Yiyin Erin Chen and Sam Chunte Peng named as core members of Broad Institute and MIT
Broad Communications
July 12, 2022

Broad Institute of MIT and Harvard has named Erin Chen, a dermatologist and microbiologist, and Sam Peng, a biophysicist and physical chemist with expertise in single-molecule imaging, as core institute members.

Chen will join in January 2023 and will also serve as an assistant professor in the Department of Biology at MIT and an attending dermatologist at Massachusetts General Hospital. Peng joined in July 2022 and will serve as an assistant professor in the Department of Chemistry at MIT.

Chen’s lab will study the communication between the immune system and the diverse microbes that colonize every surface of the human body, with a focus on the human body’s largest organ, the skin.

Peng’s lab will develop novel probes and microscopy techniques to visualize the dynamics of individual molecules in living cells, which will improve the understanding of molecular mechanisms underlying human diseases.

“We are delighted to welcome Sam and Erin to the Broad community,” said Todd Golub, director of the Broad. “These creative scientists are each taking inventive approaches to understand the molecular signals and interactions that underlie biological processes in health and disease. These insights will help further the Broad’s mission of advancing the understanding and treatment of human disease.”

Erin Chen.
Erin Chen

Erin Chen earned her BA in biology from the University of Chicago, her PhD from MIT, and her MD from Harvard Medical School. Prior to joining the Broad, Chen was a Howard Hughes Medical Institute Hanna Gray Postdoctoral Fellow at Stanford University, in the lab of Michael Fischbach. She was also an attending dermatologist at the University of California San Francisco and at the San Francisco VA Medical Center. During her postdoctoral research, Chen developed genetic methods to study harmless commensal skin bacteria. She engineered these bacteria to generate anti-tumor immunity, pioneering a novel approach to vaccination and cancer immunotherapy.

At the Broad, members of the Chen lab will continue to employ microbial genetics, immunologic approaches, and mouse models to dissect the molecular signals used by commensal microbes to educate the immune system. Ultimately, Chen aims to harness these microbe-host interactions to engineer novel therapeutics for human disease.

“I’m excited to join the collaborative scientific community at the Broad and MIT, including those who have pioneered novel tools for examining biological mechanisms at higher spatial resolution,” said Chen. “The biology I study is quite basic, but I’m motivated by the potential impact it could have on patients. Figuring out how commensal skin bacteria are captured by the immune system could unlock a whole new therapeutic toolbox.”

Sam Peng
Sam Peng

Sam Peng earned his BS in chemistry from the University of California, Berkeley, and his PhD from MIT in physical chemistry. He completed his postdoctoral research at Stanford University as an NIH K99 Pathway to Independence scholar in the lab of Steve Chu. During his postdoctoral research, he developed long-term single molecule imaging in live cells using a novel class of nanoprobes. He applied this new technique to study axonal transport in neurons and the molecular dynamics of dynein — a motor protein involved in transporting cargo in cells.

At the Broad, the Peng group will aim to elucidate the molecular mechanisms underlying human diseases. Lab members will develop and integrate a diverse toolbox spanning single-molecule microscopy, super-resolution microscopy, spectroscopy, nanomaterial engineering, biophysics, chemical biology, and quantitative modeling to uncover previously unexplored biological processes. With bright and photostable probes, lab members will have unprecedented capability to record ultra-long-term “molecular movies” in living systems with high spatiotemporal resolutions and to reveal molecular interactions that drive biological functions. Peng’s group will focus on studying molecular dynamics, protein-protein interactions, and cellular heterogeneity involved in neurobiology and cancer biology. Their long-term goal is to translate these mechanistic insights into drug discovery.

“Because my research is so multi-disciplinary, joining the Broad and MIT communities allows us to integrate a range of experimental tools and to collaborate with colleagues and students from diverse backgrounds,” said Peng. “I’m excited to see how our techniques can enable discoveries for a variety of cellular processes, including those underlying complex brain functions and dysfunctions. Many problems that previously seemed inaccessible now appear to be within reach in the foreseeable future.”

