Manipulating time with torpor

New research from the Hrvatin Lab recently published in Nature Aging indicates that inducing a hibernation-like state in mice slows down epigenetic changes that accompany aging.

Shafaq Zia | Whitehead Institute
March 7, 2025

Surviving extreme conditions in nature is no easy feat. Many species of mammals rely on special adaptations called daily torpor and hibernation to endure periods of scarcity. These states of dormancy are marked by a significant drop in body temperature, low metabolic activity, and reduced food intake—all of which help the animal conserve energy until conditions become favorable again.

The lab of Whitehead Institute Member Siniša Hrvatin studies daily torpor, which lasts several hours, and its longer counterpart, hibernation, in order to understand their effects on tissue damage, disease progression, and aging. In their latest study, published in Nature Aging on March 7, first author Lorna Jayne, Hrvatin, and colleagues show that inducing a prolonged torpor-like state in mice slows down epigenetic changes that accompany aging.

“Aging is a complex phenomenon that we’re just starting to unravel,” says Hrvatin, who is also an assistant professor of biology at Massachusetts Institute of Technology. “Although the full relationship between torpor and aging remains unclear, our findings point to decreased body temperature as the central driver of this anti-aging effect.”

Tampering with the biological clock

Aging is a universal process, but scientists have long struggled to find a reliable metric for measuring it. Traditional clocks fall short because biological age doesn’t always align with chronology—cells and tissues in different organisms age at varying rates.

To solve this dilemma, scientists have turned to studying molecular processes that are common to aging across many species. This, in the past decade, has led to the development of epigenetic clocks, new computational tools that can estimate an organism’s age by analyzing the accumulation of epigenetic marks in cells over time.

Think of epigenetic marks as tiny chemical tags that cling either to the DNA itself or to the proteins, called histones, around which the DNA is wrapped. Histones act like spools, allowing long strands of DNA to coil around them, much like thread around a bobbin. When epigenetic tags are added to histones, they can compact the DNA, preventing genetic information from being read, or loosen it, making the information more accessible. When epigenetic tags attach directly to DNA, they can alter how the proteins that “read” a gene bind to the DNA.

While it’s unclear if epigenetic marks are a cause or consequence of aging, this much is evident: these marks change over an organism’s lifespan, altering how genes are turned on or off, without modifying the underlying DNA sequence. These changes have enabled researchers to track the biological age of individual cells and tissues using dedicated epigenetic clocks.

In nature, states of stasis like hibernation and daily torpor help animals survive by conserving energy and avoiding predators. But now, emerging research in marmots and bats hints that hibernation may also slow down epigenetic aging, prompting researchers to explore whether there’s a deeper connection between prolonged bouts of torpor and longevity.

However, investigating this link has been challenging, as the mechanisms that trigger, regulate, and sustain torpor remain largely unknown. In 2020, Hrvatin and colleagues made a breakthrough by identifying neurons in a specific region of the mouse hypothalamus, known as the avMLPA, which act as core regulators of torpor.

“This is when we realized that we could leverage this system to induce torpor and explore mechanistically how the state of torpor might have beneficial effects on aging,” says Jayne. “You can imagine how difficult it is to study this in natural hibernators because of accessibility and the lack of tools to manipulate them in sophisticated ways.”

The age-old mystery

The researchers began by injecting adeno-associated virus in mice, a gene delivery vehicle that enables scientists to introduce new genetic material into target cells. They employed this technology to instruct neurons in the mice’s avMLPA region to produce a special receptor called Gq-DREADD, which does not respond to the brain’s natural signals but can be chemically activated by a drug. When the researchers administered this drug to the mice, it bound to the Gq-DREADD receptors, activating the torpor-regulating neurons and triggering a drop in the animals’ body temperature.

However, to investigate the effects of torpor on longevity, the researchers needed to maintain these mice in a torpor-like state for days to weeks. To achieve this, the mice were continuously administered the drug through drinking water.

The mice were kept in a torpor-like state with periodic bouts of arousal for a total of nine months. The researchers measured the blood epigenetic age of these mice at the 3-, 6-, and 9-month marks using the mammalian blood epigenetic clock. By the 9-month mark, the torpor-like state had reduced blood epigenetic aging in these mice by approximately 37%, making them biologically three months younger than their control counterparts.

To further assess the effects of torpor on aging,  the group evaluated these mice using the mouse clinical frailty index, which includes measurements like tail stiffening, gait, and spinal deformity that are commonly associated with aging. As expected, mice in the torpor-like state had a lower frailty index compared to the controls.

With the anti-aging effects of the torpor-like state established, the researchers sought to understand how each of the key factors underlying torpor—decreased body temperature, low metabolic activity, and reduced food intake—contributed to longevity.

To isolate the effects of reduced metabolic rate, the researchers induced a torpor-like state in mice, while maintaining the animal’s normal body temperature. After three months, the blood epigenetic age of these mice was similar to that of the control group, suggesting that low metabolic rate alone does not slow down epigenetic aging.

Next, Hrvatin and colleagues isolated the impact of low caloric intake on blood epigenetic aging by restricting the food intake of mice in the torpor-like state, while maintaining their normal body temperature. After three months, these mice were a similar blood epigenetic age as the control group.

When both low metabolic rate and reduced food intake were combined, the mice still exhibited higher blood epigenetic aging after three months compared to mice in the torpor state with low body temperature. These findings, combined, led the researchers to conclude that neither low metabolic rate nor reduced caloric intake alone are sufficient to slow down blood epigenetic aging. Instead, a drop in body temperature is necessary for the anti-aging effects of torpor.

Although the exact mechanisms linking low body temperature and epigenetic aging are unclear, the team hypothesizes that it may involve the cell cycle, which regulates how cells grow and divide: lower body temperatures can potentially slow down cellular processes, including DNA replication and mitosis. This, over time, may impact cell turnover and aging. With further research, the Hrvatin Lab aims to explore this link in greater depth and shed light on the lingering mystery.

Cellular interactions help explain vascular complications due to COVID-19 virus infection

Whitehead Institute Founding Member Rudolf Jaenisch and colleagues have found that cellular interactions help explain how SARS-CoV-2, the virus that causes COVID-19, could have such significant vascular complications, including blood clots, heart attacks, and strokes.

Greta Friar | Whitehead Institute
December 31, 2024

COVID-19 is a respiratory disease primarily affecting the lungs. However, the SARS-CoV-2 virus that causes COVID-19 surprised doctors and scientists by triggering an unusually large percentage of patients to experience vascular complications – issues related to blood flow, such as blood clots, heart attacks, and strokes.

