestering the CED-4 killer protein and preventing it from associating with and activating another key killer, the CED-3 protein —thereby preventing apoptosis.

To test the hypothesis that CED-9’s interactions with the killer CED-4 protein enhance apoptosis, the team needed more evidence. So graduate student Nolan Tucker used CRISPR gene editing tools to create more worms with mutations in CED-9, each one targeting a different spot in the CED-4-binding region. Then he examined the worms. “What I saw with this particular class of mutations was extra cells and viability,” he says—clear signs that the altered CED-9 was still protecting against cell death, but could no longer promote it. “Those observations strongly supported the hypothesis that the ability to bind CED-4 is needed for the pro-apoptotic function of CED-9,” Tucker explains. Their observations also suggested that, contrary to earlier thinking, CED-9 doesn’t need to bind with CED-4 to protect against apoptosis.

When he looked inside the cells of the mutant worms, Tucker found additional evidence that these mutations prevented CED-9’s ability to interact with CED-4. When both CED-9 and CED-4 are intact, CED-4 appears associated with cells’ mitochondria. But in the presence of these mutations, CED-4 was instead at the edge of the cell nucleus. CED-9’s ability to bind CED-4 to mitochondria appeared to be necessary to promote apoptosis, not to protect against it.

Looking ahead

While the team’s findings begin to explain a long-unanswered question about one of the primary regulators of apoptosis, they raise new ones, as well. “I think that this main pathway of apoptosis has been seen by a lot of people as more or less settled science. Our findings should change that view,” Tucker says.

The researchers see important parallels between their findings from this study of worms and what’s known about cell death pathways in mammals. The mammalian counterpart to CED-9 is a protein called BCL-2, mutations in which can lead to cancer.  BCL-2, like CED-9, can both promote and protect against apoptosis. As with CED-9, the pro-apoptotic function of BCL-2 has been mysterious. In mammals, too, mitochondria play a key role in activating apoptosis. The Horvitz lab’s discovery opens opportunities to better understand how apoptosis is regulated not only in worms but also in humans, and how dysregulation of apoptosis in humans can lead to such disorders as cancer, autoimmune disease and neurodegeneration.

Bat cells possess a unique antiviral mechanism, preventing the SARS-CoV-2 virus from taking control

Bats have the amazing ability to coexist with viruses that are deadly to humans. New work from the Jaenisch Lab uncovers an antiviral mechanism that allows viruses to enter bat cells but prevents them from replicating.

Shafaq Zia | Whitehead Institute
October 14, 2024

Viruses are masters of stealth. From the moment a virus enters the host’s body, it begins hijacking its cells. First, the virus binds to a specific protein on the cell’s surface through a lock-and-key mechanism. This protein, known as a receptor, facilitates the entry of the virus’s genetic material into the cell. Once inside, this genetic code takes over the cell’s machinery, directing it to produce copies of the virus and assemble new viral particles, which can go on to infect other cells. Upon detecting the invasion, the host’s immune system responds by attacking infected cells in hopes of curbing the virus’s spread.

But in bats, this process unfolds differently. Despite carrying several viruses — Marburg, Ebola, Nipah, among others — bats rarely get sick from these infections. It seems their immune systems are highly specialized, allowing them to live with viruses that would typically be deadly in humans, without any clinical symptoms.

Since the onset of the COVID-19 pandemic, the lab of Whitehead Institute Founding Member Rudolf Jaenisch has been investigating the molecular basis of bats’ extraordinary resilience to viruses like SARS-CoV-2. In their latest study, published in the journal PNAS on Oct. 14 , Jaenisch lab postdoc Punam Bisht and colleagues have uncovered an antiviral mechanism in bat cells that allows viruses to enter the cells but prevents them from replicating their genome and completing the hijacking process.

“These cells have elevated expressions of antiviral genes that act immediately, neutralizing the virus before it can spread,” says Jaenisch, a professor of biology at the Massachusetts Institute of Technology. “What’s particularly interesting is that many of these antiviral genes have counterparts, or orthologs in humans.”

