Helping the immune system attack tumors

Stefani Spranger is working to discover why some cancers don’t respond to immunotherapy, in hopes of making them more vulnerable to it.

Anne Trafton | MIT News
February 26, 2025

In addition to patrolling the body for foreign invaders, the immune system also hunts down and destroys cells that have become cancerous or precancerous. However, some cancer cells end up evading this surveillance and growing into tumors.

Once established, tumor cells often send out immunosuppressive signals, which leads T cells to become “exhausted” and unable to attack the tumor. In recent years, some cancer immunotherapy drugs have shown great success in rejuvenating those T cells so they can begin attacking tumors again.

While this approach has proven effective against cancers such as melanoma, it doesn’t work as well for others, including lung and ovarian cancer. MIT Associate Professor Stefani Spranger is trying to figure out how those tumors are able to suppress immune responses, in hopes of finding new ways to galvanize T cells into attacking them.

“We really want to understand why our immune system fails to recognize cancer,” Spranger says. “And I’m most excited about the really hard-to-treat cancers because I think that’s where we can make the biggest leaps.”

Her work has led to a better understanding of the factors that control T-cell responses to tumors, and raised the possibility of improving those responses through vaccination or treatment with immune-stimulating molecules called cytokines.

“We’re working on understanding what exactly the problem is, and then collaborating with engineers to find a good solution,” she says.

Jumpstarting T cells

As a student in Germany, where students often have to choose their college major while still in high school, Spranger envisioned going into the pharmaceutical industry and chose to major in biology. At Ludwig Maximilian University in Munich, her course of study began with classical biology subjects such as botany and zoology, and she began to doubt her choice. But, once she began taking courses in cell biology and immunology, her interest was revived and she continued into a biology graduate program at the university.

During a paper discussion class early in her graduate school program, Spranger was assigned to a Science paper on a promising new immunotherapy treatment for melanoma. This strategy involves isolating tumor-infiltrating T-cells during surgery, growing them into large numbers, and then returning them to the patient. For more than 50 percent of those patients, the tumors were completely eliminated.

“To me, that changed the world,” Spranger recalls. “You can take the patient’s own immune system, not really do all that much to it, and then the cancer goes away.”

Spranger completed her PhD studies in a lab that worked on further developing that approach, known as adoptive T-cell transfer therapy. At that point, she still was leaning toward going into pharma, but after finishing her PhD in 2011, her husband, also a biologist, convinced her that they should both apply for postdoc positions in the United States.

They ended up at the University of Chicago, where Spranger worked in a lab that studies how the immune system responds to tumors. There, she discovered that while melanoma is usually very responsive to immunotherapy, there is a small fraction of melanoma patients whose T cells don’t respond to the therapy at all. That got her interested in trying to figure out why the immune system doesn’t always respond to cancer the way that it should, and in finding ways to jumpstart it.

During her postdoc, Spranger also discovered that she enjoyed mentoring students, which she hadn’t done as a graduate student in Germany. That experience drew her away from going into the pharmaceutical industry, in favor of a career in academia.

“I had my first mentoring teaching experience having an undergrad in the lab, and seeing that person grow as a scientist, from barely asking questions to running full experiments and coming up with hypotheses, changed how I approached science and my view of what academia should be for,” she says.

Modeling the immune system

When applying for faculty jobs, Spranger was drawn to MIT by the collaborative environment of MIT and its Koch Institute for Integrative Cancer Research, which offered the chance to collaborate with a large community of engineers who work in the field of immunology.

“That community is so vibrant, and it’s amazing to be a part of it,” she says.

Building on the research she had done as a postdoc, Spranger wanted to explore why some tumors respond well to immunotherapy, while others do not. For many of her early studies, she used a mouse model of non-small-cell lung cancer. In human patients, the majority of these tumors do not respond well to immunotherapy.

“We build model systems that resemble each of the different subsets of non-responsive non-small cell lung cancer, and we’re trying to really drill down to the mechanism of why the immune system is not appropriately responding,” she says.

