A supportive role for planarians’ multifaceted muscle
Greta Friar | Whitehead Institute
April 5, 2019

CAMBRIDGE, MA  — Planarians are flatworms best known for their incredible ability to regenerate all their body parts: chop a planarian in two and soon you will have two perfectly formed planarians. As Whitehead Institute Member Peter Reddien, also a professor of biology at Massachusetts Institute of Technology and an investigator with the Howard Hughes Medical Institute, has investigated planarians over the years, he has become increasingly fascinated with the functions of their muscle. Not only do planarians use muscle to move, but Reddien’s research group previously discovered they rely on muscle tissue to provide a full body map with instructions that helps guide stem cells to the right locations during both regeneration and normal turnover of cells. Muscle tissue does this by secreting positional signals that help cells identify where they are — and where they should be.

New research from Reddien and graduate student Lauren Cote shows that muscle serves yet another crucial function in planarians. In a paper published in Nature Communications on April 8, they show that muscle operates as the planarian’s connective tissue, providing basic architectural support for the body. Connective tissue functions in large part by secreting molecules that make up the extracellular matrix (ECM), a network of molecules outside of the body’s cells that provides tissues with, among other things, scaffolding, protection, separation of tissues, and a means of inter-tissue connection and communication. In vertebrates, including humans, connective tissue is a distinct tissue type containing dedicated cells such as fibroblasts that secrete most of the animal’s ECM proteins. Reddien and Cote found no such fibroblast-like cell type in planarians; instead, multipurpose muscle does it all.

The researchers began to suspect that planarian muscle might function as connective tissue when they discovered that the gene encoding a major type of ECM molecule, fibrous protein collagen, was expressed only in muscle. The researchers then catalogued the total collection of proteins found in the planarian’s ECM, called the matrisome, and tracked where the genes that code for those proteins were expressed. They identified nineteen collagen genes, and all nineteen were highly specific to muscle. The vast majority of other ECM genes followed suit.

To further test muscle’s role as connective tissue, the researchers silenced the gene hemicentin-1, which produces another ECM molecule expressed specifically in muscle. They found that when the gene was not expressed, the planarian’s inner tissues did not remain properly separated from its outer skin. In other words, a muscle-specific gene is necessary in the planarians they studied for the core connective tissue task of keeping tissues discrete.

Although it might seem unusual that planarians would use muscle tissue for both ECM secretion and body pattern maintenance, Reddien and Cote say the combination makes a certain sense.

“To establish a map of the body, muscle secretes positional signals, and in its role as connective tissue it is simultaneously creating the extracellular environment the signals travel through,” Reddien says.

Cote agrees: “Producing the body’s physical architectural support and its biochemical architectural blueprint seem to go hand in hand.”

One possibility raised by this synchronicity is that a link between connective tissue and harboring positional information exists broadly across animal species. Studies elsewhere have found some positional role or positional memory in connective tissues in several species, including axolotls, vertebrates capable of limb regeneration. Based on these observations, Reddien says, it would be interesting to consider the positional role that connective tissue cells, like fibroblasts, might play in humans and might have in instructing regeneration broadly.

 

Written by Greta Friar

 

***

Peter Reddien’s primary affiliation is with Whitehead Institute for Biomedical Research, where his laboratory is located and all his research is conducted. He is also a Howard Hughes Medical Institute Investigator and a professor of biology at Massachusetts Institute of Technology. The authors also acknowledge the Eleanor Schwartz Charitable Foundation for support.

***

Full citation:

“Muscle functions as a connective tissue and source of extracellular matrix in planarians”

Nature Communications, online April 8, 2019. DOI: 10.1038/s41467-019-09539-6

Lauren E. Cote, Eric Simental, and Peter W. Reddien.

A Troubling Inheritance
Greta Friar | Whitehead Institute
April 9, 2019

CAMBRIDGE, MA — Cancers have a habit of running in the family. This is due in large part to the inheritance of versions of genes that are linked with cancer, but some researchers are investigating another heritable risk factor: epigenetic modifications. These are not changes in the DNA sequence of a gene itself but rather are processes that change a DNA sequence’s accessibility or ability to be expressed. These changes can regulate gene expression, and in certain circumstances, be passed down from parent to child alongside the genes they regulate. New research published in eLife on April 9 from the lab of Whitehead Member and Institute Director David Page, also a professor of biology at the Massachusetts Institute of Technology and a Howard Hughes Medical Institute investigator, and colleagues has found evidence that when atypical epigenetic modifications, or marks, caused by a gene deletion in the parent’s cells, are inherited it can lead to increased cancer incidence and shorter lifespans in mice.

