Yami Acevedo ­Sánchez’s “go for it” attitude leads to MIT
Pamela Ferdinand
September 21, 2022

MIT PHD STUDENT YAMI ACEVEDO-SÁNCHEZ DISCOVERED SHE ENJOYED SCIENCE by watching television at home in Puerto Rico. While a strong student, encouraged by her mentors and parents to do well, she never imagined a science career would be in her future.

Acevedo-Sánchez is the second member of her extended family—her mother has 17 brothers and sisters; her father has 11—to earn a college degree. She didn’t learn about MIT until she began studying at the University of Puerto Rico, and attending the Institute felt like a very big step.

“I remember my thoughts were, ‘I’m never going to make it there.’ It felt really, really out of reach,” she says. “But I don’t say ‘no’ to myself. I just go for it.”

Today at MIT, Acevedo-Sánchez is pursuing her passion for biology, working to understand the basic processes that make all the complexity of life possible. “To me, it seems like a puzzle waiting for someone to assemble the pieces,” she says.

Her research focuses on a fundamental question: How do bacterial pathogens hijack a host? By studying how they travel between cells and spur infection, she hopes to discover more about the diseases they cause and potential therapies.

In particular, she is focused on Listeria monocytogenes, a widespread bacterium that can cause food poisoning. In high-risk populations, such as pregnant women or immunocompromised individuals, it can spread to the liver and then move through the bloodstream into the rest of the body. Listeria infection (listeriosis) has a high mortality rate, killing an estimated 20% to 30% of those infected, according to the US Food and Drug Administration.

Listeria hijacks molecular pathways as it spreads from cell to cell. It typically forces itself into neighboring cells by ramming into cell junctions (spots where cells connect). The force and speed Listeria uses to do this is about 0.2–1 microns per second—the equivalent of 50 feet per second if Listeria were the size of a submarine, Acevedo-Sánchez says: “It’s very impressive to watch!”

What is the mechanism of this action? Is it random, or programmed and regulated by the bacteria or our cells? Working with assistant professor of biology Rebecca Lamason and others in Lamason’s lab, Acevedo-Sánchez hopes to answer such questions through groundbreaking work that visualizes the cell membrane dynamics as Listeria spreads from cell to cell. To do this, the team uses a cellular line with a membrane marker (developed by Lamason) and a confocal microscope, which can capture high-resolution images deep inside cells.

Acevedo-Sánchez is especially interested in exploring how the mechanisms of two proteins, CAV1 and PACSIN2, promote cell-to-cell spread over long distances in a short amount of time. “These pathogens are constantly interacting with their host,” she says. “By understanding the key players that mediate those interactions from the bacteria side as well as the cell side, we can understand more about the microbiology of the bacteria and our own cell biology.”

Mentoring others

Outside the lab, Acevedo-Sánchez is working to support others like her who have not always believed they could pursue careers in science, technology, engineering, and mathematics. “There is tremendous power in having someone believe in your ability,” she says.

She has served as a mentor for the MIT Summer Research Program in Biology and supported first-year biology graduate students through the BioPals Program. Acevedo- Sánchez has also presented her work to middle school students around the world through the video series MIT Abstracts.

“Anyone can be a scientist, regardless of their background,” says Acevedo-Sánchez, who also has served as a graduate diversity ambassador at MIT. “You just need three things: be curious about the world that surrounds you, be willing to ask questions, and do the work yourself. Work smart and hard.”

Pamela Ferdinand is a 2003–2004 MIT Knight Science Journalism Fellow

Hot off the press: parasite researchers melt down proteins to understand their roles in infection
Eva Frederick | Whitehead Institute
August 31, 2022

Much like humans, plants, and bacteria, the single-celled parasite Toxoplasma gondii (T. gondii) uses calcium as a messenger to coordinate important cellular processes. But while the messenger is the same, the communication pathways that form around calcium differ significantly between organisms.