As part of that work, she has investigated why the immune system behaves differently in different types of tissue. While immunotherapy drugs called checkpoint inhibitors can stimulate a strong T-cell response in the skin, they don’t do nearly as much in the lung. However, Spranger has shown that T cell responses in the lung can be improved when immune molecules called cytokines are also given along with the checkpoint inhibitor.

Those cytokines work, in part, by activating dendritic cells — a class of immune cells that help to initiate immune responses, including activation of T cells.

“Dendritic cells are the conductor for the orchestra of all the T cells, although they’re a very sparse cell population,” Spranger says. “They can communicate which type of danger they sense from stressed cells and then instruct the T cells on what they have to do and where they have to go.”

Spranger’s lab is now beginning to study other types of tumors that don’t respond at all to immunotherapy, including ovarian cancer and glioblastoma. Both the brain and the peritoneal cavity appear to suppress T-cell responses to tumors, and Spranger hopes to figure out how to overcome that immunosuppression.

“We’re specifically focusing on ovarian cancer and glioblastoma, because nothing’s working right now for those cancers,” she says. “We want to understand what we have to do in those sites to induce a really good anti-tumor immune response.”

A blueprint for better cancer immunotherapies

By examining antigen architectures, MIT researchers built a therapeutic cancer vaccine that may improve tumor response to immune checkpoint blockade treatments.

Bendta Schroeder | Koch Institute
November 25, 2024

Immune checkpoint blockade (ICB) therapies can be very effective against some cancers by helping the immune system recognize cancer cells that are masquerading as healthy cells.

T cells are built to recognize specific pathogens or cancer cells, which they identify from the short fragments of proteins presented on their surface. These fragments are often referred to as antigens. Healthy cells will will not have the same short fragments or antigens on their surface, and thus will be spared from attack.

Even with cancer-associated antigens studding their surfaces, tumor cells can still escape attack by presenting a checkpoint protein, which is built to turn off the T cell. Immune checkpoint blockade therapies bind to these “off-switch” proteins and allow the T cell to attack.

Researchers have established that how cancer-associated antigens are distributed throughout a tumor determines how it will respond to checkpoint therapies. Tumors with the same antigen signal across most of its cells respond well, but heterogeneous tumors with subpopulations of cells that each have different antigens, do not. The overwhelming majority of tumors fall into the latter category and are characterized by heterogenous antigen expression. Because the mechanisms behind antigen distribution and tumor response are poorly understood, efforts to improve ICB therapy response in heterogenous tumors have been hindered.

In a new study, MIT researchers analyzed antigen expression patterns and associated T cell responses to better understand why patients with heterogenous tumors respond poorly to ICB therapies. In addition to identifying specific antigen architectures that determine how immune systems respond to tumors, the team developed an RNA-based vaccine that, when combined with ICB therapies, was effective at controlling tumors in mouse models of lung cancer.

Stefani Spranger, associate professor of biology and member of MIT’s Koch Institute for Integrative Cancer Research, is the senior author of the study, appearing recently in the Journal for Immunotherapy of Cancer. Other contributors include Koch Institute colleague Forest White, the Ned C. (1949) and Janet Bemis Rice Professor and professor of biological engineering at MIT, and Darrell Irvine, professor of immunology and microbiology at Scripps Research Institute and a former member of the Koch Institute.

While RNA vaccines are being evaluated in clinical trials, current practice of antigen selection is based on the predicted stability of antigens on the surface of tumor cells.

“It’s not so black-and-white,” says Spranger. “Even antigens that don’t make the numerical cut-off could be really valuable targets. Instead of just focusing on the numbers, we need to look inside the complex interplays between antigen hierarchies to uncover new and important therapeutic strategies.”

