Pulin Li

Education

  • PhD, 2012, Chemical Biology, Harvard University
  • BS, 2006, Life Sciences, Peking University

Research Summary

We are curious about how circuits of interacting genes in individual cells enable multicellular functions, such as self-organizing into structured tissues. To address this question, we analyze genetic circuits in natural systems, combining quantitative measurements and mathematical modeling. In parallel, we test the sufficiency of the circuits and understand their design principles by multi-scale reconstitution, from genes to circuits to multicellular behavior, using synthetic biology and bioengineering tools. Together, we aim to provide both a quantitative understanding of embryonic development and new ways to engineer tissues.

Awards

  • New Innovator Award, National Institutes of Health Common Fund’s High-Risk, High-Reward Research Program, 2021
  • R.R. Bensley Award in Cell Biology, American Association for Anatomy, 2021
  • Santa Cruz Developmental Biology Young Investigator Award, 2016
  • NIH Pathway to Independence Award K99/R00 (NICHD), 2016
  • American Cancer Society Postdoctoral Fellowship, 2015
Measuring chromosome imbalance could clarify cancer prognosis

A study of prostate cancer finds “aneuploid” tumors are more likely to be lethal than tumors with normal chromosome numbers.

Anne Trafton | MIT News Office
May 13, 2019

Most human cells have 23 pairs of chromosomes. Any deviation from this number can be fatal for cells, and several genetic disorders, such as Down syndrome, are caused by abnormal numbers of chromosomes.

For decades, biologists have also known that cancer cells often have too few or too many copies of some chromosomes, a state known as aneuploidy. In a new study of prostate cancer, researchers have found that higher levels of aneuploidy lead to much greater lethality risk among patients.

The findings suggest a possible way to more accurately predict patients’ prognosis, and could be used to alert doctors which patients might need to be treated more aggressively, says Angelika Amon, the Kathleen and Curtis Marble Professor in Cancer Research in the Department of Biology and a member of the Koch Institute for Integrative Cancer Research.

“To me, the exciting opportunity here is the ability to inform treatment, because prostate cancer is such a prevalent cancer,” says Amon, who co-led this study with Lorelei Mucci, an associate professor of epidemiology at the Harvard T.H. Chan School of Public Health.

Konrad Stopsack, a research associate at Memorial Sloan Kettering Cancer Center, is the lead author of the paper, which appears in the Proceedings of the National Academy of Sciences the week of May 13. Charles Whittaker, a Koch Institute research scientist; Travis Gerke, a member of the Moffitt Cancer Center; Massimo Loda, chair of pathology and laboratory medicine at New York Presbyterian/Weill Cornell Medicine; and Philip Kantoff, chair of medicine at Memorial Sloan Kettering; are also authors of the study.

Better predictions

Aneuploidy occurs when cells make errors sorting their chromosomes during cell division. When aneuploidy occurs in embryonic cells, it is almost always fatal to the organism. For human embryos, extra copies of any chromosome are lethal, with the exceptions of chromosome 21, which produces Down syndrome; chromosomes 13 and 18, which lead to developmental disorders known as Patau and Edwards syndromes; and the X and Y sex chromosomes. Extra copies of the sex chromosomes can cause various disorders but are not usually lethal.

Most cancers also show very high prevalence of aneuploidy, which poses a paradox: Why does aneuploidy impair normal cells’ ability to survive, while aneuploid tumor cells are able to grow uncontrollably? There is evidence that aneuploidy makes cancer cells more aggressive, but it has been difficult to definitively demonstrate that link because in most types of cancer nearly all tumors are aneuploid, making it difficult to perform comparisons.

Prostate cancer is an ideal model to explore the link between aneuploidy and cancer aggressiveness, Amon says, because, unlike most other solid tumors, many prostate cancers (25 percent) are not aneuploid or have only a few altered chromosomes. This allows researchers to more easily assess the impact of aneuploidy on cancer progression.

What made the study possible was a collection of prostate tumor samples from the Health Professionals Follow-up Study and Physicians’ Health Study, run by the Harvard T.H. Chan School of Public Health over the course of more than 30 years. The researchers had genetic sequencing information for these samples, as well as data on whether and when their prostate cancer had spread to other organs and whether they had died from the disease.

Led by Stopsack, the researchers came up with a way to calculate the degree of aneuploidy of each sample, by comparing the genetic sequences of those samples with aneuploidy data from prostate genomes in The Cancer Genome Atlas. They could then correlate aneuploidy with patient outcomes, and they found that patients with a higher degree of aneuploidy were five times more likely to die from the disease. This was true even after accounting for differences in Gleason score, a measure of how much the patient’s cells resemble cancer cells or normal cells under a microscope, which is currently used by doctors to determine severity of disease.

The findings suggest that measuring aneuploidy could offer additional information for doctors who are deciding how to treat patients with prostate cancer, Amon says.

“Prostate cancer is terribly overdiagnosed and terribly overtreated,” she says. “So many people have radical prostatectomies, which has significant impact on people’s lives. On the other hand, thousands of men die from prostate cancer every year. Assessing aneuploidy could be an additional way of helping to inform risk stratification and treatment, especially among people who have tumors with high Gleason scores and are therefore at higher risk of dying from their cancer.”