Striking a delicate balance

The innate immune system is the body’s first line of defense against foreign invaders like the SARS-CoV-2 virus. This built-in security system is always on alert, responding swiftly — within minutes to hours — to perceived threats.

Upon detecting danger, immune cells rush to the site of infection, where they target the virus with little precision in attempts to slow it down and buy time for the more specialized adaptive immune system to take over. During this process, these cells release small signaling proteins called cytokines, which coordinate the immune response by recruiting additional immune cells and directing them to the battleground.

If the innate immune response alone isn’t sufficient to defeat the virus, it signals the adaptive immune system for support. The adaptive immune system tailors its attacks to the exact pathogen it is fighting and can even keep records of past infections to launch a faster, more aggressive attack the next time it encounters the same pathogen.

But in some infections, the innate immune response can quickly spiral out of control before the adaptive immune response is activated. This phenomenon, called a cytokine storm, is a life-threatening condition characterized by the overproduction of cytokines. These proteins continue to signal the innate immune system for backup even when it’s not necessary, leading to a flood of immune cells at the site of infection, where they inadvertently begin damaging organs and healthy tissues.

Bats, on the other hand, are uniquely equipped to manage viral infections without triggering an overwhelming immune response or allowing the virus to take control. To understand how their innate immune system achieves this delicate balance, Bisht and her colleagues turned their attention to bat cells.

In this study, researchers compared how the SARS-CoV-2 virus replicates in human and bat stem cells and fibroblasts — a type of cell involved in the formation of connective tissue. While fibroblasts are not immune cells, they can secrete cytokines and guide immune response, particularly to help with tissue repair.

After exposing these cells to the SARS-CoV-2 virus for 48 hours, the researchers used a Green Fluorescent Protein (GFP) tag to track the virus’s activity. GFP is a fluorescent protein whose genetic code can be added as a tag to a gene of interest. This causes the products of that gene to glow, providing researchers with a visual marker of where and when the gene is expressed.

They observed that over 80% of control cells — derived from the kidneys of African green monkeys and known to be highly susceptible to SARS-CoV-2 — showed evidence of the virus replicating. In contrast, they did not detect any viral activity in human and bat stem cells or fibroblasts.

In fact, even after introducing the human ACE2 receptor — which SARS-CoV-2 uses to bind and enter cells — into bat cells, the infected bat fibroblasts were able to replicate viral RNA and produce viral proteins, but at much lower levels compared to infected human fibroblasts.

These bat fibroblasts, however, could not assemble these viral proteins into fully infectious virus particles, suggesting an abortive infection, where the virus is able to initiate replication but fails to complete the process and produce progeny viruses.

Using electron microscopy to look inside bat and human cells, they began to understand why: in human cells, SARS-CoV-2 had created special structures called double-membrane vesicles (DMV). These vesicles acted like a bubble, shielding the viral genome from detection and providing it safe space to replicate more effectively. However, these “viral replication factories” were absent in bat fibroblasts.

When the researchers examined the gene expression profiles of these bat fibroblasts and compared them those of infected human cells, they found that although both human and bat cells have genes regulating the release of a type of cytokine called interferons, these genes are already turned on in bat fibroblasts — unlike in human cells — even before virus infection occurs.

These findings suggest that bat cells are in a constant state of vigilance. This allows their innate immune system to stop the SARS-CoV-2 virus in its tracks early on in the replication process before it can entirely hijack cellular machinery.

Surprisingly, this antiviral mechanism does not protect bat cells against all viruses. When the researchers infected bat fibroblasts with Zika virus, the virus was able to replicate and produce new viral particles.

“This means there are still many questions unanswered about how bat cells resist infection,” says Bisht. “COVID-19 continues to circulate, and the virus is evolving quickly. Filling in these gaps in our knowledge will help us develop better vaccines and antiviral strategies.”
The researchers are now focused on identifying the specific genes involved in this antiviral mechanism, and exploring how they interact with the virus during infection.