Spranger and her team created mouse models of lung cancer with a number of different and well-defined expression patterns of cancer-associated antigens in order to analyze how each antigen impacts T cell response. They created both “clonal” tumors, with the same antigen expression pattern across cells, and “subclonal” tumors that represent a heterogenous mix of tumor cell subpopulations expressing different antigens. In each type of tumor, they tested different combinations of antigens with strong or weak binding affinity to MHC.

The researchers found that the keys to immune response were how widespread an antigen is expressed across a tumor, what other antigens are expressed at the same time, and the relative binding strength and other characteristics of antigens expressed by multiple cell populations in the tumor

As expected, mouse models with clonal tumors were able to mount an immune response sufficient to control tumor growth when treated with ICB therapy, no matter which combinations of weak or strong antigens were present. However, the team discovered that the relative strength of antigens present resulted in dynamics of competition and synergy between T cell populations, mediated by immune recognition specialists called cross-presenting dendritic cells in tumor-draining lymph nodes. In pairings of two weak or two strong antigens, one resulting T cell population would be reduced through competition. In pairings of weak and strong antigens, overall T cell response was enhanced.

In subclonal tumors, with different cell populations emitting different antigen signals, competition rather than synergy was the rule, regardless of antigen combination. Tumors with a subclonal cell population expressing a strong antigen would be well-controlled under ICB treatment at first, but eventually parts of the tumor lacking the strong antigen began to grow and developed the ability evade immune attack and resist ICB therapy.

Incorporating these insights, the researchers then designed an RNA-based vaccine to be delivered in combination with ICB treatment with the goal of strengthening immune responses suppressed by antigen-driven dynamics. Strikingly, they found that no matter the binding affinity or other characteristics of the antigen targeted, the vaccine-ICB therapy combination was able to control tumors in mouse models. The widespread availability of an antigen across tumor cells determined the vaccine’s success, even if that antigen was associated with weak immune response.

Analysis of clinical data across tumor types showed that the vaccine-ICB therapy combination may be an effective strategy for treating patients with tumors with high heterogeneity. Patterns of antigen architectures in patient tumors correlated with T cell synergy or competition in mice models and determined responsiveness to ICB in cancer patients. In future work with the Irvine laboratory at the Scripps Research Institute, the Spranger laboratory will further optimize the vaccine with the aim of testing the therapy strategy in the clinic.

Ragon faculty finds intricate functions of Resident Tissue Macrophages (RTM’s) extend beyond immune defense

The lab of Ragon Institute faculty @hernandezmsilva published a review in Science Immunology regarding resident tissue macrophages (RTMs), shedding light on these cells’ multifaceted roles.

April 15, 2024
Facundo Batista

Education

  • Graduate: PhD, 1995, International School of Advanced Studies
  • Undergraduate: BSc, 1991, University of Buenos Aires

Research Summary

B lymphocytes are the fulcrum of our immunological memory, the source of antibodies, and the focus of vaccine development. My lab has investigated how, where, and when B cell responses take shape. In recent years, my group has expanded into preclinical vaccinology, developing cutting-edge humanized mouse models for diseases including malaria, HIV, and SARS-CoV-2.

Awards

  •      Fellow, Ministero degli Affari Esteri of Italy, 1991-1992
  •      Fellow, UNIDO-International Centre for Genetic Engineering and Biotechnology, 1993-1995
  •      Fellow, Cancer Research Institute, 1995
  •      Long Term Postdoctoral Fellowship, European Molecular Biology Organization, 1996-1997
  •      Project Grant, Arthritis Research Campaign, 1999
  •      Young Investigator Award, European Molecular Biology Organization, 2004
  •      The Royal Society Wolfson Research Merit Award, The Royal Society/The Wolfson Foundation, 2009
  •      Faculty of 1000, 2009
  •      EMBO Member, European Molecular Biology Organization, 2009
  •      Fellow, British Academy of Medical Sciences, 2013
  •      Fellow, American Academy of Microbiology, 2017
  •      Member, Academia de Ciencias de América Latina (ACAL), 2022
Seychelle Vos and Hernandez Moura Silva named HHMI Freeman Hrabowski Scholars

The program supports early-career faculty who have strong potential to become leaders in their fields and to advance diversity, equity, and inclusion.