“When you’re looking for prognostic factors, you want to find something that goes beyond known factors like Gleason score and PSA [prostate-specific antigen],” says Bruce Trock, a professor of urology at Johns Hopkins School of Medicine, who was not involved in the research. “If this kind of test could be done right after a prostatectomy, it could give physicians information to help them decide what might be the best treatment course.”

Amon is now working with researchers from the Harvard T.H. Chan School of Public Health to explore whether aneuploidy can be reliably measured from small biopsy samples.

Aneuploidy and cancer aggressiveness

The researchers found that the chromosomes that are most commonly aneuploid in prostate tumors are chromosomes 7 and 8. They are now trying to identify specific genes located on those chromosomes that might help cancer cells to survive and spread, and they are also studying why some prostate cancers have higher levels of aneuploidy than others.

“This research highlights the strengths of interdisciplinary, team science approaches to tackle outstanding questions in prostate cancer,” Mucci says. “We plan to translate these findings clinically in prostate biopsy specimens and experimentally to understand why aneuploidy occurs in prostate tumors.”

Another type of cancer where most patients have low levels of aneuploidy is thyroid cancer, so Amon now hopes to study whether thyroid cancer patients with higher levels of aneuploidy also have higher death rates.

“A very small proportion of thyroid tumors is highly aggressive and lethal, and I’m starting to wonder whether those are the ones that have some aneuploidy,” she says.

The research was funded by the Koch Institute Dana Farber/Harvard Cancer Center Bridge Project and by the National Institutes of Health, including the Koch Institute Support (core) Grant.

A supportive role for planarians’ multifaceted muscle
Greta Friar | Whitehead Institute
April 5, 2019

CAMBRIDGE, MA  — Planarians are flatworms best known for their incredible ability to regenerate all their body parts: chop a planarian in two and soon you will have two perfectly formed planarians. As Whitehead Institute Member Peter Reddien, also a professor of biology at Massachusetts Institute of Technology and an investigator with the Howard Hughes Medical Institute, has investigated planarians over the years, he has become increasingly fascinated with the functions of their muscle. Not only do planarians use muscle to move, but Reddien’s research group previously discovered they rely on muscle tissue to provide a full body map with instructions that helps guide stem cells to the right locations during both regeneration and normal turnover of cells. Muscle tissue does this by secreting positional signals that help cells identify where they are — and where they should be.

New research from Reddien and graduate student Lauren Cote shows that muscle serves yet another crucial function in planarians. In a paper published in Nature Communications on April 8, they show that muscle operates as the planarian’s connective tissue, providing basic architectural support for the body. Connective tissue functions in large part by secreting molecules that make up the extracellular matrix (ECM), a network of molecules outside of the body’s cells that provides tissues with, among other things, scaffolding, protection, separation of tissues, and a means of inter-tissue connection and communication. In vertebrates, including humans, connective tissue is a distinct tissue type containing dedicated cells such as fibroblasts that secrete most of the animal’s ECM proteins. Reddien and Cote found no such fibroblast-like cell type in planarians; instead, multipurpose muscle does it all.

The researchers began to suspect that planarian muscle might function as connective tissue when they discovered that the gene encoding a major type of ECM molecule, fibrous protein collagen, was expressed only in muscle. The researchers then catalogued the total collection of proteins found in the planarian’s ECM, called the matrisome, and tracked where the genes that code for those proteins were expressed. They identified nineteen collagen genes, and all nineteen were highly specific to muscle. The vast majority of other ECM genes followed suit.

To further test muscle’s role as connective tissue, the researchers silenced the gene hemicentin-1, which produces another ECM molecule expressed specifically in muscle. They found that when the gene was not expressed, the planarian’s inner tissues did not remain properly separated from its outer skin. In other words, a muscle-specific gene is necessary in the planarians they studied for the core connective tissue task of keeping tissues discrete.

Although it might seem unusual that planarians would use muscle tissue for both ECM secretion and body pattern maintenance, Reddien and Cote say the combination makes a certain sense.

“To establish a map of the body, muscle secretes positional signals, and in its role as connective tissue it is simultaneously creating the extracellular environment the signals travel through,” Reddien says.

Cote agrees: “Producing the body’s physical architectural support and its biochemical architectural blueprint seem to go hand in hand.”

One possibility raised by this synchronicity is that a link between connective tissue and harboring positional information exists broadly across animal species. Studies elsewhere have found some positional role or positional memory in connective tissues in several species, including axolotls, vertebrates capable of limb regeneration. Based on these observations, Reddien says, it would be interesting to consider the positional role that connective tissue cells, like fibroblasts, might play in humans and might have in instructing regeneration broadly.

 

Written by Greta Friar

 

***

Peter Reddien’s primary affiliation is with Whitehead Institute for Biomedical Research, where his laboratory is located and all his research is conducted. He is also a Howard Hughes Medical Institute Investigator and a professor of biology at Massachusetts Institute of Technology. The authors also acknowledge the Eleanor Schwartz Charitable Foundation for support.