Whitehead Institute Founding Member Rudolf Jaenisch and colleagues wanted to understand how this respiratory virus could have such significant vascular effects. They used pluripotent stem cells to generate three relevant vascular and perivascular cell types—cells that surround and help maintain blood vessels—so they could closely observe the effects of SARS-CoV-2 on the cells. Instead of using existing methods to generate the cells, the researchers developed a new approach, providing them with fresh insights into the mechanisms by which the virus causes vascular problems. The researchers found that SARS-CoV-2 primarily infects perivascular cells and that signals from these infected cells are sufficient to cause dysfunction in neighboring vascular cells, even when the vascular cells are not themselves infected. In a paper published in the journal Nature Communications on December 30, Jaenisch, postdoc in his lab Alexsia Richards, Harvard University Professor and Wyss Institute for Biologically Inspired Engineering Member David Mooney, and then-postdoc in the Jaenisch and Mooney labs Andrew Khalil share their findings and present a scalable stem cell-derived model system with which to study vascular cell biology and test medical therapies.

A new problem requires a new approach

When the COVID-19 pandemic began, Richards, a virologist, quickly pivoted her focus to SARS-CoV-2. Khalil, a bioengineer, had already been working on a new approach to generate vascular cells. The researchers realized that a collaboration could provide Richards with the research tool she needed and Khalil with an important research question to which his tool could be applied.

The three cell types that Khalil’s approach generated were endothelial cells, the vascular cells that form the lining of blood vessels; and smooth muscle cells and pericytes, perivascular cells that surround blood vessels and provide them with structure and maintenance, among other functions. Khalil’s biggest innovation was to generate all three cell types in the same media—the mixture of nutrients and signaling molecules in which stem cell-derived cells are grown.

The combination of signals in the media determines the final cell type into which a stem cell will mature, so it is much easier to grow each cell type separately in specially tailored media than to find a mixture that works for all three. Typically, Richards explains, virologists will generate a desired cell type using the easiest method, which means growing each cell type and then observing the effects of viral infection on it in isolation. However, this approach can limit results in several ways. Firstly, it can make it challenging to distinguish the differences in how cell types react to a virus from the differences caused by the cells being grown in different media.

“By making these cells under identical conditions, we could see in much higher resolution the effects of the virus on these different cell populations, and that was essential in order to form a strong hypothesis of the mechanisms of vascular symptom risk and progression,” Khalil says.

Secondly, infecting isolated cell types with a virus does not accurately represent what happens in the body, where cells are in constant communication as they react to viral exposure. Indeed, Richards’ and Khalil’s work ultimately revealed that the communication between infected and uninfected cell types plays a critical role in the vascular effects of COVID-19.

“The field of virology often overlooks the importance of considering how cells influence other cells and designing models to reflect that,” Richards says. “Cells do not get infected in isolation, and the value of our model is that it allows us to observe what’s happening between cells during infection.”

Viral infection of smooth muscle cells has broader, indirect effects

When the researchers exposed their cells to SARS-CoV-2, the smooth muscle cells and pericytes became infected—the former at especially high levels, and this infection resulted in strong inflammatory gene expression—but the endothelial cells resisted infection. Endothelial cells did show some response to viral exposure, likely due to interactions with proteins on the virus’ surface. Typically, endothelial cells press tightly together to form a firm barrier that keeps blood inside of blood vessels and prevents viruses from getting out. When exposed to SARS-CoV-2, the junctions between endothelial cells appeared to weaken slightly. The cells also had increased levels of reactive oxygen species, which are damaging byproducts of certain cellular processes.

However, big changes in endothelial cells only occurred after the cells were exposed to infected smooth muscle cells. This triggered high levels of inflammatory signaling within the endothelial cells. It led to changes in the expression of many genes relevant to immune response. Some of the genes affected were involved in coagulation pathways, which thicken blood and so can cause blood clots and related vascular events. The junctions between endothelial cells experienced much more significant weakening after exposure to infected smooth muscle cells, which would lead to blood leakage and viral spread. All of these changes occurred without SARS-CoV-2 ever infecting the endothelial cells.

This work shows that viral infection of smooth muscle cells, and their resultant signaling to endothelial cells, is the lynchpin in the vascular damage caused by SARS-CoV-2. This would not have been apparent if the researchers had not been able to observe the cells interacting with each other.

Clinical relevance of stem cell results

The effects that the researchers observed were consistent with patient data. Some of the genes whose expression changed in their stem cell-derived model had been identified as markers of high risk for vascular complications in COVID-19 patients with severe infections. Additionally, the researchers found that a later strain of SARS-CoV-2, an Omicron variant, had much weaker effects on the vascular and perivascular cells than did the original viral strain. This is consistent with the reduced levels of vascular complications seen in COVID-19 patients infected with recent strains.

Having identified smooth muscle cells as the main site of SARS-Cov-2 infection in the vascular system, the researchers next used their model system to test one drug’s ability to prevent infection of smooth muscle cells. They found that the drug, N, N-Dimethyl-D-erythro-sphingosine, could reduce infection of the cell type without harming smooth muscle or endothelial cells. Although preventing vascular complications of COVID-19 is not as pressing a need with current viral strains, the researchers see this experiment as proof that their stem cell model could be used for future drug development. New coronaviruses and other pathogens are frequently evolving, and when a future virus causes vascular complications, this model could be used to quickly test drugs to find potential therapies while the need is still high. The model system could also be used to answer other questions about vascular cells, how these cells interact, and how they respond to viruses.

“By integrating bioengineering strategies into the analysis of a fundamental question in viral pathology, we addressed important practical challenges in modeling human disease in culture and gained new insights into SARS-CoV-2 infection,” Mooney says.

“Our interdisciplinary approach allowed us to develop an improved stem cell model for infection of the vasculature,” says Jaenisch, who is also a professor of biology at the Massachusetts Institute of Technology. “Our lab is already applying this model to other questions of interest, and we hope that it can be a valuable tool for other researchers.”

Study suggests how the brain, with sleep, learns meaningful maps of spaces

Place cells are well known to encode individual locations, but new experiments and analysis indicate that stitching together a “cognitive map” of a whole environment requires a broader ensemble of cells, aided by sleep, to build a richer network over several days, according to new research from the Wilson Lab.

David Orenstein | The Picower Institute for Learning and Memory
December 10, 2024

On the first day of your vacation in a new city your explorations expose you to innumerable individual places. While the memories of these spots (like a beautiful garden on a quiet side street) feel immediately indelible, it might be days before you have enough intuition about the neighborhood to direct a newer tourist to that same site and then maybe to the café you discovered nearby. A new study in mice by MIT neuroscientists at The Picower Insitute for Learning and Memory provides new evidence for how the brain forms cohesive cognitive maps of whole spaces and highlights the critical importance of sleep for the process.

Scientists have known for decades that the brain devotes neurons in a region called the hippocampus to remembering specific locations. So-called “place cells” reliably activate when an animal is at the location the neuron is tuned to remember. But more useful than having markers of specific spaces is having a mental model of how they all relate in a continuous overall geography. Though such “cognitive maps” were formally theorized in 1948, neuroscientists have remained unsure of how the brain constructs them. The new study in the December edition of Cell Reports finds that the capability may depend upon subtle but meaningful changes over days in the activity of cells that are only weakly attuned to individual locations, but that increase the robustness and refinement of the hippocampus’s encoding of the whole space. With sleep, the study’s analyses indicate, these “weakly spatial” cells increasingly enrich neural network activity in the hippocampus to link together these places into a cognitive map.