Lillian Eden | Department of Biology
May 9, 2023

Two faculty members from the MIT Department of Biology have been selected by the Howard Hughes Medical Institute (HHMI) for the inaugural cohort of HHMI Freeman Hrabowski Scholars.

Seychelle Vos, the Robert A. Swanson Career Development Professor of Life Sciences, and Hernandez Moura Silva, an assistant professor of biology and core member of the Ragon Institute of MGH, MIT and Harvard, are among 31 early-career faculty selected for their potential to become leaders in their research fields and to create diverse and inclusive lab environments in which everyone can thrive, according to a press release.

Freeman Hrabowski Scholars are appointed to a five-year term, renewable for a second five-year term after a successful progress evaluation. Each scholar will receive up to $8.6 million over 10 years, including full salary, benefits, a research budget, and scientific equipment. In addition, they will participate in professional development to advance their leadership and mentorship skills.

The Freeman Hrabowski Scholars Program represents a key component of HHMI’s diversity, equity, and inclusion goals. Over the next 20 years, HHMI expects to hire and support up to 150 Freeman Hrabowski Scholars — appointing roughly 30 scholars every other year for the next 10 years. The institute has committed up to $1.5 billion for the Freeman Hrabowski Scholars to be selected over the next decade. The program was named for Freeman A. Hrabowski III, president emeritus of the University of Maryland at Baltimore County, who played a major role in increasing the number of scientists, engineers, and physicians from backgrounds underrepresented in science in the United States.

Seychelle Vos

Seychelle Vos studies how DNA organization impacts gene expression at the atomic level, using cryogenic electron microscopy (cryo-EM), X-ray crystallography, biochemistry, and genetics. Human cells contain about 2 meters of DNA, which is packed so tightly that its entirety is contained within the nucleus, which is only a few microns across. Although DNA needs to be compacted, it also needs to be accessible to, and readable by, the cell’s molecular machinery.

Vos received a BS in genetics from the University of Georgia in 2008 and a PhD from University of California at Berkeley in 2013. During her postdoctoral research at the Max Planck Institute for Biophysical Chemistry in Germany, she determined how the molecular machine responsible for gene expression is regulated near gene promoters.

Vos joined MIT as an assistant professor of biology in fall 2019.

“I am very humbled and honored to have been named a HHMI Freeman Hrabowski Scholar,” Vos says. “It would not have been possible without the hard work of my lab and the help of my colleagues. It provides us with the support to achieve our ambitious research goals.”

Hernandez Moura Silva

Hernandez Moura Silva studies the role of immune cells in the maintenance and normal function of our bodies and tissues, beyond their role in battling infection. Specifically, he looks at a specific type of immune cell called a macrophage and its role in the proper function of white adipose tissue — our fat. White adipose tissue in a healthy state is highly populated by macrophages, including very abundant ones known as “vasculature-associated adipose tissue macrophages,” which are located around the blood vessels. When the activity of these adipose macrophages is disrupted, there are changes in the proper function of the white adipose tissue, which may ultimately link to disease. By understanding macrophage function in healthy tissues, Hernandez hopes to learn how to restore tissue homeostasis in disease.

Hernandez Moura Silva received a BS in biology in 2005 and an MSc in molecular biology in 2008 from the University of Brazil. He received his PhD in 2011 from the University of São Paulo Heart Institute. Silva pursued his postdoctoral work as the Bernard Levine Postdoctoral Fellow in immunology and immuno-metabolism at the New York University School of Medicine Skirball Institute of Biomolecular Medicine.

He joined MIT as an assistant professor of biology in 2022. He is also a core member of the Ragon Institute.

“For an immigrant coming from an underrepresented group, it’s a huge privilege to be granted this opportunity from HHMI that will empower me and my lab to shape the next generation of scientists and provide an environment where people can feel welcome and encouraged to do the science that they love and be successful,” Silva says. “It also aligns with MIT’s commitment to increase diversity and opportunity across the Institute and to become a place where all people can thrive.”