***

Full citation:

“Muscle functions as a connective tissue and source of extracellular matrix in planarians”

Nature Communications, online April 8, 2019. DOI: 10.1038/s41467-019-09539-6

Lauren E. Cote, Eric Simental, and Peter W. Reddien.

A Troubling Inheritance
Greta Friar | Whitehead Institute
April 9, 2019

CAMBRIDGE, MA — Cancers have a habit of running in the family. This is due in large part to the inheritance of versions of genes that are linked with cancer, but some researchers are investigating another heritable risk factor: epigenetic modifications. These are not changes in the DNA sequence of a gene itself but rather are processes that change a DNA sequence’s accessibility or ability to be expressed. These changes can regulate gene expression, and in certain circumstances, be passed down from parent to child alongside the genes they regulate. New research published in eLife on April 9 from the lab of Whitehead Member and Institute Director David Page, also a professor of biology at the Massachusetts Institute of Technology and a Howard Hughes Medical Institute investigator, and colleagues has found evidence that when atypical epigenetic modifications, or marks, caused by a gene deletion in the parent’s cells, are inherited it can lead to increased cancer incidence and shorter lifespans in mice.

Studying epigenetic inheritance in mammals can be difficult because mammalian embryos undergo strong epigenetic reprogramming, a kind of “erasing and starting over” for the next generation. Some of the parents’ epigenetic marks resist this reprogramming, but the vast majority are erased, and often what may appear to be epigenetic inheritance can be explained by other factors like environmental exposures during fetal development leading to similar epigenetic profiles.

“We had to design an experiment with a specific, well-defined initiating event, so the epigenetic patterns and health effects would be easy to track,” says first author Bluma Lesch, then a postdoctoral researcher in the Page lab at Whitehead Institute and now an assistant professor of Genetics at Yale School of Medicine and a member of the Genomics, Genetics and Epigenetics Program at Yale Cancer Center.

In order to do this, the researchers first deleted Kdm6a (also called Utx), a gene on the X chromosome that encodes a protein involved in epigenetic regulation, in the male mouse germline—the repository of cells that become sperm. Kdm6a removes epigenetic modifications from histones, the spool-like proteins that house strands of DNA. Deleting Kdm6a led to higher than usual levels of specific types of histone modifications in the genome of the mice’s sperm, which in turn prompted a secondary epigenetic shift, an increase in DNA methylation—the addition of a methyl group to DNA that can alter gene expression.

The researchers used the hypermethylated sperm to create a generation of offspring. A crucial aspect of the experiment was creating offspring that inherited the atypical epigenetic marks but not the gene deletion that caused them in order to uncouple the effects of the two changes. Offspring were bred from a modified male germline and an unmodified female germline, so male offspring inherited a healthy X chromosome from their mothers, and an unaffected Y chromosome from their fathers. Genetically, the mice were normal, but they were formed from sperm that had been exposed to the Kdm6a deletion’s epigenetic effects.

When the researchers studied the epigenome of these offspring, they found that while many of the modifications had been erased due to reprogramming, more than 200 of the sections of DNA that had been hypermethylated in the father’s germline following Kdm6a deletion were likewise hypermethylated in the offspring. That persistence is much higher than would be expected by chance or observed in normal mice. The researchers found matching instances of hypermethylation in the offspring’s bone marrow, liver tumors, and spleen, indicating that the inherited epigenetic changes stuck with the offspring though embryonic development into adulthood. The researchers did not pinpoint the mechanism that allowed these epigenetic marks to resist reprogramming; Lesch hopes to pursue that question in the future.

Then the researchers watched the mice grow, waiting to see how the unusual DNA methylation would affect the mice’s health. For a while, the mice appeared perfectly healthy — until they hit middle age. The mice then began developing tumors, experiencing an increase in cancer incidence and a decrease in lifespan.

To get a better understanding of the effects they were seeing, Page and Lesch sought help from cancer experts Benjamin Ebert, chair of medical oncology at the Dana Farber Cancer Institute (DFCI) and member of the Broad Institute; Zuzana Tothova, DFCI investigator and associate member of the Broad Institute; and Roderick Bronson, veterinary pathologist at Harvard Medical School. The experts helped characterize the mice’s diseases. Instead of becoming more susceptible to one specific type of cancer, the mice had a diverse set of diagnoses, similar to what would be expected of normal mice at a much older age. The researchers believe this is due to hypermethylation that they observed in enhancers, regions of DNA that help increase transcription of many genes but are also commonly implicated in cancer.

Although the researchers cannot say whether the same sort of epigenetic inheritance is occurring in humans, they believe that this is a valuable question for future research. Inherited epigenetic marks would not appear in a typical genetic screen for cancer risk, and as such could be overlooked to the detriment of preventative care. Likewise, the researchers note, cancer drugs that target epigenetic mechanisms are on the rise, and there has been no research into the effects that this might have on children conceived by people taking the drugs. If human embryos are inheriting aberrant epigenetic marks in the manner observed in mice in this investigation, then people taking drugs with epigenetic targets should be warned against conceiving children until after they are clear of the effects of their medication.