Studying epigenetic inheritance in mammals can be difficult because mammalian embryos undergo strong epigenetic reprogramming, a kind of “erasing and starting over” for the next generation. Some of the parents’ epigenetic marks resist this reprogramming, but the vast majority are erased, and often what may appear to be epigenetic inheritance can be explained by other factors like environmental exposures during fetal development leading to similar epigenetic profiles.

“We had to design an experiment with a specific, well-defined initiating event, so the epigenetic patterns and health effects would be easy to track,” says first author Bluma Lesch, then a postdoctoral researcher in the Page lab at Whitehead Institute and now an assistant professor of Genetics at Yale School of Medicine and a member of the Genomics, Genetics and Epigenetics Program at Yale Cancer Center.

In order to do this, the researchers first deleted Kdm6a (also called Utx), a gene on the X chromosome that encodes a protein involved in epigenetic regulation, in the male mouse germline—the repository of cells that become sperm. Kdm6a removes epigenetic modifications from histones, the spool-like proteins that house strands of DNA. Deleting Kdm6a led to higher than usual levels of specific types of histone modifications in the genome of the mice’s sperm, which in turn prompted a secondary epigenetic shift, an increase in DNA methylation—the addition of a methyl group to DNA that can alter gene expression.

The researchers used the hypermethylated sperm to create a generation of offspring. A crucial aspect of the experiment was creating offspring that inherited the atypical epigenetic marks but not the gene deletion that caused them in order to uncouple the effects of the two changes. Offspring were bred from a modified male germline and an unmodified female germline, so male offspring inherited a healthy X chromosome from their mothers, and an unaffected Y chromosome from their fathers. Genetically, the mice were normal, but they were formed from sperm that had been exposed to the Kdm6a deletion’s epigenetic effects.

When the researchers studied the epigenome of these offspring, they found that while many of the modifications had been erased due to reprogramming, more than 200 of the sections of DNA that had been hypermethylated in the father’s germline following Kdm6a deletion were likewise hypermethylated in the offspring. That persistence is much higher than would be expected by chance or observed in normal mice. The researchers found matching instances of hypermethylation in the offspring’s bone marrow, liver tumors, and spleen, indicating that the inherited epigenetic changes stuck with the offspring though embryonic development into adulthood. The researchers did not pinpoint the mechanism that allowed these epigenetic marks to resist reprogramming; Lesch hopes to pursue that question in the future.

Then the researchers watched the mice grow, waiting to see how the unusual DNA methylation would affect the mice’s health. For a while, the mice appeared perfectly healthy — until they hit middle age. The mice then began developing tumors, experiencing an increase in cancer incidence and a decrease in lifespan.

To get a better understanding of the effects they were seeing, Page and Lesch sought help from cancer experts Benjamin Ebert, chair of medical oncology at the Dana Farber Cancer Institute (DFCI) and member of the Broad Institute; Zuzana Tothova, DFCI investigator and associate member of the Broad Institute; and Roderick Bronson, veterinary pathologist at Harvard Medical School. The experts helped characterize the mice’s diseases. Instead of becoming more susceptible to one specific type of cancer, the mice had a diverse set of diagnoses, similar to what would be expected of normal mice at a much older age. The researchers believe this is due to hypermethylation that they observed in enhancers, regions of DNA that help increase transcription of many genes but are also commonly implicated in cancer.

Although the researchers cannot say whether the same sort of epigenetic inheritance is occurring in humans, they believe that this is a valuable question for future research. Inherited epigenetic marks would not appear in a typical genetic screen for cancer risk, and as such could be overlooked to the detriment of preventative care. Likewise, the researchers note, cancer drugs that target epigenetic mechanisms are on the rise, and there has been no research into the effects that this might have on children conceived by people taking the drugs. If human embryos are inheriting aberrant epigenetic marks in the manner observed in mice in this investigation, then people taking drugs with epigenetic targets should be warned against conceiving children until after they are clear of the effects of their medication.

“We hope that this research demonstrating the cancer risk of inherited epigenetic marks in mice adds to the burgeoning field of mammalian epigenetic inheritance research,” Page says, “and that we have drawn attention to the possible implications for human health.”

 

Written by Greta Friar

***

David Page’s primary affiliation is with Whitehead Institute for Biomedical Research, where his laboratory is located and all his research is conducted. He is also a Howard Hughes Medical Institute Investigator and a Professor of Biology at the Massachusetts Institute of Technology.