Why lung cancer doesn’t respond well to immunotherapy

A new study reveals that lymph nodes near the lungs create an environment that weakens T-cell responses to tumors.

Anne Trafton | MIT News Office
February 2, 2023

Immunotherapy — drug treatment that stimulates the immune system to attack tumors — works well against some types of cancer, but it has shown mixed success against lung cancer.

A new study from MIT helps to shed light on why the immune system mounts such a lackluster response to lung cancer, even after treatment with immunotherapy drugs. In a study of mice, the researchers found that bacteria naturally found in the lungs help to create an environment that suppresses T-cell activation in the lymph nodes near the lungs.

The researchers did not find that kind of immune-suppressive environment in lymph nodes near tumors growing near the skin of mice. They hope that their findings could help lead to the development of new ways to rev up the immune response to lung tumors.

“There is a functional difference between the T-cell responses that are mounted in the different lymph nodes. We’re hoping to identify a way to counteract that suppressive response, so that we can reactivate the lung-tumor-targeting T cells,” says Stefani Spranger, the Howard S. and Linda B. Stern Career Development Assistant Professor of Biology, a member of MIT’s Koch Institute for Integrative Cancer Research, and the senior author of the new study.

MIT graduate student Maria Zagorulya is the lead author of the paper, which appears today in the journal Immunity.

Failure to attack

For many years, scientists have known that cancer cells can send out immunosuppressive signals, which leads to a phenomenon known as T-cell exhaustion. The goal of cancer immunotherapy is to rejuvenate those T cells so they can begin attacking tumors again.

One type of drug commonly used for immunotherapy involves checkpoint inhibitors, which remove the brakes on exhausted T cells and help reactivate them. This approach has worked well with cancers such as melanoma, but not as well with lung cancer.

Spranger’s recent work has offered one possible explanation for this: She found that some T cells stop working even before they reach a tumor, because of a failure to become activated early in their development. In a 2021 paper, she identified populations of dysfunctional T cells that can be distinguished from normal T cells by a pattern of gene expression that prevents them from attacking cancer cells when they enter a tumor.

“Despite the fact that these T cells are proliferating, and they’re infiltrating the tumor, they were never licensed to kill,” Spranger says.

In the new study, her team delved further into this activation failure, which occurs in the lymph nodes, which filter fluids that drain from nearby tissues. The lymph nodes are where “killer T cells” encounter dendritic cells, which present antigens (tumor proteins) and help to activate the T cells.

To explore why some killer T cells fail to be properly activated, Spranger’s team studied mice that had tumors implanted either in the lungs or in the flank. All of the tumors were genetically identical.

The researchers found that T cells in lymph nodes that drain from the lung tumors did encounter dendritic cells and recognize the tumor antigens displayed by those cells. However, these T cells failed to become fully activated, as a result of inhibition by another population of T cells called regulatory T cells.

These regulatory T cells became strongly activated in lymph nodes that drain from the lungs, but not in lymph nodes near tumors located in the flank, the researchers found. Regulatory T cells are normally responsible for making sure that the immune system doesn’t attack the body’s own cells. However, the researchers found that these T cells also interfere with dendritic cells’ ability to activate killer T cells that target lung tumors.

The researchers also discovered how these regulatory T cells suppress dendritic cells: by removing stimulatory proteins from the surface of dendritic cells, which prevents them from being able to turn on killer-T-cell activity.

Microbial influence

Further studies revealed that the activation of regulatory T cells is driven by high levels of interferon gamma in the lymph nodes that drain from the lungs. This signaling molecule is produced in response to the presence of commensal bacterial — bacteria that normally live in the lungs without causing infection.

The researchers have not yet identified the types of bacteria that induce this response or the cells that produce the interferon gamma, but they showed that when they treated mice with an antibody that blocks interferon gamma, they could restore killer T cells’ activity.