“We hope that this research demonstrating the cancer risk of inherited epigenetic marks in mice adds to the burgeoning field of mammalian epigenetic inheritance research,” Page says, “and that we have drawn attention to the possible implications for human health.”

 

Written by Greta Friar

***

David Page’s primary affiliation is with Whitehead Institute for Biomedical Research, where his laboratory is located and all his research is conducted. He is also a Howard Hughes Medical Institute Investigator and a Professor of Biology at the Massachusetts Institute of Technology.

***

Full citation:

“Intergenerational epigenetic inheritance of cancer susceptibility in mammals”

eLife, April 9, 2019, DOI: https://doi.org/10.7554/eLife.39380

Bluma J. Lesch, Zuzana Tothova, Elizabeth A. Morgan, Zhicong LiaoRoderick T. Bronson, Benjamin L. Ebert, and David C. Page.

Scaffolding the nursery of pollen development
Nicole Giese Rura | Whitehead Institute
April 2, 2019

Cambridge, MA — Increased temperatures and decreased precipitation associated with climate change could threaten the world’s crops. Seed and pollen production in particular are vulnerable to shifts in temperature or rainfall. For example, in heat- or drought-stressed wheat and rice, the tissue responsible for nourishing pollen, called the tapetum, is compromised, causing the plants to not generate pollen. Without pollen, these staples are unable to bear the grains that billions of people rely on for food. In research described this week in the journal Plant Cell, Whitehead Institute Member Jing-Ke Weng and his lab have identified the components of a critical scaffold system that supports the tapetum. With a better understanding of the tapetum, scientists may be able to adapt plants to produce pollen even in hot, arid conditions.

Within a flower bud, pollen-filled anthers perch atop stalk-like filaments. Lining the anther’s inner chamber is a tissue called the tapetum, which nurtures the developing pollen. To better understand pollen and anther formation, Joseph Jacobowitz, a graduate student in Weng’s lab and first author of the Plant Cell paper, analyzed genes active in the anther during early flower development in the Arabidopsis plant. Two practically unknown genes stood out because they likely contribute to pollen maturation: PRX9 and PRX40. After further investigation, Jacobowitz determined that the two genes encode enzymes that work in conjunction with another type of protein called extensin and together they form the supportive walls that act like a scaffold in the tapetum.

Weng, who is also an assistant professor of biology at Massachusetts Institute of Technology, likens extensins to bricks in a wall and the PRX9 and PRX40 proteins to the mortar. Pushing against a wall can easily compromise its structure unless mortar bonds the bricks together. The same seems to be true with extensins and PRX9 and PRX40. The extensins and PRX9/PRX40 wall in the tapetum remained intact until Jacobowitz genetically “knocked out” the mortar genes. With the mortar gone, the scaffolding loses its integrity, and the tapetum collapses into the space where the pollen develops, either crushing or starving it. The result appears similar to what occurs in the tapetum of stressed wheat and rice plants, and the final effects are similar as well: Both the stressed crops and Arabidopsis lacking PRX9 and PRX40 are male sterile and do not produce pollen.

After further investigation, Jacobowitz and colleagues determined that the PRX9 and PRX40 genes are closely related and first appeared at pivotal moments in plant history. PRX40 is highly conserved among land plants and originated about 470 million years ago, when plants first emerged onto land from the seas and rivers. PRX9 seems to have evolved from PRX40 as a redundant backup when flowering plants diverged from nonflowering plants.

Pollen creation is a delicate process that plants have evolved over millions of years. Insights such as these into how plants maintain the integrity of their reproductive system are invaluable toward understanding how we might be able to generate crops capable of withstanding environmental stresses like heat and drought that could threaten our food supply.

This work was supported by Pew Scholars Program in the Biomedical Sciences (27345), the Searle Scholars Program (15-SSP-162), and the National Science Foundation (CHE-1709616 and 1122374).

Written by Nicole Giese Rura

***

Jing-Ke Weng’s primary affiliation is with Whitehead Institute for Biomedical Research, where his laboratory is located and all his research is conducted. He is also an assistant professor of biology at Massachusetts Institute of Technology.

***

Citation:

“PRX9 and PRX40 are extensin peroxidases essential for maintaining tapetum and microspore cell wall integrity during Arabidopsis anther development”

Plant Cell, online March 18, 2019, DOI: https://doi.org/10.1105/tpc.18.00907

Joseph R. Jacobowitz, William C. Doyle, and Jing-Ke Weng.

Biologists find a way to boost intestinal stem cell populations

Study suggests that stimulating stem cells may protect the gastrointestinal tract from age-related disease.

Anne Trafton | MIT News Office
March 28, 2019

Cells that line the intestinal tract are replaced every few days, a high rate of turnover that relies on a healthy population of intestinal stem cells. MIT and University of Tokyo biologists have now found that aging takes a toll on intestinal stem cells and may contribute to increased susceptibility to disorders of the gastrointestinal tract.