“On day 1, the brain doesn’t represent the space very well,” said lead author Wei Guo, a research scientist in the lab of senior author Matthew Wilson, Sherman Fairchild Professor in The Picower Institute and MIT’s Departments of Biology and Brain and Cognitive Sciences. “Neurons represent individual locations, but together they don’t form a map. But on day 5 they form a map. If you want a map, you need all these neurons to work together in a coordinated ensemble.”

Mice mapping mazes

To conduct the study, Guo and Wilson along with labmates Jie “Jack” Zhang and Jonathan Newman introduced mice to simple mazes of varying shapes and let them explore them freely for about half an hour a day for several days. Importantly, the mice were not directed to learn anything specific through the offer of any rewards. They just wandered. Previous studies have shown that mice naturally demonstrate “latent learning” of spaces from this kind of unrewarded experience after several days.

To understand how latent learning takes hold, Guo and his colleagues visually monitored hundreds of neurons in the CA1 area of the hippocampus by engineering cells to flash when a buildup of calcium ions made them electrically active. They not only recorded the neurons’ flashes when the mice were actively exploring, but also while they were sleeping. Wilson’s lab has shown that animals “replay” their previous journeys during sleep, essentially refining their memories by dreaming about their experiences.

Analysis of the recordings showed that the activity of the place cells developed immediately and remained strong and unchanged over several days of exploration.  But this activity alone wouldn’t explain how latent learning or a cognitive map evolves over several days. So unlike in many other studies where scientists focus solely on the strong and clear activity of place cells, Guo extended his analysis to the more subtle and mysterious activity of cells that were not so strongly spatially tuned. Using an emerging technique called “manifold learning” he was able to discern that many of the “weakly spatial” cells gradually correlated their activity not with locations, but with activity patterns among other neurons in the network. As this was happening, Guo’s analyses showed, the network encoded a cognitive map of the maze that increasingly resembled the literal, physical space.

“Although not responding to specific locations like strongly spatial cells, weakly spatial cells specialize in responding to ‘‘mental locations,’’ i.e., specific ensemble firing patterns of other cells,” the study authors wrote. “If a weakly spatial cell’s mental field encompasses two subsets of strongly spatial cells that encode distinct locations, this weakly spatial cell can serve as a bridge between these locations.”

In other words, the activity of the weakly spatial cells likely stitches together the individual locations represented by the place cells into a mental map.

The need for sleep

Studies by Wilson’s lab and many others have shown that memories are consolidated, refined and processed by neural activity, such as replay, that occurs during sleep and rest. Guo and Wilson’s team therefore sought to test whether sleep was necessary for the contribution of weakly spatial cells to latent learning of cognitive maps.

To do this they let some mice explore a new maze twice during the same day with a three-hour siesta in between. Some of the mice were allowed to sleep but some were not. The ones that did showed a significant refinement of their mental map, but the ones that weren’t allowed to sleep showed no such improvement. Not only did the network encoding of the map improve, but also measures of the tuning of individual cells during showed that sleep helped cells become better attuned both to places and to patterns of network activity, so called “mental places” or “fields.”

Mental map meaning

The “cognitive maps” the mice encoded over several days were not literal, precise maps of the mazes, Guo notes. Instead they were more like schematics. Their value is that they provide the brain with a topology that can be explored mentally, without having to be in the physical space. For instance, once you’ve formed your cognitive map of the neighborhood around your hotel, you can plan the next morning’s excursion (e.g. you could imagine grabbing a croissant at the bakery you observed a few blocks west and then picture eating it on one of those benches you noticed in the park along the river).

Indeed, Wilson hypothesized that the weakly spatial cells’ activity may be overlaying salient non-spatial information that brings additional meaning to the maps (i.e. the idea of a bakery is not spatial, even if it’s closely linked to a specific location). The study, however, included no landmarks within the mazes and did not test any specific behaviors among the mice. But now that the study has identified that weakly spatial cells contribute meaningfully to mapping, Wilson said future studies can investigate what kind of information they may be incorporating into the animals’ sense of their environments. We seem to intuitively regard the spaces we inhabit as more than just sets of discrete locations.

“In this study we focused on animals behaving naturally and demonstrated that during freely exploratory behavior and subsequent sleep, in the absence of reinforcement, substantial neural plastic changes at the ensemble level still occur,” the authors concluded. “This form of implicit and unsupervised learning constitutes a crucial facet of human learning and intelligence, warranting further in-depth investigations.”

The Freedom Together Foundation, The Picower Institute for Learning and Memory and the National Institutes of Health funded the study.

Research findings: Open technology platform enables new versatility for neuroscience research with more naturalistic behavior

System developed by MIT, including co-author Mathew Wilson, and Open Ephys team provides a fast, light, standardized means for combining multiple instruments with minimal hindrance of lab mouse mobility.

David Orenstein | The Picower Institute for Learning and Memory
November 13, 2024

Individual technologies for recording and controlling neural activity in the brains of research mice have each advanced rapidly but the potential of easily mixing and matching them to conduct more sophisticated experiments, all while enabling the most natural behavior possible, has been difficult to realize. To empower a new generation of neuroscience experiments, engineers and scientists at MIT and the Open Ephys cooperative have developed a new standardized, open-source hardware and software platform. They described the system, called ONIX, in a new study Nov. 11 in Nature Methods.

ONIX provides labs with a means to acquire data simultaneously from multiple popular implanted technologies (such as electrodes, microscopes and stimulation probes) while also powering and controlling those independent devices via a very thin coaxial cable and unimposing headstage. The system provides a standardized means of acquiring each instrument’s data and neatly integrating it all for efficient transmission to desktop software where scientists can then see and work with it. In the study the researchers document ONIX’s high data throughput and low latency. They also demonstrate that because the system’s headstage and cable are so physically light and resistant to twisting, mice can behave completely naturally and wear the system for days on end. In a large enclosure at MIT with a complex 3D landscape, for instance, mice wearing the system were able to nimbly scamper, climb and leap in experiments comparably to mice wearing no hardware at all.

“ONIX represents the culmination of many quantitative improvements that all come together to enable a qualitative leap in our ability to perform neural recordings in naturalistic behavior,” said corresponding author Jakob Voigts, an MIT neuroscience alumnus, co-founder of Open Ephys, and a research group leader at the Janelia Research Campus of the Howard Hughes Medical Institute. “We can now study the brain during behaviors that unfold over many hours and allow the animals to learn, to make a lot of complex decisions, and to interact with the world in ways that were previously not accessible.”

Jon Newman, a former MIT postdoc and now president of Open Ephys, and MIT postdoc Jie “Jack” Zhang led the work in the lab of co-author Matt Wilson, Sherman Fairchild Professor in The Picower Institute for Learning and Memory at MIT, together with Aarón Cuevas-López at Open Ephys. Wilson, whose lab studies neural processes underlying memory, said the idea behind developing ONIX was to develop a set of standards that would make it easy for any lab to use multiple technologies to acquire rich neural data while animals performed complex behaviors over long time periods.