***

Full citation:

“Intergenerational epigenetic inheritance of cancer susceptibility in mammals”

eLife, April 9, 2019, DOI: https://doi.org/10.7554/eLife.39380

Bluma J. Lesch, Zuzana Tothova, Elizabeth A. Morgan, Zhicong LiaoRoderick T. Bronson, Benjamin L. Ebert, and David C. Page.

Scaffolding the nursery of pollen development
Nicole Giese Rura | Whitehead Institute
April 2, 2019

Cambridge, MA — Increased temperatures and decreased precipitation associated with climate change could threaten the world’s crops. Seed and pollen production in particular are vulnerable to shifts in temperature or rainfall. For example, in heat- or drought-stressed wheat and rice, the tissue responsible for nourishing pollen, called the tapetum, is compromised, causing the plants to not generate pollen. Without pollen, these staples are unable to bear the grains that billions of people rely on for food. In research described this week in the journal Plant Cell, Whitehead Institute Member Jing-Ke Weng and his lab have identified the components of a critical scaffold system that supports the tapetum. With a better understanding of the tapetum, scientists may be able to adapt plants to produce pollen even in hot, arid conditions.

Within a flower bud, pollen-filled anthers perch atop stalk-like filaments. Lining the anther’s inner chamber is a tissue called the tapetum, which nurtures the developing pollen. To better understand pollen and anther formation, Joseph Jacobowitz, a graduate student in Weng’s lab and first author of the Plant Cell paper, analyzed genes active in the anther during early flower development in the Arabidopsis plant. Two practically unknown genes stood out because they likely contribute to pollen maturation: PRX9 and PRX40. After further investigation, Jacobowitz determined that the two genes encode enzymes that work in conjunction with another type of protein called extensin and together they form the supportive walls that act like a scaffold in the tapetum.

Weng, who is also an assistant professor of biology at Massachusetts Institute of Technology, likens extensins to bricks in a wall and the PRX9 and PRX40 proteins to the mortar. Pushing against a wall can easily compromise its structure unless mortar bonds the bricks together. The same seems to be true with extensins and PRX9 and PRX40. The extensins and PRX9/PRX40 wall in the tapetum remained intact until Jacobowitz genetically “knocked out” the mortar genes. With the mortar gone, the scaffolding loses its integrity, and the tapetum collapses into the space where the pollen develops, either crushing or starving it. The result appears similar to what occurs in the tapetum of stressed wheat and rice plants, and the final effects are similar as well: Both the stressed crops and Arabidopsis lacking PRX9 and PRX40 are male sterile and do not produce pollen.

After further investigation, Jacobowitz and colleagues determined that the PRX9 and PRX40 genes are closely related and first appeared at pivotal moments in plant history. PRX40 is highly conserved among land plants and originated about 470 million years ago, when plants first emerged onto land from the seas and rivers. PRX9 seems to have evolved from PRX40 as a redundant backup when flowering plants diverged from nonflowering plants.

Pollen creation is a delicate process that plants have evolved over millions of years. Insights such as these into how plants maintain the integrity of their reproductive system are invaluable toward understanding how we might be able to generate crops capable of withstanding environmental stresses like heat and drought that could threaten our food supply.

This work was supported by Pew Scholars Program in the Biomedical Sciences (27345), the Searle Scholars Program (15-SSP-162), and the National Science Foundation (CHE-1709616 and 1122374).

Written by Nicole Giese Rura

***

Jing-Ke Weng’s primary affiliation is with Whitehead Institute for Biomedical Research, where his laboratory is located and all his research is conducted. He is also an assistant professor of biology at Massachusetts Institute of Technology.

***

Citation:

“PRX9 and PRX40 are extensin peroxidases essential for maintaining tapetum and microspore cell wall integrity during Arabidopsis anther development”

Plant Cell, online March 18, 2019, DOI: https://doi.org/10.1105/tpc.18.00907

Joseph R. Jacobowitz, William C. Doyle, and Jing-Ke Weng.

Pulin Li joins Whitehead Institute
Whitehead Institute
April 2, 2019

Whitehead Institute announced today that the developmental and synthetic biologist Pulin Li will join the Institute in May as its newest Member. Li will also be appointed an assistant professor of biology at Massachusetts Institute of Technology (MIT). At Whitehead Institute, she will pursue studies that could, ultimately, lead to methods for programming cells to form replacement tissues and prosthetic cells for regenerative medicine.