The researchers also showed that they could reverse this effect in aged mice by treating them with a compound that helps boost the population of intestinal stem cells. The findings suggest that this compound, which appears to stimulate a pathway that involves longevity-linked proteins known as sirtuins, could help protect the gut from age-related damage, the researchers say.

“One of the issues with aging is organ dysfunction, accompanied by a decline in the activity of the stem cells that nurture and replenish that organ, so this is a potentially very useful intervention point to either slow or reverse aging,” says Leonard Guarente, the Novartis Professor of Biology at MIT.

Guarente and Toshimasa Yamauchi, a professor at the University of Tokyo, are the senior authors of the study, which appears online in the journal Aging Cell on March 28. The lead author of the paper is Masaki Igarashi, a former MIT postdoc who is now at the University of Tokyo.

Population growth

Guarente’s lab has long studied the link between aging and sirtuins, a class of proteins found in nearly all animals. Sirtuins, which have been shown to protect against the effects of aging, can also be stimulated by calorie restriction.

In a paper published in 2016, Guarente and Igarashi found that in mice, low-calorie diets activate sirtuins in intestinal stem cells, helping the cells to proliferate. In their new study, they set out to investigate whether aging contributes to a decline in stem cell populations, and whether that decline could be reversed.

By comparing young (aged 3 to 5 months) and older (aged 2 years) mice, the researchers found that intestinal stem cell populations do decline with age. Furthermore, when these stem cells are removed from the mice and grown in a culture dish, they are less able to generate intestinal organoids, which mimic the structure of the intestinal lining, compared to stem cells from younger mice. The researchers also found reduced sirtuin levels in stem cells from the older mice.

Once the effects of aging were established, the researchers wanted to see if they could reverse the effects using a compound called nicotinamide riboside (NR). This compound is a precursor to NAD, a coenzyme that activates the sirtuin SIRT1. They found that after six weeks of drinking water spiked with NR, the older mice had normal levels of intestinal stem cells, and these cells were able to generate organoids as well as stem cells from younger mice could.

To determine if this stem cell boost actually has any health benefits, the researchers gave the older, NR-treated mice a compound that normally induces colitis. They found that NR protected the mice from the inflammation and tissue damage usually produced by this compound in older animals.

“That has real implications for health because just having more stem cells is all well and good, but it might not equate to anything in the real world,” Guarente says. “Knowing that the guts are actually more stress-resistant if they’re NR- supplemented is pretty interesting.”

Protective effects

Guarente says he believes that NR is likely acting through a pathway that his lab previously identified, in which boosting NAD turns on not only SIRT1 but another gene called mTORC1, which stimulates protein synthesis in cells and helps them to proliferate.

“What we would hypothesize is that the NAD replenishment in old mice is driving this pathway of growth that’s working through SIRT1 and TOR to reverse the decline that has occurred with aging,” he says.

The findings suggest that NAD might have a protective effect against diseases of the gut, such as colitis, in older people, he says. Guarente and his colleagues have previously found that NAD precursors can also stimulate the growth of blood vessels and muscles and boost endurance in aged mice, and a 2016 study from researchers in Switzerland found that boosting NAD can help replenish muscle stem cell populations in aged mice.

In 2014, Guarente started a company called Elysium Health, which sells a dietary supplement containing NR combined with another natural compound called pterostilbene, which is an activator of SIRT1.

The research was funded, in part, by the National Institutes of Health and the Glenn Foundation for Medical Research.

Start signal for sex cell creation
Greta Friar | Whitehead Institute
February 27, 2019

Cambridge, MA — Cells can divide and multiply in two ways: mitosis, in which the cell replicates itself, creating two copies identical to the original; or meiosis, in which the cell shuffles its DNA and divides twice, creating four genetically unique cells, each with half of the original cell’s number of chromosomes. In mammals, these latter cells become eggs and sperm.

How do germ line cells, the repository of cells that create eggs and sperm, know when to stop replicating themselves and undergo meiosis? Researchers had been aware that a protein called STRA8, which is only active in germ line cells, was involved in initiating meiosis, but they did not know how. New research from Whitehead Member and Institute Director David Page, also a professor of biology at Massachusetts Institute of Technology and an investigator with Howard Hughes Medical Institute; Mina Kojima, formerly a Massachusetts Institute of Technology graduate student and now a postdoctoral researcher at Yale; and visiting scientist Dirk de Rooij has revealed that in mice, STRA8 initiates meiosis by activating and amplifying a network of thousands of genes. This network includes genes involved in the early stages of meiosis, DNA replication, and other cell division processes. The research was published in eLife on February 27, 2019.

In the past, researchers have had difficulty collecting enough cells on the cusp of meiosis to investigate STRA8’s role. In mammals, germ line cells are inside the body, difficult to access, and they begin meiosis in staggered fashion so few cells are at the same stage during an extraction. Researchers in Page’s lab had previously come up with an approach to solve this problem using developmental synchronization, manipulating the cells’ exposure to the chemical that triggers their development in order to prompt all of the cells to begin meiosis simultaneously. Once the cells were synced up, first author Kojima could get a large enough sample to observe patterns in gene expression leading up to and during meiosis, and to figure out where STRA8 is binding.