“Since Toxoplasma parasites are so divergent from us, they have evolved their own sets of proteins that are involved in calcium signaling pathways,”  said Alice Herneisen, a graduate student in the lab of Whitehead Institute Member Sebastian Lourido.

Lourido and his lab study the molecular mechanisms that allow the single-celled parasite T. gondii and related pathogens to be so widespread and potentially deadly — and calcium signaling is an important part of the parasite’s process of invading its hosts. “Calcium governs this very important transition from the parasites replicating inside of host cells to parasites leaving those cells and seeking out new ones to infect,” said Lourido. “We’ve been really interested in how calcium plays into the regulation of proteins inside the parasite.”

A paper published August 17 in eLife provides some insight. In the paper, Herneisen, Lourido and collaborators used an approach called thermal profiling to broadly survey which parasite proteins are involved in calcium signaling in T. gondii. The new work reveals that an unexpected protein plays a role in parasite calcium pathways, and provides new targets that scientists could potentially use to stop the spread of the parasite. The data will also serve as a resource that other Toxoplasma researchers can use to find out whether their own proteins of interest interact with calcium pathways in parasite cells.

The heat is on

When studying calcium pathways in humans, researchers can often draw parallels from work in mice. “But parasites are very different from us,” said Lourido. “All of the principles that we’ve learned about calcium signaling in humans or mice can’t be readily translated over to parasites.”

So to study these mechanisms in Toxoplasma, the researchers had to start from scratch to determine which proteins were involved. That’s where the thermal profiling method came in. The method is based on the observation that proteins are designed to work well at specific temperatures, and when it becomes too hot for them, they melt. Consider eggs: when the proteins in egg whites and egg yolks are heated in a frying pan, the proteins begin to melt and congeal. “When we think about a protein melting, what we mean is the proteins unraveling,” said Lourido. “When proteins unravel, they expose side chains that bind to each other. They stop being individual proteins that are well-folded, and become a mesh.”

Small changes to the chemical structure of a protein — such as the changes resulting from binding a small molecule such as calcium — can alter the melting point of a protein. Researchers can then trace these alterations using proteomic methods. “Proteins that are binding calcium are changing in response to calcium, and are ultimately changing their thermal stability,” Herneisen said. “That’s kind of the language of proteins, alterations in their thermal stability.”

The thermal profiling method works by applying heat to parasite cells and graphing how each of the parasite’s proteins responds to changes in temperature under different conditions (for example, the presence or absence of calcium). In a 2020 paper, the researchers used the thermal profiling method to investigate the role of a protein called ENH1 in calcium signaling.

In their new paper, Lourido and Herneisen investigated the effect of calcium on all proteins in the parasite using two approaches. The researchers combined parasites with specific amounts of calcium, applied heat, and then performed proteomics techniques to track how the calcium affected the melting behavior of each protein. If a protein’s melting point was higher or lower than usual, the researchers could deduce that that protein was changed either by calcium itself or by another player in a calcium signaling pathway.

They then treated the parasites with a chemical that caused them to release stored calcium in a controlled manner and measured how a protein modification called phosphorylation changed over time. Together, these methods allowed them to infer how proteins might sense and respond to calcium within the signaling network.

Their approach provided data on nearly every expressed protein in the parasite cells, but the researchers zeroed in on one particular protein called Protein Phosphatase 1 (or PP1). The protein is ubiquitous across many species, but has never previously been implicated in calcium signaling pathways. They found that the protein was concentrated at the front end of the parasite. This region of the parasite cell is involved in motility and host invasion.

The protein’s role in the parasites — and in the other organisms in which it appears — is to remove the small molecules called phosphates from phosphorylated proteins. “This is a modification that can often change the activity of individual proteins, because it’s this big charge that’s been covalently stuck onto the surface of the protein,” Lourido said. “This ends up being a principle through which many, many different biological processes are regulated.”