“Jon’s motivation, the principle he used, was that if we need to do experiments that combined things like optogenetics, imaging, tetrode electrophysiology, and neuropixels, could we do it in a way that would not only enable experiments we were doing but also more complex experiments, involving more complex behavior, involving the integration of different recording methodologies that advances the whole community and not just one individual lab?,” said Wilson, a faculty member in MIT’s Departments of Biology and Brain and Cognitive Sciences (BCS).

Open origins

As Newman and then Zhang began to develop the technology starting in 2016 with this community-minded, open-source philosophy, Wilson said, it was natural to do so in partnership with Open Ephys, an MIT-born effort, now based in Atlanta, which develops and disseminates open, standardized systems to for neuroscience research. Making systems open-source provides researchers with many advantages, Voigts explained.

“Anyone can download the plans for the hardware as well as the software that make up the system,” Voigts said. “For technically well-versed neuroscientists this means that it is easier to modify aspects of the system. Open source also means that the system works with probes from many manufacturers because the connectors and standards aren’t proprietary. Most importantly, the open standards and design allow hardware and software developers to use ONIX as a starting point for completely new tools.”

Voigts compared ONIX to the USB standard people enjoy on their computers and phones. Any number of accessories can easily work with those devices because all they have to do is plug in. Similarly with ONIX, Wilson said, “You can mix and match and combine and then add new technologies without having to re-engineer the whole system.”

Lab demos

To validate the platform, the researchers conducted several experiments with mice including in Wilson’s lab and in the lab of co-author Mark Harnett, Associate Professor in the McGovern Institute for Brain Research and BCS Department at MIT (where Voigts did his postdoctoral work).

In their experiments they compared the mobility of mice implanted with electrodes but sometimes wearing ONIX (and its 0.3 mm tether cable) vs. sometimes wearing a commonly used and but substantially thicker (1.8 mm) tether cable over an 8-hour neural recording session. The mice proved to be much more mobile while wearing the lighter and thinner ONIX system, showing a broader range of exploration, freer head movement, and much faster running speeds. In a similar experiment in which mice were inplanted with tetrodes in the brain’s retrosplenial cortex, they even were able to jump while wearing ONIX but did not while wearing the more imposing tether. In another experiment the researchers compared mouse mobility around the enclosure between ONIX-wearing and completely unimplanted mice. The mice explored with equal freedom (as measured by motion tracking cameras) though the ONIX mice didn’t run as fast as unimplanted mice.

In further experiments, Voigts’s team at Janelia used ONIX to record for 55 hours because the system kept its cable tangle-free over that long-duration activity.

Finally the researchers showed that ONIX could transmit recordings not only from implanted electrodes and tetrodes but also from miniscopes and neuropixels, via experiments at the Allen Institute for Brain Science. They also showed how Open Ephys’s data acquisition software Bonsai (developed by co-author Goncalo Lopes) enabled the brain activity recordings to be synchronized with behavior tracking cameras to correlate neural activity and behavior.

Voigts said he hopes the system earns widespread adoption, especially as hardware costs continue to come down.

“I hope that this system convinces others to take the plunge and record neural data in more complex animal behaviors,” he said.

In addition to the authors named above, other authors are Nicholas Miller, Takato Honda, Marie-Sophie van der Goes, Alexandra Leighton Felipe Carvalho, Anna Lakunina, and Joshua Siegle, who co-founded Open Ephys with Voigts.

Funding for the study came from the National Institutes of Health, The Picower Institute for Learning and Memory, The JPB Foundation, the National Science Foundation, a Brain Science Foundation Research Grant Award, a Kavli-Grass-MBL Fellowship by the Kavli Foundation, the Grass Foundation, and Marine Biological Laboratory (MBL), an Osamu Hayaishi Memorial Scholarship for Study Abroad, a Uehara Memorial Foundation Overseas Fellowship, and Japan Society for the Promotion of Science (JSPS) Overseas Fellowship. a Mathworks Graduate Fellowship. The Simons Center for the Social Brain at MIT and the Howard Hughes Medical Institute.

A cell protector collaborates with a killer

New research from the Horvitz Lab reveals what it takes for a protein that is best known for protecting cells against death to take on the opposite role.

Jennifer Michalowski | McGovern Institute
November 1, 2024

From early development to old age, cell death is a part of life. Without enough of a critical type of cell death known as apoptosis, animals wind up with too many cells, which can set the stage for cancer or autoimmune disease. But careful control is essential, because when apoptosis eliminates the wrong cells, the effects can be just as dire, helping to drive many kinds of neurodegenerative disease.

By studying the microscopic roundworm Caenorhabditis elegans—which was honored with its fourth Nobel Prize last month—scientists at MIT’s McGovern Institute have begun to unravel a longstanding mystery about the factors that control apoptosis: how a protein capable of preventing programmed cell death can also promote it. Their study, led by McGovern Investigator Robert Horvitz and reported October 9, 2024, in the journal Science Advances, sheds light on the process of cell death in both health and disease.

“These findings, by graduate student Nolan Tucker and former graduate student, now MIT faculty colleague, Peter Reddien, have revealed that a protein interaction long thought to block apoptosis in C. elegans, likely instead has the opposite effect,” says Horvitz, who shared the 2002 Nobel Prize for discovering and characterizing the genes controlling cell death in C. elegans.

Mechanisms of cell death

Horvitz, Tucker, Reddien and colleagues have provided foundational insights in the field of apoptosis by using C. elegans to analyze the mechanisms that drive apoptosis as well as the mechanisms that determine how cells ensure apoptosis happens when and where it should. Unlike humans and other mammals, which depend on dozens of proteins to control apoptosis, these worms use just a few. And when things go awry, it’s easy to tell: When there’s not enough apoptosis, researchers can see that there are too many cells inside the worms’ translucent bodies. And when there’s too much, the worms lack certain biological functions or, in more extreme cases, can’t reproduce or die during embryonic development.

Work in the Horvitz lab defined the roles of many of the genes and proteins that control apoptosis in worms. These regulators proved to have counterparts in human cells, and for that reason studies of worms have helped reveal how human cells govern cell death and pointed toward potential targets for treating disease.

A protein’s dual role

Three of C. elegans’ primary regulators of apoptosis actively promote cell death, whereas just one, CED-9, reins in the apoptosis-promoting proteins to keep cells alive. As early as the 1990s, however, Horvitz and colleagues recognized that CED-9 was not exclusively a protector of cells. Their experiments indicated that the protector protein also plays a role in promoting cell death. But while researchers thought they knew how CED-9 protected against apoptosis, its pro-apoptotic role was more puzzling.

CED-9’s dual role means that mutations in the gene that encode it can impact apoptosis in multiple ways. Most ced-9 mutations interfere with the protein’s ability to protect against cell death and result in excess cell death. Conversely, mutations that abnormally activate ced-9 cause too little cell death, just like mutations that inactivate any of the three killer genes.