She found that STRA8 binds to the regulatory portions of DNA called promoter regions, which initiate or increase transcription of adjacent genes, of most critical meiosis genes. With some exceptions, STRA8 does not switch genes from off to on. Rather, genes in the STRA8-regulated network are already expressed at low levels and STRA8 binding massively ramps up their production. The researchers posit that meiosis is then initiated once the genes reach a threshold of expression. This finding sheds light on instances in previous studies in which researchers found meiosis-related genes active in cells not yet undergoing meiosis.

The researchers were surprised to find that STRA8 also amplifies many genes involved in mitosis. However, they suggest that the meiosis-specific genes activated by STRA8 take precedence in determining which of the two cell-cycle processes the cell will undergo. STRA8 regulates certain critical genes, such as Meioc and Ythdc2, which help to establish a meiosis-specific cell-cycle program.

This research enriches our understanding of the process of sexual reproduction. Identifying the expansive STRA8-regulated network has elucidated the start of meiosis: the moment a cell commits to recombining and dividing, relinquishing its genetic identity for the chance to create something — or someone — new.

This work was supported by the National Science Foundation and the Howard Hughes Medical Institute.

 

Written by Greta Friar

***

David Page’s primary affiliation is with Whitehead Institute for Biomedical Research, where his laboratory is located and all his research is conducted. He is also a Howard Hughes Medical Institute Investigator and a Professor of Biology at the Massachusetts Institute of Technology.

***

Full citation:

“Amplification of a broad transcriptional program by a common factor triggers the meiotic cell cycle in mice”

eLife, February 27, 2019, https://doi.org/10.7554/eLife.43738

Mina L. Kojima (1,2), Dirk G. de Rooij (1), and David C. Page (1,2,3)

1. Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA

2. Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA

3. Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA

Why too much DNA repair can injure tissue

Overactive repair system promotes cell death following DNA damage by certain toxins, study shows.

Anne Trafton | MIT News Office
February 14, 2019

DNA-repair enzymes help cells survive damage to their genomes, which arises as a normal byproduct of cell activity and can also be caused by environmental toxins. However, in certain situations, DNA repair can become harmful to cells, provoking an inflammatory response that produces severe tissue damage.

MIT Professor Leona Samson has now determined that inflammation is a key component of the way this damage occurs in photoreceptor cells in the retinas of mice. About 10 years ago, she and her colleagues discovered that overactive initiation of DNA-repair systems can lead to retinal damage and blindness in mice. The key enzyme in this process, known as Aag glycosylase, can also cause harm in other tissues when it becomes hyperactive.

“It’s another case where despite the fact that inflammation is there to protect you, in some circumstances it can actually be harmful, when it’s overactive,” says Samson, a professor emerita of biology and biological engineering and the senior author of the study.

Aag glycosylase helps to repair DNA damage caused by a class of drugs known as alkylating agents, which are commonly used as chemotherapy drugs and are also found in pollutants such as tobacco smoke and fuel exhaust. Retinal damage from these drugs has not been seen in human patients, but alkylating agents may produce similar damage in other human tissues, Samson says. The new study, which reveals how Aag overactivity leads to cell death, suggest possible targets for drugs that could prevent such damage.

Mariacarmela Allocca, a former MIT postdoc, is the lead author of the study, which appears in the Feb. 12 issue of Science Signaling. MIT technical assistant Joshua Corrigan, former postdoc Aprotim Mazumder, and former technical assistant Kimberly Fake are also authors of the paper.

A vicious cycle

In a 2009 study, Samson and her colleagues found that a relatively low level of exposure to an alkylating agent led to very high rates of retinal damage in mice. Alkylating agents produce specific types of DNA damage, and Aag glycosylase normally initiates repair of such damage. However, in certain types of cells that have higher levels of Aag, such as mouse photoreceptors, the enzyme’s overactivity sets off a chain of events that eventually leads to cell death.

In the new study, the researchers wanted to find exactly out how this happens. They knew that Aag was overactive in the affected cells, but they didn’t know exactly how it was leading to cell death or what type of cell death was occurring. The researchers initially suspected it was apoptosis, a type of programmed cell death in which a dying cell is gradually broken down and absorbed by other cells.

However, they soon found evidence that another type of cell death called necrosis accounts for most of the damage. When Aag begins trying to repair the DNA damage caused by the alkylating agent, it cuts out so many damaged DNA bases that it hyperactivates an enzyme called PARP, which induces necrosis. During this type of cell death, cells break apart and spill out their contents, which alerts the immune system that something is wrong.

One of the proteins secreted by the dying cells, known as HMGB1, stimulates production of chemicals that attract immune cells called macrophages, which specifically penetrate the photoreceptor layer of the retina. These macrophages produce highly reactive oxygen species — molecules that create more damage and make the environment even more inflammatory. This in turn causes more DNA damage, which is  recognized by Aag.