How exactly PP1 interacts with calcium remains to be seen. When the researchers depleted PP1 in parasite cells, they found that the protein is somehow involved in helping the parasite take in calcium necessary for movement. It’s unclear whether or not it actually binds calcium or is involved in the pathway through another mechanism.

Because parasites use calcium signaling to coordinate life cycle changes such as entering or leaving  host cells, insights into the key players in calcium pathways could be a boon to public health. “These are kind of the pressure points or the hubs that would be ideal to target in order to prevent the spread and pathogenesis of these parasites,” Herneisen said.

Herneisen and collaborators focused primarily on PP1, but there are many other proteins to investigate using the data from this project. “I think part of the reason why I wanted to release this paper is so that the field could take the next steps,” she said. “I’m just one person — it would be great if 20 other people find that the protein that they were studying is calcium responsive, and they can chase down the exact reason for that or how it is involved in this greater calcium signaling network. This was exciting for us with regards to PP1, and I’m sure other researchers will make their own connections.”

Notes

Alice L. Herneisen,  Zhu-Hong Li, Alex W. Chan, Silvia NJ Moreno, and Sebastian Lourido. “Temporal and thermal profiling of the Toxoplasma proteome implicates parasite Protein Phosphatase 1 in the regulation of Ca2+-responsive pathways”. eLife, August 17, 2022. DOI: https://doi.org/10.7554/eLife.80336

Scientists identify a plant molecule that sops up iron-rich heme

The peptide is used by legumes to control nitrogen-fixing bacteria; it may also offer leads for treating patients with too much heme in their blood.

Anne Trafton | MIT News Office
August 11, 2022

Symbiotic relationships between legumes and the bacteria that grow in their roots are critical for plant survival. Without those bacteria, the plants would have no source of nitrogen, an element that is essential for building proteins and other biomolecules, and they would be dependent on nitrogen fertilizer in the soil.

To establish that symbiosis, some legume plants produce hundreds of peptides that help bacteria live within structures known as nodules within their roots. A new study from MIT reveals that one of these peptides has an unexpected function: It sops up all available heme, an iron-containing molecule. This sends the bacteria into an iron-starvation mode that ramps up their production of ammonia, the form of nitrogen that is usable for plants.

“This is the first of the 700 peptides in this system for which a really detailed molecular mechanism has been worked out,” says Graham Walker, the American Cancer Society Research Professor of Biology at MIT, a Howard Hughes Medical Institute Professor, and the senior author of the study.

This heme-sequestering peptide could have beneficial uses in treating a variety of human diseases, the researchers say. Removing free heme from the blood could help to treat diseases caused by bacteria or parasites that need heme to survive, such as P. gingivalis (periodontal disease) or toxoplasmosis, or diseases such as sickle cell disease or sepsis that release too much heme into the bloodstream.

“This study demonstrates that basic research in plant-microbe interactions also has potential to be translated to therapeutic applications,” says Siva Sankari, an MIT research scientist and the lead author of the study, which appears today in Nature Microbiology.

Other authors of the paper include Vignesh Babu, an MIT research scientist; Kevin Bian and Mary Andorfer, both MIT postdocs; Areej Alhhazmi, a former KACST-MIT Ibn Khaldun Fellowship for Saudi Arabian Women scholar; Kwan Yoon and Dante Avalos, MIT graduate students; Tyler Smith, an MIT instructor in biology; Catherine Drennan, an MIT professor of chemistry and biology and a Howard Hughes Medical Institute investigator; Michael Yaffe, a David H. Koch Professor of Science and a member of MIT’s Koch Institute for Integrative Cancer Research; and Sebastian Lourido, the Latham Family Career Development Professor of Biology at MIT and a member of the Whitehead Institute for Biomedical Research.

Iron control

For nearly 40 years, Walker’s lab has been studying the symbiosis between legumes and rhizobia, a type of nitrogen-fixing bacteria. These bacteria convert nitrogen gas to ammonia, a critical step of the Earth’s nitrogen cycle that makes the element available to plants (and to animals that eat the plants).