During her Ph.D. work at Harvard University, Li worked in the lab of Leonard Zon on hematopoietic stem cells using zebrafish as a model. Trained as a chemical biologist, she was interested in programming stem cells with chemicals to improve their engraftment efficiency upon transplantation. Working with zebrafish embryos, she discovered her passion for the fundamental molecular and cellular aspects of developmental biology. In particular, she wanted to understand how circuits of interacting genes, running as an automated program in individual cells, generate highly dynamic and yet choreographed multicellular behavior.

For her postdoctoral research at California Institute of Technology with Michael B. Elowitz, Li chose to study morphogen-mediated tissue patterning, a key process in embryo development and tissue regeneration. To directly test the relationship between the architecture of the genetic circuits and precision of tissue patterning, she reconstituted morphogen gradients in a petri dish. This system allows researchers to systematically rewire genetic circuits, finely tune the key parameters, and quantitatively analyze the resulting spatiotemporal patterning dynamics. This cell-based multiscale reconstitution approach, from genetic circuits to single cells to multicellular behavior, provides an important new methodology for studying developmental and evolutionary questions. It could also offer a quantitative framework and molecular tools for tissue engineering.

“Pulin’s insightful work has demonstrated that she is just the kind of pathbreaking scientist we prize at Whitehead Institute: brilliant, creative, and passionately dedicated to fundamental biomedical discovery,” says David Page, Whitehead Institute Director and Member. “She has taken a bottom‐up approach to understanding tissue patterning. As a result, for the first time, scientists are able to take a pathway apart, rebuild it, and analyze the role of each of its design features in a multicellular patterning process.”

Whitehead Institute Member and associate director Peter Reddien — who studies tissue regeneration in model organisms — chaired the search committee that recommended Li’s appointment. “Pulin’s research elegantly dissects the key principles of signaling pathways, and has great future potential,” Reddien notes. “By engineering genetic circuits and functional modules in single cells, she can start to understand how genetic circuits enable multicellular behavior and address myriad developmental questions.”

Li earned a Ph.D. in Chemical Biology at Harvard University, and a bachelor’s degree in Life Sciences from Peking University. Recipient of an American Cancer Society Postdoctoral Fellowship and Santa Cruz Developmental Biology Young Investigator Award, Li currently holds a prestigious National Institutes of Health “Pathway to Independence” (K99) award from NICHD. She is a lead author on peer-reviewed studies that have appeared in the journals Nature and Science.

“It is a very exciting time to apply quantitative and engineering approaches to developmental biology questions,” says Li. “Whitehead Institute provides such a supportive and intellectually stimulating environment. I am thrilled to be back to Cambridge and be part of the research community of Whitehead, MIT, and the greater Boston area.”

Life unfolding

Graduate student Marlis Denk-Lobnig investigates the biological forces that shape developing tissue to dictate form and function.

Raleigh McElvery
March 22, 2019

A few hours after fertilization, the fruit fly embryo is just a hollow sphere, slightly oblong in shape, until a band of cells on its surface furrows inward to form a new layer. This folding process takes only 15 minutes, but it’s critical for determining where the cells will go and what roles they will eventually play. In humans, errors in tissue folding can result in diseases like spina bifida, where the spine never fully closes.

Fourth-year graduate student Marlis Denk-Lobnig watches this gastrulation process occurring in fly embryos in real time, tagging molecules with fluorescent proteins to probe the forces that eventually shape a fully-formed organism. Every day, she gets to witness new life unfold — literally.

Denk-Lobnig spends most of her time with her eye to a microscope or generating genetic crosses in the “fly room” where she keeps her stocks — rows of tubes containing light brown insect food that emits an unmistakable odor, despite being corked with cotton swabs. Inside each neatly labeled container, scores of tiny flies mill around as they lay eggs and feast.

Given that her mother trained in chemistry and her father in physics, “it didn’t take much creativity to get into science early on.” Denk-Lobnig enjoyed physics throughout high school, but also maintained a keen interest in biology, which became more pronounced after she was diagnosed with an autoimmune disease affecting her thyroid and adrenal glands.

“In some ways, the question of how your own body works is the most tangible question to ask,” she says. “It’s fascinating to connect everyday experiences with mechanisms, and studying biology and medicine seemed like a powerful way to have a direct impact on life.”

She majored in molecular medicine at Georg August University in Göttingen, Germany, located several hours from her childhood home in Heidelberg. Inspired by a summer internship with MIT Biology alum and Rockefeller professor Cori Bargmann PhD ’87, Denk-Lobnig centered her undergraduate thesis on the role glial cells play in disease.