Interferon gamma has a variety of effects on immune signaling, and blocking it can dampen the overall immune response against a tumor, so using it to stimulate killer T cells would not be a good strategy to use in patients, Spranger says. Her lab is now exploring other ways to help stimulate the killer T cell response, such as inhibiting the regulatory T cells that suppress the killer-T-cell response or blocking the signals from the commensal bacteria, once the researchers identify them.

The research was funded by a Pew-Stewart Scholarship, the Koch Institute Frontier Research program, the Ludwig Center at the Koch Institute, and an MIT School of Science Fellowship in Cancer Research.

New faculty join the School of Science in 2022

Seven professors join the departments of Biology; Chemistry; Earth, Atmospheric and Planetary Sciences; Mathematics; and Physics.

School of Science
November 17, 2022

This fall, the MIT School of Science welcomes seven new faculty to the departments of Biology; Chemistry; Earth, Atmospheric and Planetary Studies (EAPS); Mathematics; and Physics.

Wanying Kang researches large-scale atmospheric and oceanic dynamics, and their effects on the climate of Earth and other planetary bodies. She hopes to bridge multiple geoscience fields by applying tools from climate science on Earth to planetary science questions. Currently, Kang is looking into the atmospheric circulation on superhot lava worlds and the ocean circulation on icy moons, given the potential to observe them in more detail in the near future.

Kang earned an undergraduate degree in physics from Peking University and a PhD in applied math from Harvard University. She first joined the Department of Earth, Atmospheric and Planetary Sciences as a distinguished postdoc through the Houghton-Lorenz Fellowship. Now, Kang has been appointed an assistant professor in climate science in EAPS.

Sarah Millholland explores the demographics and diversity of extrasolar planetary systems. Using orbital dynamics and theory, she investigates how gravitational interactions like tides, resonances, and spin dynamics influence the formation and evolution of planetary systems and shape observable exoplanet properties.

Millholland obtained bachelor’s degrees in physics and applied mathematics from the University of Saint Thomas in 2015. She spent her first year of graduate school at the University of California at Santa Cruz before transferring to Yale University, earning her PhD in astronomy from Yale in 2020. She then moved to Princeton University, where she was a NASA Sagan Postdoctoral Fellow from 2020-22. Millholland joins MIT as an assistant professor in the Department of Physics and a member of the Kavli Institute for Astrophysics and Space Research.

Sam Peng PhD ’14 aims to develop novel probes and microscopy techniques to visualize the dynamics of individual molecules in living cells, which will improve the understanding of molecular mechanisms underlying human diseases. Peng’s group will focus on studying molecular dynamics, protein-protein interactions, and cellular heterogeneity involved in neurobiology and cancer biology. Their long-term goal is to translate these mechanistic insights into drug discovery.

Peng received his bachelor’s degree in chemistry from the University of California at Berkeley, and his PhD from MIT in physical chemistry. Most recently, he completed postdoctoral research at Stanford University. He returns to MIT as an assistant professor in the Department of Chemistry and a core member of the Broad Institute of MIT and Harvard.

Julien Tailleur is a physicist focusing on the emerging properties of active materials, which encompass systems made of large assemblies of units able to exert propelling forces on their environment. From molecular motors to cells and animal groups, active systems are found at all scales in nature. Most recently, Tailleur combined the development of theoretical frameworks to describe active systems with their applications to the study of microbiological systems.

Tailleur completed his undergraduate studies in mathematics at Université Pierre et Marie Curie (UPMC) and in physics at Université d’Orsay. He earned his PhD in physics in 2007 from UPMC. After becoming an Engineering and Physical Sciences Research Council postdoc at the University of Edinburgh, Tailleur joined French National Centre for Scientific Research (CNRS) and Université Paris Diderot in 2011, then becoming a CNRS Director of Research in 2018. Tailleur joins the Department of Physics as an associate professor.