Most of Walker’s work has focused on a clover-like plant called Medicago truncatula. Nitrogen-fixing bacteria elicit the formation of nodules on the roots of these plants and eventually end up inside the plant cells, where they convert to their symbiotic form called bacteroids.

Several years ago, plant biologists discovered that Medicago truncatula produces about 700 peptides that contribute to the formation of these bacteroids. These peptides are generated in waves that help the bacteria make the transition from living freely to becoming embedded into plant cells where they act as nitrogen-fixing machines.

Walker and his students picked one of these peptides, known as NCR247, to dig into more deeply. Initial studies revealed that when nitrogen-fixing bacteria were exposed to this peptide, 15 percent of their genes were affected. Many of the genes that became more active were involved in importing iron.

The researchers then found that when they fused NCR247 to a larger protein, the hybrid protein was unexpectedly reddish in color. This serendipitous observation led to the discovery that NCR247 binds heme, an organic ring-shaped iron-containing molecule that is an important component of hemoglobin, the protein that red blood cells use to carry oxygen.

Further studies revealed that when NCR247 is released into bacterial cells, it sequesters most of the heme in the cell, sending the cells into an iron-starvation mode that triggers them to begin importing more iron from the external environment.

“Usually bacteria fine-tune their iron metabolism, and they don’t take up more iron when there is already enough,” Sankari says. “What’s cool about this peptide is that it overrides that mechanism and indirectly regulates the iron content of the bacteria.”

Nitrogenase, the main enzyme that bacteria use to fix nitrogen, requires 24 to 32 atoms of iron per enzyme molecule, so the influx of extra iron likely helps those enzymes to become more active, the researchers say. This influx is timed to coincide with nitrogen fixation, they found.

“These peptides are produced in a wave in the nodules, and the production of this particular peptide is higher when the bacteria are preparing to fix nitrogen. If this peptide was secreted throughout the whole process, then the cell would have too much iron all the time, which is bad for the cell,” Sankari says.

Without the NCR247 peptide, Medicago truncatula and rhizobium cannot form an effective nitrogen-fixing symbiosis, the researchers showed.

“Many possible directions”

The peptide that the researchers studied in this work may have potential therapeutic uses. When heme is incorporated into hemoglobin, it performs a critical function in the body, but when it’s loose in the bloodstream, it can kill cells and promote inflammation. Free heme can accumulate in stored blood, so having a way to filter out the heme before the blood is transfused into a patient could be potentially useful.

A variety of human diseases lead to free heme circulating in the bloodstream, including sickle cell anemia, sepsis, and malaria. Additionally, some infectious parasites and bacteria depend on heme for their survival but cannot produce it, so they scavenge it from their environment. Treating such infections with a protein that takes up all available heme could help prevent the parasitic or bacterial cells from being able to grow and reproduce.

In this study, Lourido and members of his lab showed that treating the parasite Toxoplasma gondii with NCR427 prevented the parasite from forming plaques on human cells.

The researchers are now pursuing collaborations with other labs at MIT to explore some of these potential applications, with funding from a Professor Amar G. Bose Research Grant.

“There are many possible directions, but they’re all at a very early stage,” Walker says. “The number of potential clinical applications is very broad. You can place more than one bet in this game, which is an intriguing thing.”

Currently, the human protein hemopexin, which also binds to heme, is being explored as a possible treatment for sickle cell anemia. The NCR247 peptide could provide an easier to deploy alternative, the researchers say, because it is much smaller and could be easier to manufacture and deliver into the body.

The research was funded in part by the MIT Center for Environmental Health Sciences, the National Science Foundation, and the National Institutes of Health.

Yiyin Erin Chen and Sam Chunte Peng named as core members of Broad Institute and MIT
Broad Communications
July 12, 2022

Broad Institute of MIT and Harvard has named Erin Chen, a dermatologist and microbiologist, and Sam Peng, a biophysicist and physical chemist with expertise in single-molecule imaging, as core institute members.