Lab-grown fat cells help scientists understand type 2 diabetes
Eva Frederick | Whitehead Institute
June 16, 2022

In research published June 17 in the journal Science Advances, researchers in the lab of Whitehead Institute Founding Member Rudolf Jaenisch present a way to create fat cells that can be modified to display different levels of insulin sensitivity.

The cells accurately model healthy insulin metabolism, as well as insulin resistance, one of the key hallmarks of type 2 diabetes. “This system, I think, will be really useful for studying the mechanisms of this disease,” said Jaenisch, who is also a professor of biology at the Massachusetts Institute of Technology (MIT).

“It’s really exciting,” said Max Friesen, a postdoctoral researcher in Jaenisch’s lab and a first author of the study. “This is the first time that you can actually use a human stem cell-derived [fat cell] to show a real insulin response.”

Body fat — also known as adipose tissue — is essential for regulating your body’s metabolism and plays an important role in the storage and release of energy. When fat cells called adipocytes encounter the hormone insulin, they suck up sugar from the blood and store it for future use.

But over many years, factors such as genetics, stress, certain diets, or polluted air or water can cause this process to go awry, leading to type 2 diabetes. In this disease, adipocytes, as well as cells in the muscles and liver, become resistant to insulin and therefore unable to regulate the levels of sugar in the blood.

Tools to model diabetes in the lab generally rely on mice or on cells in a petri dish or test tube. Both these systems have their own problems. Mice, although they are comparable with humans in some respects, have a completely different metabolism and do not experience human diabetes comorbidities like heart attacks. And cell culture has, in the past, failed to replicate key markers of diabetes in a way that is comparable to human tissues.

That’s why Friesen and Andrew Khalil, another postdoc in Jaenisch’s lab, set out to create a new model. The researchers started with human pluripotent stem cells. These cells are the shapeshifters of the body — given the right conditions, they can assume the specific characteristics of almost any human cell type. The Jaenisch Lab has used them in the past to replicate liver cells, brain cells, and even cancerous tumors.

They decided to try to optimize an existing method for differentiating pluripotent cells into fat cells. The protocol created cells that looked like adipocytes, but these cells did not recreate the conditions of healthy insulin signaling or insulin resistance seen in the human body in type 2 diabetes. When healthy adipocytes encounter insulin in the human body, they respond by taking up glucose out of the bloodstream. These lab-made fat cells weren’t doing that, unless the researchers cranked up insulin levels to a thousand times higher than levels ever seen in humans. “Taking up glucose [in response to normal levels on insulin] is really the main function of an adipocyte, so if the model fails to do that, anything downstream in terms of disease research is not going to work either,” Friesen said.

Friesen and Khalil wondered if the lab-grown adipocytes’ low sensitivity to insulin could be a product of the conditions in which they grew. “We thought that maybe this happens because we’re feeding them an artificial culture medium, with all kinds of extra supplements that might be inhibiting their metabolic response,” Friesen said.

Friesen and Khalil decided to use a method called the Design of Experiments approach, which allows researchers to tease out the contributions of different factors to a specific outcome. Informed by this approach, they created nearly 30 different media compositions, each with slightly different levels of key ingredients such as glucose, insulin, the growth factor IGF-1, and albumin, a protein found in blood serum.

The medium that worked best had concentrations of insulin and glucose that were similar to the levels in the human body. When grown in this new medium, the cells responded to much lower concentrations of insulin, just like cells in the body. “So this is our healthy adipocyte,” Friesen said. “Next we wanted to see if we could make a disease model out of this — to make it an insulin-resistant adipocyte like you would see in the progression to type 2 diabetes.”

To desensitize the cells, they flooded the media with insulin for a short period of time. This caused the cells to become less sensitive to the hormone, and respond similarly to diabetic or pre-diabetic fat cells in a living person.