She graduated after only three years, the typical duration in Germany, and spent the next several months traveling and applying to graduate schools. She also visited Nepal, where she taught visual and performing arts — and a bit of gymnastics — at a local boarding school.

When she began at MIT in 2015, Denk-Lobnig took the opportunity to blend her expertise in biology with a renewed enthusiasm for physics. Although she is a full-fledged member of the Department of Biology, she is simultaneously enrolled in the interdepartmental Biophysics Certificate Program.

“Not many people know that MIT has a thriving biophysics community,” she says. “It’s a mix of mechanical engineers, chemists, biologists, and physicists. There are specific course requirements, and we go on retreats and participate in seminars to share our research and discuss collaborations.”

As a member of Adam Martin’s lab, Denk-Lobnig studies the cellular forces that shape tissue form and function. Martin is also affiliated with the certificate program, and was one of the faculty members who initially interviewed Denk-Lobnig for the graduate program.

“Biophysics is all about finding elegant explanations for everyday phenomena, and I really enjoy thinking about physical principles and how they apply to biological problems,” Denk-Lobnig says. “The methods we use in the Martin lab are also incredibly visual. You can literally see a fruit fly embryo fold, and watch as a sheet of cells furrows inside the embryo to form a second layer, which is important for development. It’s both informative and aesthetically pleasing.”

Denk-Lobnig began by focusing on a single molecule called Cumberland-GAP (C-GAP), which regulates one of the many proteins in charge of tissue folding: myosin. Myosin is responsible for muscle contraction, among other duties. With its characteristic forked shape — two “heads” protruding from string-like “tail” domain — myosin can appear to walk along the cell’s scaffolding, sometimes transporting cargo. Denk-Lobnig, though, is most interested in myosin’s ability to pull on developing tissue and create a fold.

Right before graduating, one of Denk-Lobnig’s former labmates noticed that depleting C-GAP seemed to alter the concentration (or “gradient”) of myosin across the tissue. Since this finding pertained to the very regulator she was studying, it piqued Denk-Lobnig’s interest. She wanted to know how molecules like C-GAP might influence myosin and impact folding, and her scope widened from the molecular level to include the entire tissue.

It’s unlikely, she says, that myosin is pulling with equal force across the tissue — “that wouldn’t constrict the sheet of cells very efficiently.” Instead, there’s probably more myosin in middle and less towards the edges, which contracts the cells in the middle of the sheet to a greater degree and creates the curvature that forms the crease of the fold. In the fruit fly, gastrulation occurs just three hours after the eggs are laid. Because the folding happens at the surface of the embryo, there’s no need for dissection to witness the entire event through a microscope.

Denk-Lobnig has begun exploring other regulators besides C-GAP to analyze their effects on the myosin gradient and cell curvature. She was one of the first members of the lab to introduce CRISPR-Cas9 into their testing protocol, and is currently the only one experimenting with optogenetic techniques. She also regularly participates in the lab book club, which features classics like The Bell Jar and One Hundred Years of Solitude.

Outside of lab, Denk-Lobnig serves as the president of MIT’s women’s club gymnastics team, volunteers to help run weekly Gymnastics Special Olympics events, and sings in a graduate student choir. She is also a member of the department’s peer support program, bioREFs.

Long-term, she plans to stay in academia and delve further into physics-based methods, like modeling and coding. If she could find a project that’s just as visual as her current work in the Martin lab, “that would definitely be a plus.”

Posted 3.21.19
A Wide Net to Trap Cancer

Stefani Spranger is exploring multiple avenues for the next immunotherapy breakthrough

Pamela Ferdinand | Spectrum
March 12, 2019

A YOUNG LAB AT THE FOREFRONT OF IMMUNOTHERAPY DISCOVERIES is an exciting yet challenging place to be. MIT faculty member Stefani Spranger, an expert in cancer biology and immunology, understands that better than most people.

Spranger knows that new labs such as hers, which opened in July 2017 at the Koch Institute for Integrative Cancer Research at MIT, face distinct advantages and disadvantages when it comes to making their mark. While younger labs typically have startup grants, they lack the long-term funding, track record, and name recognition of established researchers; on the other hand, new labs tend to have smaller, close-knit teams open to tackling a wider array of investigative avenues to see what works, what doesn’t work, and where promise lies.