Chen will join in January 2023 and will also serve as an assistant professor in the Department of Biology at MIT and an attending dermatologist at Massachusetts General Hospital. Peng joined in July 2022 and will serve as an assistant professor in the Department of Chemistry at MIT.

Chen’s lab will study the communication between the immune system and the diverse microbes that colonize every surface of the human body, with a focus on the human body’s largest organ, the skin.

Peng’s lab will develop novel probes and microscopy techniques to visualize the dynamics of individual molecules in living cells, which will improve the understanding of molecular mechanisms underlying human diseases.

“We are delighted to welcome Sam and Erin to the Broad community,” said Todd Golub, director of the Broad. “These creative scientists are each taking inventive approaches to understand the molecular signals and interactions that underlie biological processes in health and disease. These insights will help further the Broad’s mission of advancing the understanding and treatment of human disease.”

Erin Chen.
Erin Chen

Erin Chen earned her BA in biology from the University of Chicago, her PhD from MIT, and her MD from Harvard Medical School. Prior to joining the Broad, Chen was a Howard Hughes Medical Institute Hanna Gray Postdoctoral Fellow at Stanford University, in the lab of Michael Fischbach. She was also an attending dermatologist at the University of California San Francisco and at the San Francisco VA Medical Center. During her postdoctoral research, Chen developed genetic methods to study harmless commensal skin bacteria. She engineered these bacteria to generate anti-tumor immunity, pioneering a novel approach to vaccination and cancer immunotherapy.

At the Broad, members of the Chen lab will continue to employ microbial genetics, immunologic approaches, and mouse models to dissect the molecular signals used by commensal microbes to educate the immune system. Ultimately, Chen aims to harness these microbe-host interactions to engineer novel therapeutics for human disease.

“I’m excited to join the collaborative scientific community at the Broad and MIT, including those who have pioneered novel tools for examining biological mechanisms at higher spatial resolution,” said Chen. “The biology I study is quite basic, but I’m motivated by the potential impact it could have on patients. Figuring out how commensal skin bacteria are captured by the immune system could unlock a whole new therapeutic toolbox.”

Sam Peng
Sam Peng

Sam Peng earned his BS in chemistry from the University of California, Berkeley, and his PhD from MIT in physical chemistry. He completed his postdoctoral research at Stanford University as an NIH K99 Pathway to Independence scholar in the lab of Steve Chu. During his postdoctoral research, he developed long-term single molecule imaging in live cells using a novel class of nanoprobes. He applied this new technique to study axonal transport in neurons and the molecular dynamics of dynein — a motor protein involved in transporting cargo in cells.

At the Broad, the Peng group will aim to elucidate the molecular mechanisms underlying human diseases. Lab members will develop and integrate a diverse toolbox spanning single-molecule microscopy, super-resolution microscopy, spectroscopy, nanomaterial engineering, biophysics, chemical biology, and quantitative modeling to uncover previously unexplored biological processes. With bright and photostable probes, lab members will have unprecedented capability to record ultra-long-term “molecular movies” in living systems with high spatiotemporal resolutions and to reveal molecular interactions that drive biological functions. Peng’s group will focus on studying molecular dynamics, protein-protein interactions, and cellular heterogeneity involved in neurobiology and cancer biology. Their long-term goal is to translate these mechanistic insights into drug discovery.

“Because my research is so multi-disciplinary, joining the Broad and MIT communities allows us to integrate a range of experimental tools and to collaborate with colleagues and students from diverse backgrounds,” said Peng. “I’m excited to see how our techniques can enable discoveries for a variety of cellular processes, including those underlying complex brain functions and dysfunctions. Many problems that previously seemed inaccessible now appear to be within reach in the foreseeable future.”

Lab-grown fat cells help scientists understand type 2 diabetes
Eva Frederick | Whitehead Institute
June 16, 2022

In research published June 17 in the journal Science Advances, researchers in the lab of Whitehead Institute Founding Member Rudolf Jaenisch present a way to create fat cells that can be modified to display different levels of insulin sensitivity.

