BSG-MSRP-Bio student profile: Praise Lasekan, Vos Lab

BSG-MSRP-Bio student profile: Praise Lasekan, Vos Lab

A scientist’s toolkit: practice, patience, and plenty of questions

Noah Daly | Department of Biology
September 24, 2024

A childhood interest in the complex worlds within an organism that the naked eye cannot see ultimately led Praise Lasekan to the BSG-MSRP-Bio program at MIT working in the Vos Lab in the Department of Biology at MIT. 


Praise Lasekan talks about the fast protein liquid chromatography machines he used in the Vos Lab as though they were colleagues. 

“We have two of them,” he explains. “Sam and Frodo.” 

FPLC machines separate and analyze proteins based on their properties, such as size, charge, and binding affinity. When Lasekan first saw the FPLC machines, the tubing and valves, hooked up to a computer, reminded him of a fancy piece of plumbing. Much like an expert plumber, proficiency​​ with these machines required him to understand every valve and tube.

Although Lasekan is a Biology major with a Chemistry Minor at the University of Maryland, Baltimore County, Lasekan had the opportunity to spend his summer living in Boston and working on MIT’s campus as a Bernard S. and Sophie G. Gould MIT Summer Research Program in Biology student.

“I loved every part of this summer: Waking up in the morning, coming to the lab, setting up some stuff — whether it goes well or not,” Lasekan says. “Taking that experience and coming back the next day, you’re ready to keep going and improving.”

Lasekan spent his days in the lab of Seychelle Vos, Robert A. Swanson Career Development Professor of Life Sciences and HHMI Freeman Hrabowski Scholar. The Vos Lab examines how genetic information is stored so compactly yet is still accessible enough for genes to be expressed. All cells in an organism have the same DNA, but the organization of that DNA and how genes are expressed determine why one cell becomes part of the liver and another cell part of the brain. 

Lasekan worked with a highly conserved protein that plays a role in gene transcription called CCCTCF-binding factor, or CTCF. He worked to understand how adding a phosphate group, a process called phosphorylation, affects CTCF’s binding to DNA. Binding to DNA is the first step in the process of transcription, which creates proteins within a cell.

The Vos lab uses various tools and techniques that Vos learned during her training, often using simple systems with limited components to study phenomena such as molecular structures, the dynamics of proteins and nucleic acids, and how structural alterations affect the function of these molecules. The lab has also recently been delving into more systemic work, such as removing genes from cells to observe how that affects gene expression. 

“My lab is a little unconventional in some ways,” Vos says. “We use a lot of biochemistry and structural biology, but we want to use the tools of genetics and cell biology as well to understand how genome organization and genome expression are coupled.” 

BSG-MSRP-Bio Student Praise with Graduate Student and mentor, Bonnie Su, of the Vos Lab.

CTCF can play many roles during transcription, able to act as an activator or as a roadblock for transcription. Lasekan’s mentor, graduate student Bonnie Su, has been trying to figure out how cells control CTCF behavior.

“What if the cell needed something done ASAP, and CTCF was blocking its route to its destination on a DNA sequence?” Vos asks. “How does the cell regulate it?” 

Praise mutated different sites on CTCF that have been reported in previous research as possible points of phosphorylation of the CTCF protein. Several other amino acids can also be phosphorylated. Still, Su was particularly interested in the work other researchers have done on three specific sites along a segment called the zinc finger domain.  A zinc finger domain is a zinc ion that helps proteins stabilize their shape and the domain has a function in various cellular processes such as genetic transcription. The ion is regulated by amino acids to give it a finger-like structure that helps in binding the protein to DNA during transcription.

“Before we went on a wild goose chase,” Lasekan explains, “we needed to identify a specific area of the protein to concentrate on and examine the behavior of CTCF locally there.”

Off of the Drawing Board and Into the Laboratory

Lasekan was introduced to the microscopic world of the body — cells, organelles, molecules, and even atoms — in the pages of his secondary school science textbooks in Ondo, Nigeria. There began his curiosity about atomic structures, cells, and the complex worlds within an organism that the naked eye cannot see. He would spend much of his class time flipping through the pages of diagrams and ultimately decided to pursue science as his core focus during senior secondary school.

“It was there that I could take my first classes in chemistry, biology, and physics,” he says. “I realized I love all of the sciences, so my focus in school was science and technology.”

Initially drawn to engineering, Lasekan ended up dropping out of a technical drawing course.

“I loved the course,” Lasekan smiles, “but the course didn’t like me one bit.” 

Lasekan’s dreams shifted toward medicine and, with it, more science and math courses. 

When he graduated valedictorian from Staff Secondary School at the Federal University of Technology in Akure, his parents — both pharmacists — encouraged him to apply to university to become a medical doctor. However, getting into a good university is challenging in Nigeria. 

Praise opted instead to remain at home after graduating, building a successful business doing portrait photography. He also took chemistry, physics, and biology courses through Cambridge University International.

Despite making good money with photography, Praise was determined to go to university but wasn’t confident that he would get in. Nevertheless, an acquaintance encouraged him to apply to UMBC. 

“It was the only school I applied to, and I couldn’t believe that I got in,” says Lasekan. 

At UMBC, Lasekan discovered the pre-med track he’d signed up for was not a good fit for him either — many of the fundamental questions he was curious about were beyond the scope of his courses. A friend who was working in a research lab on campus suggested that Lasekan should try to find a lab to work in, too. 

“They told me I might like what they’re doing there because of the level of questions that I ask,” Lasekan says. “Sometimes people didn’t have answers for me, and maybe I could find some of those answers through research.” 

After he emailed PIs in biology and chemistry labs around campus, Lasekan was eventually accepted into the lab of Dr. Erin Green, Associate Professor of Biological Sciences at UMBC — his first experience doing research in the lab. 

Dr. Green focuses on trying to understand how post-translational modifications of proteins regulate functions, such as the establishment of proper states of gene expression and the ability of cells to respond to stress. 

“Dr. Green took a chance with me,” Lasekan says. “I am forever grateful to her for that.” 

MIT: A Destination for Scientific Discovery

When considering summer research programs, Praise applied to MIT, one institution he’d always remembered from his childhood textbooks as the birthplace of many great inventions and scientific discoveries. It’s also one of the few programs in the U.S. that accepts international students. 

“I’ve always had MIT at the back of my mind, but I didn’t think they’re looking for people like me,” Lasekan says. When he saw the notification for his acceptance to the program pop up on his smartwatch, he screamed, startling some students walking by him in the hallway.

“This is one of the best institutions in the world, and I just got an opportunity to go there for ten weeks, actually do a project of my own under the mentorship of my PI,” Lasekan recalls thinking. “This was a dream come true for me.”

In the Vos lab, Lasekan’s interest in the fundamental questions of biology was not only acceptable but encouraged, especially by his mentor, Su.

“Bonnie always had the patience to sit down with me, explain concepts to me, and write out the math with me if I need her to,” Lasekan says, “and sometimes I need it 25 times, but she’s there for me.” 

Now that the BSG-MSRP-Bio program has wrapped up, Praise has the confidence to set his sights higher than ever before — on the “big guys,” the universities and institutions doing the sort of cutting-edge research that first caught his eye in the textbooks back home. Praise is eagerly preparing his graduate school applications for fall 2025, including MIT.

“After being here, surrounded by people from everywhere driven by the same purpose, I know there’s an exciting future in science for me.” 

Want to know more about our BSG-MSRP-Bio Students? Read more testimonials and stories here.