An atypical ced-9 mutation, identified by Reddien when he was a PhD student in Horvitz’s lab, hinted at how CED-9 promotes cell death. That mutation altered the part of the CED-9 protein that interacts with the protein CED-4, which is proapoptotic. Since the mutation specifically leads to a reduction in apoptosis, this suggested that CED-9 might need to interact with CED-4 to promote cell death.

The idea was particularly intriguing because researchers had long thought that CED-9’s interaction with CED-4 had exactly the opposite effect: In the canonical model, CED-9 anchors CED-4 to cells’ mitochondria, sequestering the CED-4 killer protein and preventing it from associating with and activating another key killer, the CED-3 protein —thereby preventing apoptosis.

To test the hypothesis that CED-9’s interactions with the killer CED-4 protein enhance apoptosis, the team needed more evidence. So graduate student Nolan Tucker used CRISPR gene editing tools to create more worms with mutations in CED-9, each one targeting a different spot in the CED-4-binding region. Then he examined the worms. “What I saw with this particular class of mutations was extra cells and viability,” he says—clear signs that the altered CED-9 was still protecting against cell death, but could no longer promote it. “Those observations strongly supported the hypothesis that the ability to bind CED-4 is needed for the pro-apoptotic function of CED-9,” Tucker explains. Their observations also suggested that, contrary to earlier thinking, CED-9 doesn’t need to bind with CED-4 to protect against apoptosis.

When he looked inside the cells of the mutant worms, Tucker found additional evidence that these mutations prevented CED-9’s ability to interact with CED-4. When both CED-9 and CED-4 are intact, CED-4 appears associated with cells’ mitochondria. But in the presence of these mutations, CED-4 was instead at the edge of the cell nucleus. CED-9’s ability to bind CED-4 to mitochondria appeared to be necessary to promote apoptosis, not to protect against it.

Looking ahead

While the team’s findings begin to explain a long-unanswered question about one of the primary regulators of apoptosis, they raise new ones, as well. “I think that this main pathway of apoptosis has been seen by a lot of people as more or less settled science. Our findings should change that view,” Tucker says.

The researchers see important parallels between their findings from this study of worms and what’s known about cell death pathways in mammals. The mammalian counterpart to CED-9 is a protein called BCL-2, mutations in which can lead to cancer.  BCL-2, like CED-9, can both promote and protect against apoptosis. As with CED-9, the pro-apoptotic function of BCL-2 has been mysterious. In mammals, too, mitochondria play a key role in activating apoptosis. The Horvitz lab’s discovery opens opportunities to better understand how apoptosis is regulated not only in worms but also in humans, and how dysregulation of apoptosis in humans can lead to such disorders as cancer, autoimmune disease and neurodegeneration.

Bat cells possess a unique antiviral mechanism, preventing the SARS-CoV-2 virus from taking control

Bats have the amazing ability to coexist with viruses that are deadly to humans. New work from the Jaenisch Lab uncovers an antiviral mechanism that allows viruses to enter bat cells but prevents them from replicating.

Shafaq Zia | Whitehead Institute
October 14, 2024

Viruses are masters of stealth. From the moment a virus enters the host’s body, it begins hijacking its cells. First, the virus binds to a specific protein on the cell’s surface through a lock-and-key mechanism. This protein, known as a receptor, facilitates the entry of the virus’s genetic material into the cell. Once inside, this genetic code takes over the cell’s machinery, directing it to produce copies of the virus and assemble new viral particles, which can go on to infect other cells. Upon detecting the invasion, the host’s immune system responds by attacking infected cells in hopes of curbing the virus’s spread.

But in bats, this process unfolds differently. Despite carrying several viruses — Marburg, Ebola, Nipah, among others — bats rarely get sick from these infections. It seems their immune systems are highly specialized, allowing them to live with viruses that would typically be deadly in humans, without any clinical symptoms.

Since the onset of the COVID-19 pandemic, the lab of Whitehead Institute Founding Member Rudolf Jaenisch has been investigating the molecular basis of bats’ extraordinary resilience to viruses like SARS-CoV-2. In their latest study, published in the journal PNAS on Oct. 14 , Jaenisch lab postdoc Punam Bisht and colleagues have uncovered an antiviral mechanism in bat cells that allows viruses to enter the cells but prevents them from replicating their genome and completing the hijacking process.

“These cells have elevated expressions of antiviral genes that act immediately, neutralizing the virus before it can spread,” says Jaenisch, a professor of biology at the Massachusetts Institute of Technology. “What’s particularly interesting is that many of these antiviral genes have counterparts, or orthologs in humans.”

Striking a delicate balance

The innate immune system is the body’s first line of defense against foreign invaders like the SARS-CoV-2 virus. This built-in security system is always on alert, responding swiftly — within minutes to hours — to perceived threats.

Upon detecting danger, immune cells rush to the site of infection, where they target the virus with little precision in attempts to slow it down and buy time for the more specialized adaptive immune system to take over. During this process, these cells release small signaling proteins called cytokines, which coordinate the immune response by recruiting additional immune cells and directing them to the battleground.

If the innate immune response alone isn’t sufficient to defeat the virus, it signals the adaptive immune system for support. The adaptive immune system tailors its attacks to the exact pathogen it is fighting and can even keep records of past infections to launch a faster, more aggressive attack the next time it encounters the same pathogen.

But in some infections, the innate immune response can quickly spiral out of control before the adaptive immune response is activated. This phenomenon, called a cytokine storm, is a life-threatening condition characterized by the overproduction of cytokines. These proteins continue to signal the innate immune system for backup even when it’s not necessary, leading to a flood of immune cells at the site of infection, where they inadvertently begin damaging organs and healthy tissues.

Bats, on the other hand, are uniquely equipped to manage viral infections without triggering an overwhelming immune response or allowing the virus to take control. To understand how their innate immune system achieves this delicate balance, Bisht and her colleagues turned their attention to bat cells.

In this study, researchers compared how the SARS-CoV-2 virus replicates in human and bat stem cells and fibroblasts — a type of cell involved in the formation of connective tissue. While fibroblasts are not immune cells, they can secrete cytokines and guide immune response, particularly to help with tissue repair.

After exposing these cells to the SARS-CoV-2 virus for 48 hours, the researchers used a Green Fluorescent Protein (GFP) tag to track the virus’s activity. GFP is a fluorescent protein whose genetic code can be added as a tag to a gene of interest. This causes the products of that gene to glow, providing researchers with a visual marker of where and when the gene is expressed.

They observed that over 80% of control cells — derived from the kidneys of African green monkeys and known to be highly susceptible to SARS-CoV-2 — showed evidence of the virus replicating. In contrast, they did not detect any viral activity in human and bat stem cells or fibroblasts.

In fact, even after introducing the human ACE2 receptor — which SARS-CoV-2 uses to bind and enter cells — into bat cells, the infected bat fibroblasts were able to replicate viral RNA and produce viral proteins, but at much lower levels compared to infected human fibroblasts.

These bat fibroblasts, however, could not assemble these viral proteins into fully infectious virus particles, suggesting an abortive infection, where the virus is able to initiate replication but fails to complete the process and produce progeny viruses.