The cells accurately model healthy insulin metabolism, as well as insulin resistance, one of the key hallmarks of type 2 diabetes. “This system, I think, will be really useful for studying the mechanisms of this disease,” said Jaenisch, who is also a professor of biology at the Massachusetts Institute of Technology (MIT).

“It’s really exciting,” said Max Friesen, a postdoctoral researcher in Jaenisch’s lab and a first author of the study. “This is the first time that you can actually use a human stem cell-derived [fat cell] to show a real insulin response.”

Body fat — also known as adipose tissue — is essential for regulating your body’s metabolism and plays an important role in the storage and release of energy. When fat cells called adipocytes encounter the hormone insulin, they suck up sugar from the blood and store it for future use.

But over many years, factors such as genetics, stress, certain diets, or polluted air or water can cause this process to go awry, leading to type 2 diabetes. In this disease, adipocytes, as well as cells in the muscles and liver, become resistant to insulin and therefore unable to regulate the levels of sugar in the blood.

Tools to model diabetes in the lab generally rely on mice or on cells in a petri dish or test tube. Both these systems have their own problems. Mice, although they are comparable with humans in some respects, have a completely different metabolism and do not experience human diabetes comorbidities like heart attacks. And cell culture has, in the past, failed to replicate key markers of diabetes in a way that is comparable to human tissues.

That’s why Friesen and Andrew Khalil, another postdoc in Jaenisch’s lab, set out to create a new model. The researchers started with human pluripotent stem cells. These cells are the shapeshifters of the body — given the right conditions, they can assume the specific characteristics of almost any human cell type. The Jaenisch Lab has used them in the past to replicate liver cells, brain cells, and even cancerous tumors.

They decided to try to optimize an existing method for differentiating pluripotent cells into fat cells. The protocol created cells that looked like adipocytes, but these cells did not recreate the conditions of healthy insulin signaling or insulin resistance seen in the human body in type 2 diabetes. When healthy adipocytes encounter insulin in the human body, they respond by taking up glucose out of the bloodstream. These lab-made fat cells weren’t doing that, unless the researchers cranked up insulin levels to a thousand times higher than levels ever seen in humans. “Taking up glucose [in response to normal levels on insulin] is really the main function of an adipocyte, so if the model fails to do that, anything downstream in terms of disease research is not going to work either,” Friesen said.

Friesen and Khalil wondered if the lab-grown adipocytes’ low sensitivity to insulin could be a product of the conditions in which they grew. “We thought that maybe this happens because we’re feeding them an artificial culture medium, with all kinds of extra supplements that might be inhibiting their metabolic response,” Friesen said.

Friesen and Khalil decided to use a method called the Design of Experiments approach, which allows researchers to tease out the contributions of different factors to a specific outcome. Informed by this approach, they created nearly 30 different media compositions, each with slightly different levels of key ingredients such as glucose, insulin, the growth factor IGF-1, and albumin, a protein found in blood serum.

The medium that worked best had concentrations of insulin and glucose that were similar to the levels in the human body. When grown in this new medium, the cells responded to much lower concentrations of insulin, just like cells in the body. “So this is our healthy adipocyte,” Friesen said. “Next we wanted to see if we could make a disease model out of this — to make it an insulin-resistant adipocyte like you would see in the progression to type 2 diabetes.”

To desensitize the cells, they flooded the media with insulin for a short period of time. This caused the cells to become less sensitive to the hormone, and respond similarly to diabetic or pre-diabetic fat cells in a living person.

The researchers could then study how the cells responded to the change — such as what genes the insulin resistant cells expressed that healthy cells did not — in order to tease out the underlying genetics of insulin resistance. “We saw small changes in a lot of genes that are metabolism regulated, so that seems to be pointing to a deficiency of the metabolism or mitochondria of the insulin-resistant cells,” Friesen said. “That’s one thing we want to pursue in the future — figure out what is wrong with their metabolism, and then hopefully how to fix it.”