Richard Teague works to understand the earliest stages of planetary systems, specifically, where, when, and how they can form. A major component of his research is the development of new techniques to detect examples of planets while they are still embedded in their parental protoplanetary disks, a period of the planet’s growth phase which is currently hidden from view. Teague is also leading the exoALMA collaboration, searching for the youngest exoplanets with one of the largest telescopes in the world, the Atacama Large (sub-) Milimeter Array (ALMA).

Teague earned a master’s degree from the University of Edinburgh and a PhD from the Max-Planck-Institute for Astronomy. Previously, he was a Submillimeter Array fellow at the Harvard-Smithsonian Center for Astrophysics and a postdoc at the University of Michigan and the Max-Planck-Institute for Astronomy. Teague joins MIT as an assistant professor in the Department of Earth, Atmospheric and Planetary Sciences.

Research interests of Martin Wainwright PhD ’02 include high-dimensional statistics, statistical machine learning, information theory, and optimization theory. One focus is algorithms and Markov random fields, a class of probabilistic model based on graphs used to capture dependencies in multivariate data: for example, image models, data compression, and computational biology. He also studies the effect of decentralization and communication constraints in statistical inference problems. A final area of interest is methodology and theory for high-dimensional inference problems.

Wainwright received a bachelor’s degree in mathematics from University of Waterloo followed by a PhD in electrical engineering and computer science (EECS) from MIT. Most recently, he was the Chancellor’s Professor at the University of California at Berkeley with a joint appointment between the departments of Statistics and EECS. Wainwright returns to MIT as a professor of mathematics and electrical engineering and computer science.

Immune cells communicate across scales in time and space, forming circuits that control their destructive capacity. Harikesh Wong employs a variety of quantitative approaches, including advanced fluorescence microscopy and computational modeling, to study these circuits within intact tissue environments. Ultimately, he seeks to understand how imbalanced immune cell communication — due to genetic or environmental variation — results in detrimental outcomes, including chronic infection, autoimmunity, and the formation of tumors.

Wong received a bachelor’s degree from McMaster University followed by a PhD in cell biology from the University of Toronto. Next, he pursued a postdoc at the National Institutes of Health in immunology and systems biology. Wong joins MIT as an assistant professor in the Department of Biology and a core member of the Ragon Institute of MGH, MIT and Harvard.

Yiyin Erin Chen and Sam Chunte Peng named as core members of Broad Institute and MIT
Broad Communications
July 12, 2022

Broad Institute of MIT and Harvard has named Erin Chen, a dermatologist and microbiologist, and Sam Peng, a biophysicist and physical chemist with expertise in single-molecule imaging, as core institute members.

Chen will join in January 2023 and will also serve as an assistant professor in the Department of Biology at MIT and an attending dermatologist at Massachusetts General Hospital. Peng joined in July 2022 and will serve as an assistant professor in the Department of Chemistry at MIT.

Chen’s lab will study the communication between the immune system and the diverse microbes that colonize every surface of the human body, with a focus on the human body’s largest organ, the skin.

Peng’s lab will develop novel probes and microscopy techniques to visualize the dynamics of individual molecules in living cells, which will improve the understanding of molecular mechanisms underlying human diseases.

“We are delighted to welcome Sam and Erin to the Broad community,” said Todd Golub, director of the Broad. “These creative scientists are each taking inventive approaches to understand the molecular signals and interactions that underlie biological processes in health and disease. These insights will help further the Broad’s mission of advancing the understanding and treatment of human disease.”

Erin Chen.
Erin Chen

Erin Chen earned her BA in biology from the University of Chicago, her PhD from MIT, and her MD from Harvard Medical School. Prior to joining the Broad, Chen was a Howard Hughes Medical Institute Hanna Gray Postdoctoral Fellow at Stanford University, in the lab of Michael Fischbach. She was also an attending dermatologist at the University of California San Francisco and at the San Francisco VA Medical Center. During her postdoctoral research, Chen developed genetic methods to study harmless commensal skin bacteria. She engineered these bacteria to generate anti-tumor immunity, pioneering a novel approach to vaccination and cancer immunotherapy.