The researchers could then study how the cells responded to the change — such as what genes the insulin resistant cells expressed that healthy cells did not — in order to tease out the underlying genetics of insulin resistance. “We saw small changes in a lot of genes that are metabolism regulated, so that seems to be pointing to a deficiency of the metabolism or mitochondria of the insulin-resistant cells,” Friesen said. “That’s one thing we want to pursue in the future — figure out what is wrong with their metabolism, and then hopefully how to fix it.”

Now that they have created this new model for studying insulin resistance in fat cells, the researchers hope to develop similar procedures for other cells affected in diabetes.  “It seems that with some modifications, we can apply this method to other tissues as well,” Friesen said. “In the future, this will hopefully lead to a unified system for all stem cell-derived tissues, including liver, skeletal muscle, and other cell types, to get a really robust insulin response.”

Ankur Jain Named as Pew Scholar in Biomedical Sciences
Merrill Meadow | Whitehead Institute
June 13, 2022

The Pew Charitable Trusts has selected Whitehead Institute Member Ankur Jain to be a 2022 Pew Scholar in the Biomedical Sciences. The Pew program provides funding to young investigators of outstanding promise who work in areas of science relevant to the advancement of human health.

Jain, who joined the Whitehead Institute faculty in 2019, is one of 22 scientists selected to receive this year’s honor, chosen from among 197 nominations submitted by leading U.S. academic and research institutions. “I am grateful to the Pew Trusts for funding our work, and thrilled to be a part of the Pew community,” says Jain, who is also an assistant professor of biology and the Thomas D. and Virginia W. Cabot Career Development Professor at Massachusetts Institute of Technology.

The Pew award will provide research support for the next four years, enabling him to study the role of evolutionarily ancient metabolites called polyamines, which are essential for cell growth and survival.

“Polyamine concentrations within cells are carefully regulated, and disruptions in polyamine production are known to be associated with conditions ranging from cancer and aging to neurological disorders such as Parkinson’s disease” Jain explains. “But, despite being studied for more than a century, the specific role polyamines play in both healthy and diseased cells remains obscure. This is due, in part, to a lack of technologies effective in probing polyamines.”

Jain’s lab will harness the cell’s own polyamine detection machinery to build new tools to inspect polyamines. Those tools will allow his team to measure and track polyamines in individual cells, study how cells maintain their polyamine content, and explore how changing polyamine levels affect cellular functions. “Ultimately, this work could provide the basis for novel strategies for treating cancer or promoting healthy aging,” Jain observes.

Previously, Jain received a 2017 NIH Pathway to Independence Award and was named a 2019 Packard Fellow for Science and Engineering. He is the third current Whitehead Member to be named a Pew Scholar, following in the steps of Mary Gehring (2010) and Jing-Ke Weng (2014). Former Whitehead Fellow Fernando Camargo, now professor of stem cell and regenerative biology at Harvard University, also became a Pew Scholar in 2010.

Launched in 1985, the Pew Scholars in the Biomedical Sciences program supports top U.S. scientists at the assistant professor level and has, since inception, provided nearly 1000 young investigators with  funding for research projects that, though seemingly risky, have the potential to benefit human health. Pew Scholars are selected by a national advisory committee of eminent scientists, who evaluate candidates on the basis of proven creativity.

More information about Jain’s selection, the 2022 class of Pew Scholars, and the Pew Scholars program is available here.

MIT announces 2022 Bose grants for ambitious ideas

Tenth anniversary of the program rewards three innovative projects.

Aaron Braddock | Office of the Provost
June 13, 2022

MIT Provost Cynthia Barnhart has announced three Professor Amar G. Bose Research Grants to support bold research projects across diverse areas of study including biology, engineering, and the humanities.