That’s when the funds and recognition of an endowed professorship can make a big difference, says Spranger, an assistant professor of biology who last year was named the Howard S. (1953) and Linda B. Stern Career Development Professor. “Not everything will work, so being able to test multiple approaches accelerates discovery and success,” she says.

Spranger is working to understand the mechanisms underlying interactions between cancer and the immune system—and ultimately, to find ways to activate immune cells to recognize and fight the disease. Cancer immunotherapies (the field in which this past year’s Nobel Prize in Physiology or Medicine was awarded) have revolutionized cancer treatment, leading to a new class of drugs called checkpoint inhibitors and resulting in lasting remissions, albeit for a very limited number of cancer patients. According to Spranger, there won’t be a single therapy, one-size-fits-all solution, but targeted treatments for cancers depending on their characteristics.

To discover new treatments, Spranger’s lab casts a wide net, asking big-picture questions about what influences anti-tumor immune response and disease outcome while also zooming in to investigate, for instance, specifically how cancer-killing T cells are excluded from tumors. In 2015, as a University of Chicago postdoc, Spranger made the novel discovery that malignant melanoma tumors with high beta-catenin protein lack T cells and fail to respond to treatment while tumors with normal beta-catenin do.

Her lab focuses on understanding lung and pancreatic cancers, employing a multidisciplinary research team with expertise ranging from immunology and biology to math and computation. One of her graduate students is using linear algebra to develop a mathematical model for translating mouse data into more accurate predictions about key signaling pathways in humans.

Another project involves exploring the relationship between homogenous tumors and immune response. Not every cancer cell is identical, nor does it have the same molecules on its surface that can be recognized by an immune cell; cancer patients with a more homogenous expression of those cells do better with immunotherapy. To investigate whether that homogeneity is due to the tumor or to the immune response to the tumor, Spranger is seeking to build a model system. The research involves a lot of costly sequencing—up to $3,000 per attempt, which is fairly expensive for a young lab—and each try has an element of what Spranger half-jokingly describes as “close your eyes and hope it worked.”

“Being able to generate preliminary proof of concept data for high-risk projects is of outstanding importance for any principal investigator,” she says. “However, it is particularly important to have freedom and flexibility early on.”

Boosting potential

Advancing cancer research and supporting the careers of promising faculty were the intentions of Linda Stern and her late husband Howard Stern ’53, SM ’54, whose gift has supported a series of biology professors since 1993. The first appointee to the chair was Tyler Jacks, now director of the Koch Institute.

Linda Stern says her husband, the cofounder and chairman of E-Z-EM, Inc., and a pioneer in the field of medical imaging, gave thoughtfully to many charitable causes. Yet MIT, where he earned undergraduate and graduate degrees in chemical engineering, had a special place in his heart.

“He was very involved and loved MIT,” says Stern, whose own career path included working as a private detective for 28 years. “He made wonderful contacts and got a wonderful education. He was a real heavy hitter when it came to defending the university.”

MIT’s continued excellence in a competitive environment depends on its ability to recognize and retain faculty, nurture careers, support students, and allow for the pursuit of novel ideas. Like the full professorships awarded to tenured faculty members, career development professorships such as the one endowed by the Sterns fund salary, benefits, and a scholarly allowance. These shorter-term (typically three-year) appointments, however, are specifically meant to accelerate the research and career progression of junior professors with exceptional potential.

“The professorship showed me that MIT as a community is invested and interested in fostering my career,” says Spranger. The discretionary funds she receives from the chair can cover, without need for an approval process, expenses that are not paid for by grants or that suddenly arise from a new idea or opportunity. They can keep projects running in tough times, fund travel to conferences, and purchase equipment. “It gives you a little more traction,” Spranger says. “It’s probably the best invested money because you have a lot of ideas you want to test, and at the same time, you are still checking the pulse of where the field might go and where you want to build your niche.”

A “model” parasite

Whitehead Institute researchers unravel the unique biology of apicomplexans — the parasites responsible for malaria, toxoplasmosis, and other diseases impacting global health.

Whitehead Institute
February 19, 2019

Apicomplexa: A brood of parasites

Malaria, cryptosporidiosis, and toxoplasmosis affect millions of people each year, killing an estimated 600,000 annually, mostly children under five in developing countries. Billions of dollars are spent each year to control and eliminate these diseases, according to the World Health Organization (WHO). Each of these diseases is caused by a different apicomplexan, a group of parasites that infect almost all animal species.