Now that they have created this new model for studying insulin resistance in fat cells, the researchers hope to develop similar procedures for other cells affected in diabetes.  “It seems that with some modifications, we can apply this method to other tissues as well,” Friesen said. “In the future, this will hopefully lead to a unified system for all stem cell-derived tissues, including liver, skeletal muscle, and other cell types, to get a really robust insulin response.”

Ankur Jain Named as Pew Scholar in Biomedical Sciences
Merrill Meadow | Whitehead Institute
June 13, 2022

The Pew Charitable Trusts has selected Whitehead Institute Member Ankur Jain to be a 2022 Pew Scholar in the Biomedical Sciences. The Pew program provides funding to young investigators of outstanding promise who work in areas of science relevant to the advancement of human health.

Jain, who joined the Whitehead Institute faculty in 2019, is one of 22 scientists selected to receive this year’s honor, chosen from among 197 nominations submitted by leading U.S. academic and research institutions. “I am grateful to the Pew Trusts for funding our work, and thrilled to be a part of the Pew community,” says Jain, who is also an assistant professor of biology and the Thomas D. and Virginia W. Cabot Career Development Professor at Massachusetts Institute of Technology.

The Pew award will provide research support for the next four years, enabling him to study the role of evolutionarily ancient metabolites called polyamines, which are essential for cell growth and survival.

“Polyamine concentrations within cells are carefully regulated, and disruptions in polyamine production are known to be associated with conditions ranging from cancer and aging to neurological disorders such as Parkinson’s disease” Jain explains. “But, despite being studied for more than a century, the specific role polyamines play in both healthy and diseased cells remains obscure. This is due, in part, to a lack of technologies effective in probing polyamines.”

Jain’s lab will harness the cell’s own polyamine detection machinery to build new tools to inspect polyamines. Those tools will allow his team to measure and track polyamines in individual cells, study how cells maintain their polyamine content, and explore how changing polyamine levels affect cellular functions. “Ultimately, this work could provide the basis for novel strategies for treating cancer or promoting healthy aging,” Jain observes.

Previously, Jain received a 2017 NIH Pathway to Independence Award and was named a 2019 Packard Fellow for Science and Engineering. He is the third current Whitehead Member to be named a Pew Scholar, following in the steps of Mary Gehring (2010) and Jing-Ke Weng (2014). Former Whitehead Fellow Fernando Camargo, now professor of stem cell and regenerative biology at Harvard University, also became a Pew Scholar in 2010.

Launched in 1985, the Pew Scholars in the Biomedical Sciences program supports top U.S. scientists at the assistant professor level and has, since inception, provided nearly 1000 young investigators with  funding for research projects that, though seemingly risky, have the potential to benefit human health. Pew Scholars are selected by a national advisory committee of eminent scientists, who evaluate candidates on the basis of proven creativity.

More information about Jain’s selection, the 2022 class of Pew Scholars, and the Pew Scholars program is available here.

MIT announces 2022 Bose grants for ambitious ideas

Tenth anniversary of the program rewards three innovative projects.

Aaron Braddock | Office of the Provost
June 13, 2022

MIT Provost Cynthia Barnhart has announced three Professor Amar G. Bose Research Grants to support bold research projects across diverse areas of study including biology, engineering, and the humanities.

The three grants honor the visionary and bold thinking in the winning proposals of the following nine researchers: John J. and Dorothy Wilson Professor of Health Sciences and Technology and Electrical Engineering and Computer Science Sangeeta Bhatia; Carl Richard Soderberg Professor of Power Engineering Gang Chen; professor of biology Jianzhu Chen; associate professor of biology Michael Hemann; professor of anthropology and Margaret MacVicar Faculty Fellow Graham Jones; Latham Family Career Development Professor Sebastian Lourido; assistant professor of computer science Arvind Satayanaryan; Howard Hughes Medical Institute Professor Graham Walker; and David H. Koch Professor in Science Michael Yaffe;

“Innovation is born when a unique vision drives daring researchers to take on risky and adventurous projects, a notion that Amar Bose understood well,” says Barnhart. “With support and recognition from this program, these nine talented and forward-thinking faculty have the freedom to explore and study areas not typically backed by conventional funding sources.”