The three grants honor the visionary and bold thinking in the winning proposals of the following nine researchers: John J. and Dorothy Wilson Professor of Health Sciences and Technology and Electrical Engineering and Computer Science Sangeeta Bhatia; Carl Richard Soderberg Professor of Power Engineering Gang Chen; professor of biology Jianzhu Chen; associate professor of biology Michael Hemann; professor of anthropology and Margaret MacVicar Faculty Fellow Graham Jones; Latham Family Career Development Professor Sebastian Lourido; assistant professor of computer science Arvind Satayanaryan; Howard Hughes Medical Institute Professor Graham Walker; and David H. Koch Professor in Science Michael Yaffe;

“Innovation is born when a unique vision drives daring researchers to take on risky and adventurous projects, a notion that Amar Bose understood well,” says Barnhart. “With support and recognition from this program, these nine talented and forward-thinking faculty have the freedom to explore and study areas not typically backed by conventional funding sources.”

The program was named for the visionary founder of the Bose Corporation and MIT alumnus, Amar G. Bose ’51, SM ’52, ScD ’56. After gaining admission to MIT, Bose became a top math student and a Fulbright Scholarship recipient. He spent 46 years as a professor at MIT, led innovations in sound design, and founded the Bose Corporation in 1964. MIT launched the program a decade ago.

“The legendary explorations and innovations of Professor Amar Bose inspire the Bose Research Grant program,” says President Emerita and Professor Susan Hockfield. “The grants support projects that reach beyond the horizon and so would not receive funding from standard sources. Since its inception, the program has supported 49 MIT faculty to pursue their most compelling ideas and, in doing so, to join the Bose Fellows community of like-minded adventurers.”

The program, which has honored 35 projects to date, is a tribute to the legacy of Bose, who believed that passion and curiosity drive innovation. With that spirit in mind, the projects typically supported by the program are original, cross-disciplinary, and high-risk. The program has encouraged collaborative projects, as reflected in this year’s winners.

This year’s recipients are:

Gang Chen of the Department of Mechanical Engineering. With his proposal, “Photomolecular Effect and Clouds Thinning,” Chen will advance research into his discovery of a way in which photons can be absorbed by cleaving off water clusters from the water-air surface, significantly impacting technologies related to energy and water and climate models.

Graham Jones of the Anthropology Section and Arvind Satayanaryan of the Department of Electrical Engineering and Computer Science (EECS). Their “Magical Data Visualization” proposal uses performance magic to create new visualizations that are responsive to the users’ intent, potentially impacting how misinformation spreads.

Graham Walker, Michael Hemann, Michael Yaffe, Sebastian Lourido, Jianzhu Chen of the Department of Biology and Sangeeta Bhatia of EECS and the Institute of Medical Engineering and Science. Their proposal, “Addressing Critical Human Health Problems with a Special Heme-binding Peptide,” uses a recently discovered plant peptide that binds and sequesters a molecule critical in hemoglobin oxygen binding in a new way, which has significant implications on many health issues.

“This year, more than a dozen faculty members from departments across all five schools and the college participated in the evaluations,” says Chancellor for Academic Advancement Eric Grimson. “Their diverse perspectives were critical in assessing what was a very strong field of interesting proposals. We are grateful for their generous commitment of time and energy and the thoughtfulness with which they approached the selection process.”

The program explores out-of-the-box ideas that would face difficulty in acquiring funding through traditional means but have the potential for strong impacts on the scientific community. Any member of the faculty in any discipline in MIT’s five schools and college is eligible to submit a proposal for a Bose Research Grant, which provides funding over three years.

Yiyin Erin Chen

Education

  • Graduate: PhD, 2011, MIT; MD, 2013, Harvard Medical School
  • Undergraduate: BA, 2006, Biology, University of Chicago

Research Summary

Diverse commensal microbes colonize every surface of our bodies. We study the constant communication between these microbes and our immune system. We focus on our largest organ: the skin. By employing microbial genetics, immunologic approaches, and mouse models, we can dissect (1) the molecular signals used by microbes to educate our immune system and (2) how different microbial communities alter immune responses. Ultimately, we aim to harness these microbe-host interactions to engineer novel vaccines and therapeutics for human disease.