Toxoplasma gondii (T. gondii), which causes the disease toxoplasmosis, has a unique physiology that has allowed it to parasitize its hosts, yet it retains many features in common with other apicomplexans. Using T. gondii as a “model parasite”, Whitehead Member Sebastian Lourido is deciphering apicomplexans’ unique biology and uncovering aspects that could be harnessed to disrupt the parasites’ ability to proliferate and infect their hosts.

Apicomplexans’ toll on humans is staggering:

· Malaria, caused by several Plasmodium species of Apicomplexa, was responsible for over 200 million infections and more than 400,000 deaths, primarily in young children, in 2017 (WHO).

· Severe diarrhea kills an estimated 525,000 children under five each year (WHO). Over 200,000 of those deaths can be attributed to cryptosporidiosis, which is caused by the species of the apicomplexan Cryptosporidium (Sow et al., 2016, PLoS Negl Trop Dis.).

· 25% of the global population is infected with T. gondii with rates reaching over 60% in some areas (Pappas et al. 2009, Int. J. Parasitol.). Toxoplasmosis can cause an array of serious neurological disorders in those with weakened immune systems and can be lethal or lead to birth defects in a developing fetus. In an estimated 2% of infected individuals, toxoplasmosis causes retinal lesions (Holland, 2003, Am J Ophthalmol.).

A parasitic relationship, separated by a billion years of evolution

The diagram above depicts the evolutionary relationships between organisms — species separated by many branches are more distantly related than those divided by fewer branches. Apicomplexans and humans are separated by multiple branches and more than a billion years of evolution. In fact, apicomplexans are actually more closely related to plants than animals, having evolved from a non-parasitic ancestor about 700 to 900 million years ago that, like green plants, used photosynthesis to generate energy from sunlight. So far, scientists have studied only about half of the known apicomplexan genes, leaving the rest of their 8,000 predicted protein-coding genes uncharacterized.

Although key genes important for fundamental processes have remained fairly stable over the billion years since apicomplexans and their hosts diverged, other parts of the apicomplexan genomes evolved as they adapted to a parasitic lifestyle. The genes that emerged as unique to apicomplexans, such as those encoding factors involved in entering or exiting host cells, potentially represent therapeutic targets because curtailing their expression could hamstring — or even eliminate — the parasites without harming the host.

Analyzing a unique biology

Understanding apicomplexans and their distinct biology has been challenging at least in part because the tools — genomic analysis, genetic engineering, and culture systems — that scientists use to study and understand more traditional model organisms in the lab, such as mice, are difficult to apply in apicomplexans. Moreover, apicomplexans may spend different stages of their lives in different hosts, so studying a parasite’s complete life cycle may require studying and culturing multiple organisms or their tissues. For example, Plasmodium falciparum, which causes malaria, spends part of its life cycle in mosquitoes and another in humans.

Unlike the Plasmodium parasites that cause malaria, T. gondii is relatively easy to culture in the lab. Lourido, who is also an assistant professor of biology at Massachusetts Institute of Technology (MIT), and his lab are using this organism to unravel many elemental questions about apicomplexans: How do they infect their host cells? What do they require to reproduce? How do they break out of their host cell to infect more cells?

Adapted CRISPR/Cas9 gene editing system reveals first genome-wide glimpse of apicomplexan genomic profile

Researchers in Lourido’s lab are working to decipher the 50% of the T. gondii’s genome that remains to be characterized. To do so, they adapted the CRISPR/Cas9 gene editing system to work in T. gondii. Using CRISPR/Cas9, researchers can cut T. gondii’s DNA at specific sites to disable particular genes. With this approach, they were able to efficiently conduct genome-wide screens to identify genes that are functionally important to the parasite.

For this screen the Lourido lab used their adapted CRISPR/Cas9 gene editing system to remove the function — one at a time — of each of T. gondii’s ~8,000 protein-coding genes. The resulting altered parasites were then cultured with human host cells. After a period of time, the scientists tallied the number of parasites present with each modification to assess how disabling a particular gene’s function affects the parasites’ reproduction and survival. Altered parasites that successfully proliferated despite missing a gene’s function were deemed to have alterations in a gene that is dispensable, whereas modified parasites that did not thrive were deemed to have alterations in genes that are important for fitness.

Screen identifies apixomplexan-specific proteins

The initial screen of the T. gondii genome, led by Lourido lab research assistant Saima Sidik and postdoctoral researcher Diego Huet, identified a number of genes that encode indispensable conserved apicomplexan proteins, called ICAPs for short (Sidik et al. 2016, Cell). One ICAP identified by Sidik and Huet is an invasion factor called the claudin-like apicomplexan microneme protein (CLAMP).