Using electron microscopy to look inside bat and human cells, they began to understand why: in human cells, SARS-CoV-2 had created special structures called double-membrane vesicles (DMV). These vesicles acted like a bubble, shielding the viral genome from detection and providing it safe space to replicate more effectively. However, these “viral replication factories” were absent in bat fibroblasts.

When the researchers examined the gene expression profiles of these bat fibroblasts and compared them those of infected human cells, they found that although both human and bat cells have genes regulating the release of a type of cytokine called interferons, these genes are already turned on in bat fibroblasts — unlike in human cells — even before virus infection occurs.

These findings suggest that bat cells are in a constant state of vigilance. This allows their innate immune system to stop the SARS-CoV-2 virus in its tracks early on in the replication process before it can entirely hijack cellular machinery.

Surprisingly, this antiviral mechanism does not protect bat cells against all viruses. When the researchers infected bat fibroblasts with Zika virus, the virus was able to replicate and produce new viral particles.

“This means there are still many questions unanswered about how bat cells resist infection,” says Bisht. “COVID-19 continues to circulate, and the virus is evolving quickly. Filling in these gaps in our knowledge will help us develop better vaccines and antiviral strategies.”
The researchers are now focused on identifying the specific genes involved in this antiviral mechanism, and exploring how they interact with the virus during infection.

Brain cell types are affected differently by Rett Syndrome mutation

New research from Jaenisch Lab postdoc Danielle Tomasello focuses on an understudied question: how Rett Syndrome affects cell types in the human brain other than neurons.

Greta Friar | Whitehead Institute
September 6, 2024

Rett Syndrome is a X-chromosome-linked neurodevelopmental disorder; it can lead to loss of coordination, mobility, ability to speak, and use of the hands, among other symptoms. The syndrome is typically caused by mutations within the gene MECP2. Researchers in Whitehead Institute Founding Member Rudolf Jaenisch’s lab have studied Rett Syndrome for many years in order to understand the biological mechanisms that cause disease symptoms, and to identify possible avenues for treatments or a cure. Jaenisch and colleagues have gained many insights into the biology of Rett syndrome and developed tools that can rescue neurons from Rett syndrome symptoms in lab models.

However, much about the biology of Rett Syndrome remains unknown. New research from Jaenisch and postdoc in his lab Danielle Tomasello focuses on an understudied question: how Rett Syndrome affects cell types in the human brain other than neurons. Specifically, Tomasello investigated the effects of Rett Syndrome on astrocytes, a type of brain cell that supports and provides energy for neurons. The work, shared in the journal Scientific Reports on September 6, details changes that occur in Rett syndrome astrocytes, in particular in relation to their mitochondria, and shows how these changes directly impact neurons. The findings provide a new framework for thinking about Rett Syndrome and possible new avenues for therapies.

“By considering Rett Syndrome from a different perspective, this project expands our understanding of a multifaceted and thus far incurable disease,” says Jaenisch, who is also a professor of biology at the Massachusetts Institute of Technology.

Energy metabolism in Rett Syndrome

Mitochondria are organelles that generate energy, which cells use to carry out their functions, and mitochondrial dysfunction was known to occur in Rett Syndrome. Jaenisch and Tomasello found that mitochondria in astrocytes are particularly affected, even more so than mitochondria in neurons. Tomasello grew human stem-cell-derived astrocytes in 2D cultures and also grew 3D organoids: mini brain-like tissues that contain multiple cell types growing in a structure that resembles actual brain anatomy. This approach allowed Tomasello to use human cells, rather than an animal model, and to study how cells behave within a brain-like environment.

When the researchers observed Rett astrocytes grown in these conditions, they found that the mitochondria were misshapen: short, small circles instead of large, long ovals. Additional studies showed evidence of the mitochondria experiencing stress and not being able to generate enough energy through their usual processes. The mitochondria did not have enough of the typical proteins they use to make energy, and so began to break down the cell’s supply of the building blocks of proteins, amino acids, for parts to make up for the missing material. Additionally, the researchers observed an increase in reactive oxygen species, byproducts of mitochondrial metabolism that are toxic to the cell.

Further experiments suggested that the cells try to compensate for this mitochondrial stress by increasing transcription of mitochondrial genes. For example, Tomasello found that regions of DNA called promoters that can increase expression of key mitochondrial genes were more open for the cell to use in Rett astrocytes. Altogether, these findings paint a picture of severe mitochondrial dysfunction in Rett astrocytes.

Although mitochondria in Rett neurons did not have such severe defects, astrocytes and neurons have a close relationship. Not only do neurons rely on astrocytes to supply them with energy, they even accept mitochondria from astrocytes to use for themselves. Jaenisch and Tomasello found that neurons take up dysfunctional mitochondria from Rett astrocytes at a higher rate than they take up mitochondria from unaffected astrocytes. This means that the effects of Rett syndrome on astrocytes have a direct effect on neurons: the dysfunctional mitochondria from the astrocytes end up in the neurons, where they cause damage. Tomasello took mitochondria from Rett astrocytes and placed them on both healthy and Rett neurons. In either case, the neurons took up the dysfunctional mitochondria in large numbers and then experienced significant problems. The neurons entered a hyperexcitable state that is ultimately toxic to the brain. The neurons also contained higher levels of reactive oxygen species, the toxic byproducts of mitochondrial metabolism, which can cause widespread damage. These effects occurred even in otherwise healthy neurons that did not themselves contain a Rett-causing MECP2 mutation.

“This shows that in order to understand Rett Syndrome, we need to look beyond what’s happening in neurons to other cell types,” Tomasello says.

Learning about the role that astrocytes play in Rett Syndrome could provide new avenues for therapies. The researchers found that supplying affected astrocytes with healthy mitochondria helped them to recover normal mitochondrial function. This suggests to Tomasello that one possibility for future Rett Syndrome therapies could be something that either targets mitochondria, or supplies additional mitochondria through the bloodstream.

Together, these insights and their possible medical implications demonstrate the importance of taking a broader look at the foundational biology underlying a disease.

Whitehead Institute researchers uncover a new clue toward understanding the molecular basis of Parkinson’s disease

In Parkinson's disease, a mutation that causes protein misfolding can also turn the brain’s immune cells from friends to foes, possibly accelerating the progression of the disease. New Research from the Jaenisch Lab aims to uncover mechanisms that go awry in the brain, which may inform the development of new therapies that can halt or even reverse the progression of neurological conditions such as Parkinson's.

Shafaq Zia | Whitehead Institute
August 29, 2024

Dopamine is more than the “rush molecule”. This chemical messenger, produced by neurons in the midbrain, acts as a traffic controller that regulates the flow of electrical signals between neurons, assisting with brain functions like cognition, attention, movement, and behavior. But, in instances of Parkinson’s disease (PD), a progressive brain disorder, dopamine-producing neurons begin to die at an unprecedented rate, leading to dwindling levels of this vital chemical and impaired neural communication.