At the Broad, members of the Chen lab will continue to employ microbial genetics, immunologic approaches, and mouse models to dissect the molecular signals used by commensal microbes to educate the immune system. Ultimately, Chen aims to harness these microbe-host interactions to engineer novel therapeutics for human disease.

“I’m excited to join the collaborative scientific community at the Broad and MIT, including those who have pioneered novel tools for examining biological mechanisms at higher spatial resolution,” said Chen. “The biology I study is quite basic, but I’m motivated by the potential impact it could have on patients. Figuring out how commensal skin bacteria are captured by the immune system could unlock a whole new therapeutic toolbox.”

Sam Peng
Sam Peng

Sam Peng earned his BS in chemistry from the University of California, Berkeley, and his PhD from MIT in physical chemistry. He completed his postdoctoral research at Stanford University as an NIH K99 Pathway to Independence scholar in the lab of Steve Chu. During his postdoctoral research, he developed long-term single molecule imaging in live cells using a novel class of nanoprobes. He applied this new technique to study axonal transport in neurons and the molecular dynamics of dynein — a motor protein involved in transporting cargo in cells.

At the Broad, the Peng group will aim to elucidate the molecular mechanisms underlying human diseases. Lab members will develop and integrate a diverse toolbox spanning single-molecule microscopy, super-resolution microscopy, spectroscopy, nanomaterial engineering, biophysics, chemical biology, and quantitative modeling to uncover previously unexplored biological processes. With bright and photostable probes, lab members will have unprecedented capability to record ultra-long-term “molecular movies” in living systems with high spatiotemporal resolutions and to reveal molecular interactions that drive biological functions. Peng’s group will focus on studying molecular dynamics, protein-protein interactions, and cellular heterogeneity involved in neurobiology and cancer biology. Their long-term goal is to translate these mechanistic insights into drug discovery.

“Because my research is so multi-disciplinary, joining the Broad and MIT communities allows us to integrate a range of experimental tools and to collaborate with colleagues and students from diverse backgrounds,” said Peng. “I’m excited to see how our techniques can enable discoveries for a variety of cellular processes, including those underlying complex brain functions and dysfunctions. Many problems that previously seemed inaccessible now appear to be within reach in the foreseeable future.”

Yiyin Erin Chen

Education

  • Graduate: PhD, 2011, MIT; MD, 2013, Harvard Medical School
  • Undergraduate: BA, 2006, Biology, University of Chicago

Research Summary

Diverse commensal microbes colonize every surface of our bodies. We study the constant communication between these microbes and our immune system. We focus on our largest organ: the skin. By employing microbial genetics, immunologic approaches, and mouse models, we can dissect (1) the molecular signals used by microbes to educate our immune system and (2) how different microbial communities alter immune responses. Ultimately, we aim to harness these microbe-host interactions to engineer novel vaccines and therapeutics for human disease.

Awards

  • Howard Hughes Medical Institute Hanna H. Gray Fellow, 2018-2026
  • A.P. Giannini Postdoctoral Research Fellowship, 2018
  • Dermatology Foundation Research Fellowship, 2017
Alison E. Ringel

Education

  • PhD, 2015, Johns Hopkins University School of Medicine
  • BA, 2009, Molecular Biology & Biochemistry/Physics, Wesleyan University

Research Summary

We investigate crosstalk between CD8+ T cells and their environment at a molecular level, by dissecting the biological and metabolic programs engaged under conditions of stress. Using an array of approaches to model and perturb the local microenvironment, our research aims to reveal both the adaptive molecular changes as well as intrinsic vulnerabilities in T cells that arise within the tumor niche. Our goal is to understand how disease states remodel the fundamental mechanisms that regulate immune cell function and contribute to pathogenesis.

Awards

  • Forbeck Scholar, 2021