“That makes the situation worse, because the Aag glycosylase will act on the lesions produced from the inflammation, so you get a vicious cycle, and the DNA repair drives more and more degeneration and necrosis in the photoreceptor layer,” Samson says.

None of this happens in mice that lack Aag or PARP, and it does not occur in other cells of the eye or in most other body tissues.

“It amazes me how segmented this is. The other cells in the retina are not affected at all, and they must experience the same amount of DNA damage. So, one possibility is maybe they don’t express Aag, while the  photoreceptor cells do,” Samson says.

“These molecular studies are exciting, as they have helped define the underlying pathophysiology associated with retinal damage,” says Ben Van Houten, a professor of pharmacology and chemical biology at the University of Pittsburgh, who was not involved in the study. “DNA repair is essential for the faithful inheritance of a cell’s genetic material. However, the very action of some DNA repair enzymes can result in the production of toxic intermediates that exacerbate exposures to genotoxic agents.”

Varying effects

The researchers also found that retinal inflammation and necrosis were more severe in male mice than in female mice. They suspect that estrogen, which can interfere with PARP activity, may help to suppress the pathway that leads to inflammation and cell death.

Samson’s lab has previously found that Aag activity can also exacerbate damage to the brain during a stroke, in mice. The same study revealed that Aag activity also worsens inflammation and tissue damage in the liver and kidney following oxygen deprivation. Aag-driven cell death has also been seen in the mouse cerebellum and some pancreatic and bone marrow cells.

The effects of Aag overactivity have been little studied in humans, but there is evidence that healthy individuals have widely varying levels of the enzyme, suggesting that it could have different effects in different people.

“Presumably there are some cell types in the human body that would respond the same way as the mouse photoreceptors,” Samson says. “They may just not be the same set of cells.”

The research was funded by the National Institutes of Health.

Biologists answer fundamental question about cell size

The need to produce just the right amount of protein is behind the striking uniformity of sizes.

Anne Trafton | MIT News Office
February 7, 2019

MIT biologists have discovered the answer to a fundamental biological question: Why are cells of a given type all the same size?

In humans, cell size can vary more than 100-fold, ranging from tiny red blood cells to large neurons. However, within each cell type, there is very little deviation from a standard size. In studies of yeast, MIT researchers grew cells to 10 times their normal size and found that their DNA could not keep up with the demands of producing enough protein to maintain normal cell functions.

Furthermore, the researchers found that this protein shortage leads the cells into a nondividing state known as senescence, suggesting a possible explanation for how cells become senescent as they age.

“There are so many hypotheses out there that try to explain why senescence happens, and I think this data provides a beautiful and simple explanation for senescence,” says Angelika Amon, the Kathleen and Curtis Marble Professor in Cancer Research in the Department of Biology and a member of the Koch Institute for Integrative Cancer Research.

Amon is the senior author of the study, which appears in the Feb. 7 online edition of Cell. Gabriel Neurohr, an MIT postdoc, is the lead author of the paper.

Excessive size

To explore why cell size is so tightly controlled, the researchers prevented yeast cells from dividing by modifying a gene critical for cell division, so that it could be turned off at a certain temperature. These cells continued to grow, but they could not divide and they did not replicate their DNA.

The researchers discovered that as the cells expanded, their DNA and their protein-building machinery could not keep pace with the needs of such a large cell. This failure to produce enough protein led to the dilution of the cytoplasm and disruption of cell division. The researchers believe that many other fundamental cell processes that rely on cellular molecules finding and interacting with each other may also be impaired when cells are too big.

“Theoretical models predict that diluting the cytoplasm will decrease reaction rates. Every chemical reaction would occur more slowly, and some threshold concentrations of certain proteins may not be reached, so certain reactions would never happen because the concentrations are lower,” Neurohr says.

The researchers showed that yeast cells with two sets of chromosomes were able to grow to twice the size of yeast cells with just one set of chromosomes before becoming senescent, suggesting that the amount of DNA in the cells is the limiting factor in the cells’ ability to grow.

Experiments with human cells yielded similar results: In a study of human fibroblast cells, the researchers found that forcing the cells to grow to excessive sizes (eight times their normal size) disrupted many functions, including cell division.

“It’s been clear for some time that cells do control their size, but it’s been unclear what the various physiological reasons are for why they do so,” says Jan Skotheim, an associate professor of biology at Stanford University, who was not involved in the research. “What’s nice about this work is it really shows how things go wrong when cells get too big.”

Age-related disease

Amon says excessive growth likely plays a major role in the development of senescence, which occurs in many types of mammalian cells and is thought to contribute to age-related organ dysfunction and chronic age-related diseases.

Senescent cells are often larger than younger cells, and this study, which showed that unchecked cell growth leads to senescence, offers a possible explanation for this observation. Human cells tend to grow slightly larger throughout their lifetimes, because every time a cell divides, it checks for DNA damage, and if any is found, division is halted while repairs are made. During each of these delays, the cell grows slightly larger.

“Over the lifetime of a cell, the more divisions you make, the higher your probability is of having that damage, and over time cells will get larger,” Amon says. “Eventually they get so large that they start diluting critical factors that are important for proliferation.”