The lab of Whitehead Institute’s Founding Member Rudolf Jaenisch studies genetic and epigenetic factors — changes in gene expression that control which genes are turned on and off, and to what extent, without altering the DNA sequence itself — underlying neurological disorders like PD, Alzheimer’s disease, and Rett Syndrome. Their work aims to uncover the mechanisms that go awry in the brain, which may inform the development of new therapies that can halt or even reverse the progression of these conditions.

In their latest work, Jaenisch and former postdoctoral associate Marine Krzisch examine how a mutation in the gene that encodes for alpha-synuclein, a protein regulating the release of dopamine, affects the resident immune cells of the brain called microglia. The researchers’ detailed findings, published in the journal Biological Psychiatry on August 29, reveal that the mutation renders microglia extremely sensitive, worsening the problem of inflammation in the brain and potentially exacerbating damage to neurons in Parkinson’s disease.

“In fact, even when these mutant microglia are transplanted into a healthy, young brain, they have heightened activation upon stimulation, and low levels of the protective antioxidant catalase,” Krzisch says. “This tells us that in Familial Parkinson’s disease, which is due to genetic mutations, these microglia may be playing an important role in neuron degeneration.”

When nature’s origami falters

The human body is home to tens of thousands of unique proteins, each essential for processes sustaining life. These proteins are composed of linear chains of smaller building blocks called amino acids that are linked together in a specific sequence. For the proteins to perform their functions, the amino acid chains must crumple, rotate, and twist into stable three-dimensional structures. The stakes are high — just as precise folds and creases are crucial to the art of origami, even minor errors in the protein folding process can result in dysfunctional proteins that contribute to disease.

To date, scientists have identified over 20 causative genes in which mutations can result in Familial Parkinson’s disease, a rare, genetically inherited form of PD affecting individuals under or around the age of 50. Among them is SNCA, which encodes for alpha-synuclein, a small protein abundant in dopamine-producing neurons.

The A53T mutation in SNCA promotes the formation of dysfunctional alpha-synuclein proteins that clump together — almost like a ball of yarn — within dopamine-producing neurons. The accumulation of these protein clumps, also known as Lewy bodies, triggers inflammatory signaling in the brain, eventually killing the affected neurons. However, prior research has also shown that the A53T mutation accelerates the progression of PD, or the rate at which neurons die, although the full molecular mechanisms underlying this process are not yet fully understood.

To uncover pathways involved in this progression, researchers in the Jaenisch Lab turned their attention to star-shaped patrollers called microglia that protect the brain from foreign invaders and respond to injuries, including protein aggregates within neurons. This immune response includes activated microglia trying to clear out Lewy bodies by digesting them, recruiting additional immune cells to the site of neurons with protein aggregates, and even killing off diseased neurons to limit damage to the brain.

But these friends can quickly turn to foes. Over-activated microglia can also degrade healthy neurons in the brain, prompting Jaenisch, Krzisch, and colleagues to investigate if excessive microglia activation is one pathway that contributes to progression in PD.

Microglia go rogue

To explore how the A53T mutation in the SNCA gene affects microglia function in PD, scientists at the Jaenisch Lab began by growing human myeloid precursors — the cells that eventually develop into microglia — in lab culture and transplanting them into the brains of immune-deprived mice.

Given the complexity of the brain, it’s common for researchers to study brain cells in the Petri dish. “But in cell cultures, microglia do not have the same morphology [form] as in the brain, show signs of chronic activation, and they don’t survive for a very long time,” says Krzisch. “When we transplant them in mice, the precursors differentiate into microglia that look and function like those in the human brain, and survive for the mouse’s lifespan.”

Using this method, the researchers compared the gene expression profiles of A53T-mutant microglia with those that did not carry the mutation, revealing differences in pathways linked to inflammation, microglia activation, and DNA repair. Additionally, when A53T-mutant microglia were exposed to an immune activator called lipopolysaccharide, they exhibited a heightened inflammatory response compared to non-mutant microglia.

In fact, even in non-inflammatory conditions, A53T-mutant microglia had decreased expression of catalase, an enzyme that helps break down harmful reactive oxygen species produced in response to protein aggregates in PD.

Understanding the molecular basis of progression in PD is challenging, which explains why there are currently no drugs to alter the disease’s course. With these findings in hand, researchers at the Jaenisch Lab are now eager to explore how factors like aging also influence microglia function and contribute to an increased rate of progression in PD.

“Overactivation of microglia isn’t the only cause of neuron death in Parkinson’s,” says Jaenisch. “But if we can decrease their activation, it will help us get to the point where we can slow down or actually stop the disease.”

 

New approach enables a closer look at brain cell organelle

Microglia are involved in brain development, as well as neurodegeneration and brain cancer. A new approach from the Jaenisch Lab allows researchers to isolate and analyze microglia phagosomes.

Greta Friar | Whitehead Institute
August 14, 2024

Microglia are the immune system’s front-line enforcers in the brain. They are cells that patrol the brain and destroy anything harmful that they encounter, from invading bacteria to cellular debris. They also remove plaques and prune dysfunctional synapses between neurons. Microglia eliminate their targets by eating them: they envelope material and seal it in bubble-like organelles called phagosomes. A phagosome can then fuse with other organelles that break down its contents.

Microglial phagosomes play important roles in brain development, brain function and a plethora of brain diseases, including neurodegeneration and brain cancer. Therefore, understanding microglial phagosome biology could help to develop new therapies for currently untreatable brain diseases. However, microglia and their organelles have been difficult to study because existing stem cell and animal models insufficiently resemble microglia in the human brain, and because microglia, as vigilant immune patrollers, react to even subtle stimuli and so experimental conditions can trigger changes in the cells that confound analyses.

To overcome those issues, Whitehead Institute Founding Member Rudolf Jaenisch, also a professor of biology at the Massachusetts Institute of Technology; University of Freiburg Professor of Neuropathology Marco Prinz; and University of Freiburg neuropathologist Emile Wogram, who began this project as a postdoctoral researcher in Jaenisch’s lab, have developed a method to isolate and analyze microglia phagosomes in a rapid, gentle, and unbiased fashion.

In research shared in the journal Immunity on August 15, the researchers describe how they can isolate and profile phagosomes from stem cell-derived microglia and fresh human brain tissue. They also share new insights into phagosome biology in the human brain, regarding synaptic pruning and generation of NAD+, a broadly used molecule in the brain, by microglia.

The method that the researchers developed to isolate phagosomes from cells uses immunoprecipitation, in which antibodies latch on to a specific target protein on an organelle’s surface. When the antibodies are collected, they pull the organelles with them. This technique avoids many chemical perturbations that might alter the microglial profile. Sometimes researchers genetically engineer a target for the antibodies, but in order to isolate phagosomes from human brain tissue, Wogram had to find a naturally expressed target. Eventually, he and colleagues found one: the protein CD68.