Awards

  • Howard Hughes Medical Institute Hanna H. Gray Fellow, 2018-2026
  • A.P. Giannini Postdoctoral Research Fellowship, 2018
  • Dermatology Foundation Research Fellowship, 2017
Novel screening approach reveals protein that helps parasites enter and leave their hosts
Eva Frederick | Whitehead Institute
April 28, 2022

Whitehead Institute Member Sebastian Lourido and his lab members study the parasite Toxoplasma gondii. The parasite causes the disease toxoplasmosis, which can be dangerous for pregnant or immunocompromised patients.

As the parasite evolved over millennia, its phylum (the Apicomplexan parasites) split off from other branches of life, which poses a challenge to researchers hoping to understand its genetics. “Toxoplasma is very highly diverged from the organisms that we typically study, like mice, yeast and [nematodes],” said Lourido lab researcher and Massachusetts Institute of Technology (MIT) graduate student Tyler Smith. “Our lab focuses a lot on developing toolkits to probe and study the genomes of these parasites.”

Now, in a paper published in the journal Nature Microbiology on April 28, Smith and colleagues describe a new method for determining the role of genes within the genome of the parasite. The method can be conducted by a single investigator, and goes a step beyond simply assessing whether or not a given gene is essential for survival. By inserting specific sequences — such as those encoding fluorescent markers or sequences that can turn a gene on and off — throughout the Toxoplasma genome, the method allows the researchers to visualize where an individual gene’s product resides within the parasites and identify when in the life cycle important genes became essential, providing more detailed information than a traditional CRISPR screen.

Although the method could theoretically be used with any gene family, Smith and Lourido decided to first focus on a family of proteins called kinases, the genetic code for which comprises around 150 of Toxoplasma’s 8,000 total genes.

“Kinases are interesting from a basic biology perspective because they are signaling hubs of basic biological processes,” said Smith, who is first author of the study. “From a more translational perspective, kinases are really common drug targets. We have a lot of inhibitors that work with kinases. For some cancers that are linked to specific kinases, the inhibitors can be chemotherapies.”

Using the method, researchers discovered a gene encoding a previously unstudied kinase which they named SPARK. They were able to show that the SPARK kinase is involved in the process of the parasites entering and leaving host cells, and future research on inhibitors of SPARK could lead to new treatments for toxoplasmosis. “Identifying these kinases that are really vital for these critical decision points in a parasite’s life cycle could be really fruitful for developing new therapeutics,” said Lourido, who is also an associate professor of biology at MIT.

New dimensions of screening

Many CRISPR screens use gene editing technology to knock out genes throughout the genomes of a sample of cells, creating a population where every gene in the genome is mutated in at least one of the cells. Then, by looking at which mutations have detrimental effects on the cells, researchers can extrapolate which genes are essential for survival.

But the workings of a whole organism are infinitely more complicated than just survival or death, and researchers are often faced with a challenge when it comes to figuring out exactly what different gene products are doing in the cells. That’s why Smith and Lourido decided to design a method of screening for Toxoplasma genes that could provide more information about what the products of those genes do. “CRISPR screens can tell you which genes are important, but it doesn’t give you much information about why they’re important,” Smith said. “We were seeking to make a kind of platform that could look at other dimensions.”

Smith and Lourido used CRISPR technology to introduce small amounts of new DNA into the parasites’ genes that code for kinases. The new DNA included sequences encoding a fluorescent marker protein and sequences that could be used to manipulate gene expression levels.

After creating a population of parasites modified this way, the researchers then used imaging to determine where the fluorescently tagged proteins had ended up in the cells, and to observe what happened in the cells when the proteins were turned off. “Being able to see different cell division phenotypes — for instance parasites that either failed to replicate at all, or tried to replicate but would have some abnormalities — that gets us closer and allows us to generate hypotheses as to actually why these kinases are important, not just whether or not they are important,” Smith said.

The depletion of some proteins caused the parasites to die instantly, while others affected the parasites at a later point in their life cycles, so they would drop out of the population more slowly. “Cells with mutations in these kinases replicate fine, but a problem might arise when they need to leave their host cell and enter a new host cell later on down the line,” Smith said.

