3 Questions: Mariely Morales Burgos on the BSG-MSRP-Bio program

Undergraduate student and Gould Fellow discusses choosing a summer research lab, living in the Greater Boston Area, and managing imposter syndrome.

Lillian Eden | Department of Biology
August 28, 2025

Mariely Morales Burgos first fell in love with MIT while participating in the Quantitative Methods Workshop, a weeklong intensive offered in January to prepare students to analyze data in biology and neuroscience. Those skills have come in handy this summer while participating in the Bernard S. and Sophie G. Gould MIT Summer Research Program in Biology (BSG-MSRP-Bio), a ten-week training program for non-MIT undergraduate students interested in pursuing an academic career.

A Gould Fellow and McNair Scholar, Morales Burgos spent the summer mentored by Associate Professor of Biology Eliezer Calo, for whom the program served as a critical stepping stone in his own career. Calo is the first BSG-MSRP-Bio program alum to receive tenure at MIT. 

A rising senior at the University of Puerto Rico at Aguadilla, Morales Burgos spent the summer using zebrafish to study the molecular machinery responsible for making proteins. 

Three people standing in an interior lab space smiling at the camera
(from right to left) Mariely Morales Burgos, mentor and Associate Professor of Biology Eliezer Calo, and Adriana Camacho-Badillo in the lab at MIT. Camacho-Badillo, a returning BSG-MSRP-Bio student, encouraged Morales Burgos to apply for the program. Photo Credit: Mandana Sassanfar/MIT Department of Biology.

Q: How did you select your lab, and what have you been working on?

A: I knew I wanted to work in Eliezer’s lab after meeting him during a QMW faculty lunch. I felt like we really connected because of his genuine passion for science, commitment to his trainees, and the way he spoke about his lab and the care he puts into mentoring. 

My research focuses on ribosomes, which are the protein factories of the cell, and they’re essential to make what the cell needs to go through different developmental stages and through its most crucial processes. In early development, zebrafish and numerous other organisms depend on maternally deposited ribosomes and associated molecular components inherited directly from the oocyte. As time goes on, their own genomes activate, and they start being able to make their own ribosomes. What I’m studying is this transition from maternal to zygotic ribosomes during early development. We know this transition happens, but we don’t know how this transition is regulated, whether it happens passively, through dilution, or actively, through targeted cellular mechanisms.  

One skill that I’ve been able to learn here, other than just learning and applying techniques, is how to develop a whole project independently, how to think critically about the next step of my project, and what other questions I can ask.

Being able to work with a live animal organism and see the developmental stages in real-time, I thought that was really cool. And it really makes me appreciate the beauty of developmental biology, and just life in general.

Q: How did you prepare for the program, and what has it been like living and working in Boston and Cambridge? As a Gould Fellow, you also met with program supporters Mike Gould and Sara Moss, who established the Bernard S. and Sophie G. Gould fund to honor the memory of Mike’s parents. What was it like to meet and talk to Mike and Sara? 

A: Once we get accepted, we’re encouraged to start communication with our faculty. I had a few meetings with Eliezer to discuss some papers, and based on our discussion and the expectations for the project, I was able to read more and start preparing before I arrived.

Every few weeks beforehand, we had a meeting with Mandana and the rest of the cohort on Zoom, and we were talking on an app called GroupMe, and we exchanged socials, so when we came here, we weren’t complete, total strangers. 

When I’m not in the lab, I spend a lot of time with my roommates, and we like walking around Boston. It’s a very walkable city and has a lot of unique architecture, but Boston weather is very unpredictable. I’m from a tropical island, so I wish someone had told me to prepare for the rain and cold, but the July weather has been so nice. 

In Puerto Rico, you don’t have public transportation, so I’ve really enjoyed commuting. Our dorms are at Northeastern, so I take the bus, and it goes over the Charles, and it’s so beautiful. 

I’m a person who feels a lot of emotions, so I was the only one who cried when we met the Goulds. It was a bit embarrassing, but that’s okay. They told me to never lose the empathy that I have, no matter how hard my journey is, to keep on holding on to my sentimental side and keep working hard, and they’re so excited to see where we end up and what we end up doing.

Mariely Morales Burgos standing in front of a paper poster, indicating a certain point of data to three people
The summer research intensive culminated in a lively poster session. Photo Credit: Lillian Eden/MIT Department of Biology

Q: This program’s aim is to make research available for students who don’t have access to hands-on experience at their home institutions, so many students, including you, are embarking on independent research projects for the first time, which could trigger “imposter syndrome.” What was that experience like for you, and what advice would you give to future BSG-MSRP-Bio program participants? 