The program was named for the visionary founder of the Bose Corporation and MIT alumnus, Amar G. Bose ’51, SM ’52, ScD ’56. After gaining admission to MIT, Bose became a top math student and a Fulbright Scholarship recipient. He spent 46 years as a professor at MIT, led innovations in sound design, and founded the Bose Corporation in 1964. MIT launched the program a decade ago.

“The legendary explorations and innovations of Professor Amar Bose inspire the Bose Research Grant program,” says President Emerita and Professor Susan Hockfield. “The grants support projects that reach beyond the horizon and so would not receive funding from standard sources. Since its inception, the program has supported 49 MIT faculty to pursue their most compelling ideas and, in doing so, to join the Bose Fellows community of like-minded adventurers.”

The program, which has honored 35 projects to date, is a tribute to the legacy of Bose, who believed that passion and curiosity drive innovation. With that spirit in mind, the projects typically supported by the program are original, cross-disciplinary, and high-risk. The program has encouraged collaborative projects, as reflected in this year’s winners.

This year’s recipients are:

Gang Chen of the Department of Mechanical Engineering. With his proposal, “Photomolecular Effect and Clouds Thinning,” Chen will advance research into his discovery of a way in which photons can be absorbed by cleaving off water clusters from the water-air surface, significantly impacting technologies related to energy and water and climate models.

Graham Jones of the Anthropology Section and Arvind Satayanaryan of the Department of Electrical Engineering and Computer Science (EECS). Their “Magical Data Visualization” proposal uses performance magic to create new visualizations that are responsive to the users’ intent, potentially impacting how misinformation spreads.

Graham Walker, Michael Hemann, Michael Yaffe, Sebastian Lourido, Jianzhu Chen of the Department of Biology and Sangeeta Bhatia of EECS and the Institute of Medical Engineering and Science. Their proposal, “Addressing Critical Human Health Problems with a Special Heme-binding Peptide,” uses a recently discovered plant peptide that binds and sequesters a molecule critical in hemoglobin oxygen binding in a new way, which has significant implications on many health issues.

“This year, more than a dozen faculty members from departments across all five schools and the college participated in the evaluations,” says Chancellor for Academic Advancement Eric Grimson. “Their diverse perspectives were critical in assessing what was a very strong field of interesting proposals. We are grateful for their generous commitment of time and energy and the thoughtfulness with which they approached the selection process.”

The program explores out-of-the-box ideas that would face difficulty in acquiring funding through traditional means but have the potential for strong impacts on the scientific community. Any member of the faculty in any discipline in MIT’s five schools and college is eligible to submit a proposal for a Bose Research Grant, which provides funding over three years.

Yiyin Erin Chen

Education

  • Graduate: PhD, 2011, MIT; MD, 2013, Harvard Medical School
  • Undergraduate: BA, 2006, Biology, University of Chicago

Research Summary

Diverse commensal microbes colonize every surface of our bodies. We study the constant communication between these microbes and our immune system. We focus on our largest organ: the skin. By employing microbial genetics, immunologic approaches, and mouse models, we can dissect (1) the molecular signals used by microbes to educate our immune system and (2) how different microbial communities alter immune responses. Ultimately, we aim to harness these microbe-host interactions to engineer novel vaccines and therapeutics for human disease.

Awards

  • Howard Hughes Medical Institute Hanna H. Gray Fellow, 2018-2026
  • A.P. Giannini Postdoctoral Research Fellowship, 2018
  • Dermatology Foundation Research Fellowship, 2017