A “SPARK” of inspiration

After the screen, the researchers followed up on one of these kinases in particular, which they called SPARK (short for Store Potentiating/Activating Regulatory Kinase). Mutants depleted of SPARK died, but not until a later phase of the life cycle. Smith and Lourido conducted further experiments to understand SPARK’s role, and found evidence that the protein was involved in the release of calcium in the cell that is required for a parasite to enter or leave a host cell.

“The thing I found very interesting about SPARK is that it’s a kinase that’s very different from the analogous kinase in other model organisms, but is conserved throughout all of the apicomplexan phylum,” Smith said. “That’s the phylum that includes Toxoplasma and a bunch of other single-celled parasites like Plasmodium, which is the malaria parasite.”

Because SPARK is far different from its human analog and essential to the parasite’s life cycle, a SPARK-specific kinase inhibitor could be used to treat toxoplasmosis by killing the parasite without affecting the patient. “The hope would be that you can target SPARK and inhibit it without hitting mammalian kinases,” Smith said. “It’s easy enough to design something that kills a cell, but the trick is only killing parasites and not your own cells.”

In the future, the researchers hope to turn their new screening method to other families of genes, such as transcription factors, to understand their function in the parasites. “Our results have been quite encouraging in that we think this method will be scalable, and we can target larger gene sets in the future,” Smith said. “I think the ultimate end goal would be to do the whole genome.”

“There’s this whole universe of parasite proteins that we know so little about, where this type of analysis will be incredibly insightful.” Lourido said. “We’re really very excited about scaling it up further.

Opioids and the brain: new insights through epigenetics
Greta Friar | Whitehead Institute
April 18, 2022

Drug overdose, mostly from opioid use, is the leading cause of accidental death in the United States. Prior studies of twins have revealed that genetics play a key role in opioid use disorder. Researchers know that a mixture of genetic and environmental risk factors contribute to heritability of the disorder, but identifying the specific risk factors is challenging. Opioid use disorder is complex, so instead of one or a few genes causing the disorder, there may be many contributing factors that can combine in different ways. Researchers want to understand which genes contribute to opioid use disorder because this will lead to a better understanding of its underlying biology and could help identify people who will be most at risk if exposed to opioids, enabling researchers, health care providers, and social services to develop strategies for prevention, treatment, and support.

The usual approach for finding genes associated with disease risk is to do a genome wide association study, which compares the genetics of many people to identify patterns in different gene versions occurring in association with a disease. This approach is being used to look at opioid use disorder, but requires many more patient samples than are currently available to reach clear conclusions. Researchers from multiple research universities and institutes, including Whitehead Institute Member Olivia Corradin and her former PhD advisor, Case Western Reserve University Professor Peter Scacheri; as well as Icahn School of Medicine Professor Schahram Akbarian; Eric O. Johnson, a distinguished fellow at RTI International; Dr. Kiran C. Patel College of Allopathic Medicine at Nova South Eastern University Professor Deborah C. Mash; and Richard Sallari of Axiotl, Inc., developed a shortcut for identifying genes that are associated with opioid use disorder and may contribute to it using only a small number of patient samples. Genome wide studies may require hundreds of thousands of samples, but this new method, described in their research published in the journal Molecular Psychiatry on March 17, uses only around 100 samples—51 cases and 51 controls—to narrow in on five candidate genes.

“With this work, we think we’re only seeing the tip of the iceberg of the complex, diverse factors contributing to opioid overdose,” says Corradin, who is also an assistant professor of biology at the Massachusetts Institute of Technology. “However, we hope our findings can help prioritize genes for further study, to speed up the identification of risk markers and possible therapeutic targets.”