A difficult question that remains unanswered is how different types of cells maintain the appropriate size for their cell type, which the researchers now hope to study further.

The research was funded, in part, by the National Institutes of Health, the Howard Hughes Medical Institute, the Paul F. Glenn Center for Biology of Aging Research at MIT, a National Science Foundation graduate research fellowship, the William Bowes Fellows program, and the Vilcek Foundation.

Origin story

Junior Leah McKinney practiced kitchen microbiology on her ranch in Nevada before exploring the intricacies of DNA replication initiation in bacteria at MIT Biology.

Raleigh McElvery
February 6, 2019

Leah McKinney grew up on a 50,000-acre cattle ranch in Nevada — vaccinating sheep, roping calves, digging for fossils, and occasionally hauling home old bovine femurs. She saddled horses, treated sick lambs, and helped ewes struggling to give birth. One Christmas, she even asked Santa for a fetal pig. “He delivered,” McKinney, now a junior in Course 7, recalls with a laugh.

When she was 12 years old, she saved up enough birthday money to purchase a microscope. Even though she permanently dyed the kitchen sink a distinct shade of blue while making slides, her parents (who both hold degrees in animal science) didn’t mind. They even let her grow bacteria in the heater closet and tally them on the kitchen counter — all in the name of the elementary school science fair.

“They were always encouraging my weird scientific endeavors,” she says. “I think my love for science, and microbiology specifically, came out of my agricultural upbringing.”

She grew to appreciate basic science because it allowed her to study the fundamental mechanisms behind key biological processes. She arrived at MIT in 2016 determined to major in Biology, and hasn’t wavered in her decision. Although she relishes the subject matter, she initially feared the classes would be tedious and memorization-heavy.

“I was quite happy to learn that’s not the case here,” she says. “MIT Biology values problem-solving over rote memorization, and encourages you to take the information you’ve learned in class and apply it to interesting problems. And that mindset extends from the classroom into the lab.”

One of the things that drew McKinney to MIT was the institute’s Undergraduate Research Opportunities Program (UROP), which allows students to join labs and collaborate with faculty as early as their first year. She recalls that, while other universities touted similar opportunities, MIT placed theirs front and center.

“I’d heard that all you had to do was email a professor and ask to join the lab, but I didn’t believe it — that just seemed way too easy,” McKinney says. “But when I was looking for a UROP, I just emailed my current principal investigator to set up a time to talk, and now I’ve been in his lab for over a year.”

McKinney is part of Department Head Alan Grossman’s lab, which investigates the molecular mechanisms and regulation underlying basic cellular processes in bacteria. The entire group works with the rod-shaped Bacillus subtilis, but some members study horizontal gene transfer while others focus on DNA replication and gene expression. McKinney and her graduate student mentor Mary Anderson are in this second category, examining a protein called DnaA that is required to initiate DNA replication and also modulates the expression of several genes.

In order to successfully grow and reproduce, a bacterium must first replicate its single chromosome before dividing into two identical daughter cells. DnaA is responsible for beginning DNA replication in all bacteria. It binds to the origin of replication on the chromosome, unwinds some of the nearby DNA, and recruits the other proteins needed to copy the chromosome.

This operation is highly regulated to ensure that each daughter cell receives only a single chromosome. B. subtilis controls replication via several proteins, including YabA. When YabA binds to DnaA, it prevents replication from ever getting started.

Since DnaA also serves as a transcription factor — binding to other DNA sequences called promoters to increase or decrease expression of certain genes, including its own gene dnaA — YabA may also impact DnaA’s gene targets. McKinney hopes to eventually determine exactly how.

While McKinney discovers something new about her bacteria each time she conducts a successful experiment, she learns almost as much when her tests go awry. “I’ve had to practice a lot of troubleshooting,” she says, “and that’s not something you can learn in class. But everyone in the lab is incredibly friendly and always willing to answer questions or give advice.”

As a teaching assistant for the lab class 7.02 (Introduction to Experimental Biology and Communication), McKinney had the chance to help other students conduct experiments, answering their questions and grading their lab notebooks. She took 7.02 last spring, but says it’s been enlightening to experience the class through a different lens. She adds: “I definitely understand the material more deeply than I did before.”

In addition to TAing, McKinney teaches an SAT preparatory program run by MIT students. “At first, standing up and talking in front of a 20-person section was rather terrifying, but it’s become so much easier,” she says. “The experience has been really good for me.”

After she graduates, McKinney knows she wants to go to graduate school — likely for microbiology — but beyond that, nothing is concrete. She is sure of one thing, though: joining the Grossman lab was one of the best decisions she’s made at MIT.

She advises all current and prospective students to do a UROP. “Find something you’re really interested in,” she says. “It’s okay not to know a lot coming in; you’re going to learn so much, including topics and techniques you won’t learn in class. And don’t be too disappointed when things don’t work; that’s just part of the process. And when you finally get something to work that you’ve been troubleshooting for a while, the feeling is absolutely amazing.”

Posted 2.5.19