In the same Cell paper, researchers described how they determined that CLAMP is critical to the initiation of host cell invasion by T. gondii. Working with Jacquin Niles and members of his lab in the MIT Department of Biological Engineering, the Lourido team also showed that CLAMP is required for the parasites that cause malaria to survive when grown in red blood cells.

In a recent paper published in the journal eLife, Lourido and first author Huet, identified a protein in apicomplexans that is crucial for creating adenosine triphosphate (ATP), the universal energy storage unit of cells. ATP is essential for cells’ survival and without it, cellular processes would stall. Most organisms have an enzyme, called ATP synthase, that creates ATP by converting the energy of a proton gradient across a membrane into mechanical energy. As the protons move through the ATP synthase, it spins like a turbine. This movement powers the formation of ATP. For the enzyme to work properly, a portion of the ATP synthase acts as a scaffold, or stator, by counteracting the rotation of the turbine-like part of the enzyme.

Although most components of the ATP synthase are conserved between apicomplexans and humans, scientists had been unable to pinpoint the gene encoding the essential stator portion – no DNA sequence in the apicomplexan genome resembles the sequences of known stator genes. Using a genomic approach, Huet and Lourido analyzed the predicted function and structure of the ICAPs  present in the mitochondrion, the ATP synthase’s home in all organisms. To their surprise, the predicted shape of one of the ICAPs resembles a stator subunit found in yeast and mammals.

When Huet and Lourido mutated or removed the stator subunit, the parasite’s ATP synthase failed to function properly, damaging the structure and performance of its mitochondria and halting the the parasite’s growth.

The beginning of a parasitic relationship

For Lourido and his lab, T. gondii’s unique stator protein is just one example of how these extraordinary apicomplexan organisms have evolved and adapted. By tailoring current tools and inventing new ones, Lourido’s investigations into T. gondii’s biology have the potential to reveal important insights into this family of parasites that impacts millions of people each year.

Credits

Written and produced by Nicole Giese Rura and Whitehead Institute

Illustrations and animations by Andrew Tubelli

Cover image courtesy of Clare Harding/Whitehead Institute

Special thanks to Sebastian Lourido and his lab, especially Clare Harding, Diego Huet, and Saima Sidik

References

WHO: Global Health Observatory (GHO data) for number of malaria cases

UNICEF: Diarrhoea as a cause of death in children under 5

Holland GN. (2003) Ocular toxoplasmosis: a global reassessment. Part I: epidemiology and course of disease. Am J Ophthalmol. Dec;136(6): 973-988. https://doi.org/10.1016/j.ajo.2003.09.040

Huet D, Rajendran E, van Dooren GG, Lourido S. (2018) Identification of Cryptic Subunits from an Apicomplexan ATP Synthase. eLife. 2018;7:e38097. https://doi:10.7554/eLife.38097

Pappas G, Roussos N, Falagas ME. (2009) Toxoplasmosis Snapshots: Global Status of Toxoplasma gondii Seroprevalence and Implications for Pregnancy and Congenital Toxoplasmosis. Int J Parasitol. Oct;39(12):1385-94. https://doi: 10.1016/j.ijpara.2009.04.003

Sidik SM, Huet D, Ganesan SM, Huynh MH, Wang T, Nasamu AS, Thiru P, Saeij JPJ, Carruthers VB, Niles JC, Lourido S. (2016) A Genome-wide CRISPR Screen in Toxoplasma Identifies Essential Apicomplexan Genes. Cell. Sep 8;166(6):1423-1435.e12. https://doi:10.1016/j.cell.2016.08.019

Sow SO, Muhsen K, Nasrin D, Blackwelder WC, Wu Y, Farag TH, et al. (2016) The Burden of Cryptosporidium Diarrheal Disease among Children < 24 Months of Age in Moderate/High Mortality Regions of Sub-Saharan Africa and South Asia, Utilizing Data from the Global Enteric Multicenter Study (GEMS). PLoS Negl Trop Dis. 10(5): e0004729. https://doi.org/10.1371/journal.pntd.0004729

Yahata K, Treeck M, Culleton R, Gilberger T-W, Kaneko O (2012) Time-Lapse Imaging of Red Blood Cell Invasion by the Rodent Malaria Parasite Plasmodium yoelii. PLoS ONE. 7(12): e50780. https://doi.org/10.1371/journal.pone.0050780