In order to learn more about the underlying biology of opioid use disorder, the researchers analyzed brain tissue samples from people who had died of opioid overdoses and compared them with samples from people with no known opioid use history who died of other accidental causes. They specifically looked at neurons from the dorsolateral prefrontal cortex, an area of the brain known to play important roles in addiction. Instead of analyzing the genes in these cells directly, the researchers instead looked at the regulators of the genes’ activity, and searched for changes in these regulators that could point them to genes of interest.

To identify a gene, first map its community

Genes have DNA regions, often close to the gene, that can ratchet up and down the gene’s expression, or the strength of its activity in certain cells. Researchers have only recently been able to map the three-dimensional organization of DNA in a cell well enough to identify all of the regulators that are close to and acting upon target genes. Corradin and her collaborators call a gene’s collection of close regulatory elements its “plexus.” Their approach finds genes of interest by searching for patterns of variation across each gene’s entire plexus, which can be easier to spot with a small sample size.

The patterns that the researchers look for in a plexus are epigenetic changes: differences in the chemical tags that affect regulatory DNA and in turn, modify the expression of the regulators’ target gene. In this case, the researchers looked at a type of epigenetic tag called H3K27 acetylation, which is linked to increases in the activity of regulatory regions. They found nearly 400 locations in the DNA that consistently had less H3K27 acetylation in the brains of people who died of opioid overdose, which would lower activity of target genes. They also identified under-acetylated DNA locations that were often specific to individuals rather than uniform across all opioid overdose cases. The researchers then looked at how many of those locations belonged to regulatory elements in the same plexus. Surprisingly, these individual-specific changes often occurred within the same gene’s plexus. A gene whose plexus had been heavily affected as a collective was flagged as a possible contributor to opioid use disorder.

“We know that the factors that contribute to opioid use disorder are numerous, and that it’s an extremely complex disease that by definition is going to be extremely heterogeneous,” Scacheri says. “The idea was to figure out an approach that embraces that heterogeneity, and then try to spot the themes within it.”

Using this approach, the researchers identified five candidate genes, ASTN2, KCNMA1, DUSP4, GABBR2, and ENOX1. One of the genes, ASTN2, is related to pain tolerance, while KCNMA1DUSP4, and GABBR2 are active in signaling pathways that have been linked more broadly to addiction. Follow up experiments can confirm whether these genes contribute to opioid use disorder.

The five genes and their plexi are also involved in the heritability of generalized anxiety disorder, metrics of tolerance for risk-taking, and educational attainment. Heritability of these traits and opioid use disorder have previously been found to coincide, and people with opioid use disorder often also have generalized anxiety. Furthermore, heritability of these traits and opioid use disorder all have been associated with early childhood adversity. These connections suggest the possibility that early childhood adversity could be contributing to the epigenetic changes observed by the researchers in the brains of people who died of opioid overdose—a useful hypothesis for further research.

The researchers hope that these results will provide some insights into the genetics and neurobiology of opioid use disorder. They are interested in moving their research forward in several ways: they would like to see if they can identify more candidate genes by increasing their sample number, examine different parts of the brain and different cell types, and further analyze the genes already identified. They also hope that their results demonstrate the potency of their approach, which was able to discern useful patterns and identify candidate genes from the neurons of only 51 cases.

“We’re trying a different approach here that relies on this idea of convergence and leverages our understanding of the three-dimensional architecture of DNA, and I hope this approach will be applied to further our understanding of all sorts of complex diseases,” Scacheri says.

Thyroid hormone found to be a missing ingredient in lab-made liver cells
Greta Friar | Whitehead Institute
April 20, 2022

Stem cells are the versatile building blocks from which every cell type in the body, from neurons, to skin cells, to blood cells, is ultimately descended. Researchers have also figured out how to turn stem cells into different cell types in the lab, which has been helpful for studying health and disease in their normal cellular contexts, and could be used to generate cells for medical transplants. Whitehead Institute Founding Member Rudolf Jaenisch not only uses these cells in his research, but has spent much of his career discovering and improving the methods for making accurate laboratory models out of stem cell-derived cells.