A: I was a little bit intimidated by the program, and didn’t apply the first time I had the opportunity. Then I did the Quantitative Methods Workshop, and those eight days were beautiful. I got to see how everybody loves collaborating and that the community here is very supportive. I met many wonderful faculty who were passionate about their research, and that exposure made me realize I would love to be part of a place like this. 

Imposter syndrome is something that I feel like most everybody deals with, but MSRP is a place that, if you’re willing to put in the work, everyone is willing to help you reach the places that you dream of being. It might feel intimidating to ask questions, and you could be scared of feeling like you don’t deserve to be in these spaces. But somebody who wants you to grow will answer your questions. I wanted to be able to work independently as soon as possible, because that really showcases your abilities, but no matter what, Eliezer, who’s mentoring me, his door is always open. 

What I advise is to really dive into your project and take advantage of everything this program offers. Working hard on your project, you get to fall in love with the process and the questions you’re trying to answer and science as a whole, and there’s nothing better than to spend the summer on a project that you love.

Growing to greatness: Professor Mary Gehring on plant epigenetics and becoming an HHMI Investigator

From the intricacies of plant reproduction to genome-wide analyses, Gehring’s lab delves deep into the epigenetic mechanisms shaping plant biology.

Jayashabari Shankar and Alex Tang | The Tech
September 5, 2024

Dr. Mary Gehring is a professor of biology at MIT and a core member of the Whitehead Institute for Biomedical Research. Her research focuses on how epigenetic mechanisms like DNA methylation influence gene regulation during plant reproduction and seed development in the model organism Arabidopsis thaliana. In the classroom, she teaches genetics (7.03), a required course for biology and biological engineering majors.

With her recent appointment as an Howard Hughes Medical Institute (HHMI) investigator, Gehring joins an elite legion of HHMI investigators at the Institute. New cohorts of investigators are only announced once every three years, and they receive $11 million in funding over a seven year term (which can be renewed). Three other MIT faculty received HHMI appointments this year: Gene-Wei Li, associate professor of biology, and brain and cognitive sciences professors Mehrdad Jazayeri and Steven Flavell.

Here, she shares her lab’s research, journey into plant biology, and what she values in undergraduate researchers.

TT: What does your lab conduct research in, and how has being named an HHMI investigator changed your plans, if at all?

My lab focuses on plant biology, particularly on how epigenetic mechanisms like DNA methylation affect gene regulation in plants, especially during reproduction and seed development. We mostly work with Arabidopsis thaliana, a model plant, but we’re also exploring other plant systems.

A typical day in the lab can vary, but it often starts with checking on our plants in the greenhouse. Depending on the day, we might pollinate plants for genetic crosses or genotyping them by isolating DNA and performing PCR. We’re particularly focused on understanding gene expression within seeds: we isolate different seed tissues, sort nuclei based on their properties, and then perform RNA sequencing. We also do a lot of chromatin profiling, histone modifications and DNA methylation analyses across the genome. Since much of our work is genome-wide, bioinformatics plays a big role in our research, with a significant amount of time spent on analyzing data.

It’s still sinking in, but being named an HHMI investigator certainly provides a new level of freedom. It allows us to pursue ideas without the constraints of specific grant funding, which is incredibly liberating. We’re considering expanding our research into new areas beyond epigenetics, like genome structure and chromosome dosage changes, while sticking with plant biology. This recognition has encouraged us to think bigger and explore new directions in our work.

TT: How far back do these interests extend for you?

My interest in plant biology started during my undergraduate years. I majored in biology and was eager to get involved in research. My real fascination with plants began when a new professor, with a background in plant biology, came to my school. I took her course on plant growth and development, which I found incredibly exciting. I was drawn to how plants communicate within their tissues and with each other. This led me to work on a research project for two years, culminating in a senior thesis on root development. After college, I took a year off to work in environmental consulting before heading to graduate school in Plant Biology at UC Berkeley.

TT: What perspectives and characteristics do you appreciate in undergraduate researchers?

Whether it’s undergraduates or postdocs, I value curiosity and dedication. For undergraduates, especially those in UROPs, it’s crucial that they are genuinely interested in the research and willing to ask questions when they don’t understand something. Balancing research with coursework and extracurriculars at MIT is challenging, so I also look for students who can manage their time well. It’s about being curious, dedicated, and communicative.

I hope there are students at MIT who are excited about plant research. It’s a vital area of biology, especially with the growing focus on climate change. While there isn’t a large presence of plant biology at MIT yet, I’m hopeful that it will expand in the coming years, and I’d love to see more students getting involved in this important field.

Student spotlight: Victory Yinka-Banjo (6-7)

The junior, who is majoring in computer science and molecular biology, wants to “make it a norm to lift others as I continue to climb.”

March 27, 2024