One challenge that Jaenisch’s lab is focusing on is how to eliminate the differences between cell types as they are found in the body and their stem cell-derived equivalents. In particular, they have found that stem-cell derived cells are often immature, more closely resembling the cells found in fetuses rather than in adults. These differences can make the cells less accurate research models and prevent them from being medically useful as functional transplant cells. Stem cells in the body receive complex cocktails of molecular signals as they transform into different cell types. The challenge for researchers lies in figuring out which of the many molecular signals in the body are relevant and then get the recipe exactly right in their recreations.

Postdoc Haiting Ma in the Jaenisch lab decided to tackle this problem for hepatocytes, the main type of cell in the liver. In work published in Cell Stem Cell on April 21, Jaenisch and Ma share their findings on why stem cell-derived liver cells resemble fetal liver cells, and what’s needed to make them mature—including an important role for a thyroid hormone.

The liver filters everything that enters the body through the digestive system. It helps to store and modify nutrients, safely break down toxins and waste, process medications, and more. There is still a lot to learn about how the liver functions, and what goes wrong in a number of liver-associated diseases, and accurate stem cell-derived models will help with that research. Liver cells are also needed to treat end-stage liver disease, and if researchers could mass produce stem cell-derived liver cells that can function safely in an adult liver, this could help to meet the demand for liver cell transfusions.

For this study, Jaenisch and Ma grew liver cells from stem cells in two setups: a typical 2D culture, in which the cells were grown in a dish, and a 3D spheroid, in which cells that started out in the normal culture were then allowed to grow into three-dimensional balls of cells. The spheroids can be designed to mimic some aspects of the cells’ natural environment in ways that a 2D culture cannot. In each case, the researchers exposed the cells to a carefully timed mixture of signals to prompt them to develop into liver cells. The researchers then analyzed cells from both the 2D and 3D cultures and compared them to primary liver cells, or cells from a body, using a variety of techniques to look for differences related to DNA and gene expression. They found that the cells cultivated in the 3D system were closer to cells from the adult body than those in the 2D system.

“The 3D culture not only contributes to maturation of the liver cells, but it can also be used to scale up production of the cells, which could be very useful for cell therapies in the future,” Ma says.

However, both sets of lab-derived cells lacked important features of adult liver cells. The analyses pointed to one important missing factor in particular: in the adult liver cells, a hormone receptor called Thyroid Hormone Receptor Beta (THRB) binds to a number of places in the DNA. THRB then senses the presence or absence of thyroid hormones, and regulates a variety of gene expression processes accordingly. However, the researchers found that while the stem cell-derived liver cells made the right amount of THRB, something was preventing it from binding where it should and performing its function.

Normally, THRB has a partner that helps it bind to DNA, the thyroid hormone T3. When the researchers added T3 to their 2D and 3D cultures, this led to more typical binding of THRB, which in turn made the cells—especially the cells from the 3D culture—more closely resemble adult liver cells in a number of ways. Improved THRB binding increased the expression of key liver genes, restored the activity of regulatory elements in the DNA that modify gene expression, and reduced the expression of a fetal liver gene. The researchers also gained insights into the molecules that THRB interacts with and the mechanisms by which it affects liver maturation, painting a more complete picture of its key roles in liver cells.

Altogether, this work led to a better recipe for making adult liver cells from stem cells in the lab–using the 3D spheroid culture and adding T3. When cells developed with this approach were incorporated into the livers of mice, the cells integrated successfully and the liver maintained normal function long term.

The new and improved stem cell-derived liver cells are still not a perfect match for adult liver cells—the researchers have ideas about which missing characteristics they could tackle next—but the current cells’ ability to seamlessly integrate into the liver, as well as indicators from the analyses that they would be good models for liver-associated diseases, suggest that they will be useful in a variety of projects.

“As we improve the authenticity of our stem cell-derived cell types, we open up new opportunities for research,” Jaenisch says. “We can build more accurate models in which to study high-impact diseases, such as liver diseases, diabetes, and chronic viral infections, and using those models we can develop strategies for treatment and prevention.”