The researchers first isolated phagosomes from stem cell-derived microglia. They co-cultured the microglia with other brain cell types to create a more brain-like environment, which led to a better match between brain and stem cell-derived microglia gene expression. They triggered some of the microglia to enter an inflammatory or disease-like state to see how that affected the phagosomes. Additionally, Wogram collaborated with the neurosurgery department at the University of Freiburg to get access to brain tissues immediately after their removal during surgery. He isolated phagosomes from brain tissue within a half hour of its removal, allowing him to profile the organelles before their contents could change much.

The profiles that the researchers built included what proteins and metabolites the phagosomes contained, and the whole-cell gene expression profile. The profiles differed significantly between sets of phagosomes, but the researchers identified a core of consistent proteins, including many known and also some unknown phagosome proteins. The results showed that phagosomes contain sensitive signaling molecules that allow them to react quickly to even subtle environmental stimuli.

Additionally, the protein contents of the co-cultured microglia provided strong evidence that when microglia prune synapses, they predominantly prune the side that sends a signal and not the side that receives one. This insight could be useful for understanding how microglia interact with synapses in health and disease.

The researchers also gained insights into a key metabolic pathway that occurs inside of microglia. In excess, the molecule quinolinic acid can be toxic to neurons; it is implicated as involved in many neurodegenerative diseases. However, cells can use quinolinic acid to make NAD+, a molecule broadly used to carry out essential cellular functions. Microglia are the only brain cells that generate NAD+. Wogram and colleagues found that key steps in this process occur in phagosomes. Phagosomes are therefore necessary both for removing excess quinolinic acid to prevent toxicity and for helping to generate NAD+ in the brain.

Finally, Wogram used brain tissues to compare phagosomes from within a tumor to those in the surrounding healthy tissue. The phagosomes in the tumor contained excess quinolinic acid. Although follow-up studies would be needed to confirm the results, these findings are consistent with research that suggests cancer cells use quinolinic acid to fuel their growth.

Collectively, these findings illuminate aspects of phagosome biology and the roles that phagosomes may play in normal brain development and maintenance, as well as in cancer and neurodegeneration. The researchers also anticipate that their method could prove useful for profiling other organelles, especially when the organelles need to be rapidly isolated from human tissue.

Unusual Labmates: Meet tardigrades, the crafters of nature’s ultimate survival kit

Whitehead Institute Member Siniša Hrvatin is studying tardigrades to decode the mechanisms enabling their survival in extreme environmental conditions. Learn about the biology of these microscopic “water bears” and what makes them a particularly fascinating model organism.

Shafaq Zia | Whitehead Institute
July 23, 2024

Tardigrades, also affectionately known as “water bears” or “moss piglets”, are remarkable microscopic organisms that have captured the imagination of scientists and nature enthusiasts alike.

With adults measuring anywhere from 0.2 to 1.2 millimeters in length — as big as a grain of salt — tardigrades possess the astounding ability to survive harsh environmental conditions. These resilient creatures have been found in habitats ranging from the depths of oceans and hot radioactive springs to the frigid expanses of Antarctica. It is their unparalleled adaptability that makes them invaluable as a model organism for researchers like Whitehead Institute Member Siniša Hrvatin, who’s studying physiological adaptation in animals with a focus on states that can slow down tissue damage, disease progression, and even aging.

Follow along to learn what’s behind tardigrades’ nearly indestructible nature, how researchers at Whitehead Institute — and beyond — are studying them, and what insights this work can offer into long-term organ preservation, space exploration, and more.

Big discovery of a tiny creature

In 1773, German naturalist Johann August Ephraim Goeze was analyzing moss samples under a microscope when he stumbled upon an unusual creature. Captivated by its peculiar appearance, he continued his observations and documented the discovery of Kleiner Wasserbär, translating to “little water bear”, in his publication. This work also featured the first-ever drawing of a tardigrade.

Since then, researchers’ understanding of this remarkable organism has evolved alongside advancements in imaging technology. Today, tardigrades are recognized as bilaterally symmetrical invertebrates with two eyes and eight chubby legs adorned with hook-like claws. Often described as a mix between nematodes and insects, these extremophiles are able to withstand freezing, intense radiation, vacuum of outer space, desiccation, chemical treatments, and possibly more.

And the best part? Despite their otherworldly appearance and surprising capabilities, tardigrades share plenty of similarities with larger, more complex organisms, including possessing a primordial brain, muscles, and even a digestive system.

The biology of an extremophile

Researchers trace the evolutionary origins of tardigrades back to panarthropods, a group that includes now-extinct worm-like organisms called lobopodians. To date, over a thousand species of tardigrades have been identified, with terrestrial species inhabiting environments like moss, leaf litter, and lichen, grassland, and deserts while aquatic ones are found in both fresh and saltwater.

Little is known about tardigrades’ diet but researchers are particularly drawn to herbivorous ones that like to munch on single-celled algae and thrive in water. There’s good reason for it: algae are inexpensive to grow in the lab with just light and basic nutrients. But it’s not just their diet that makes tardigrades an attractive model organism — they also have a short generation time (11 to 14 days), with eggs hatching within a four-day span. In fact, some species are able to reproduce without sexual reproduction through a process called parthenogenesis, during which the female egg undergoes cell division without fertilization by a male gamete.

Although genomic resources for studying tardigrades are limited to only a few species, researchers from Keio University and University of Edinburgh have successfully sequenced the genome of a moss-residing tardigrade commonly used in research called Hypsibius exemplaris. Its genome is less than half the size of a Drosophila melanogaster genome, consisting of 105 million base pairs that serve as the building blocks of DNA.

In spite of their small genome — and only a few thousand cells in the body — tardigrades have a well-defined miniaturized body plan, consisting of a head and four segments, that holds valuable insights for researchers looking to decode their adaptation prowess.

Inside tardigrade research at Whitehead Institute

In 2022, as Hrvatin was setting up his lab at Whitehead Institute, a question lingered in his mind. “I was trying to find animals that can survive being frozen for long periods of time and then continue living,” he says. “But there are not that many that fit the bill.”

Then, an undergraduate student at Massachusetts Institute of Technology (MIT) expressed her enthusiasm for astrobiology — the study of life across the universe — and highlighted tardigrades as a favorite among space researchers. Hrvatin was intrigued.

Up until this point, his research had centered upon two states of dormancy, or reduced metabolic activity, in animals: hibernation and a shorter, less intense torpor. But tardigrades possessed a survival mechanism unlike any other. When faced with harsh conditions like dehydration, they would expel water, retract their head and legs, and curl up in a small, dry ball, entering a state of suspended animation called crytobiosis or tun formation.

For decades, researchers hypothesized that the tun state might be responsible for tardigrades’ unparalleled ability to withstand a myriad of environmental assaults, including extremely low temperature. However, recent work has revealed that these animals utilize a separate and unique adaptation, distinct from the tun state, to survive being frozen for extended periods. In fact, preliminary evidence from a preprint by a team of scientists at UC Berkeley and UC San Francisco illustrates unique patterns of how tardigrades survive freezing while hydrated in water.

This phenomenon is markedly different from hibernation and its cousin torpor. “Unlike animals lowering their body temperature, we’re talking about putting tardigrades at minus 180 degrees Celsius, and then thawing them,” says Hrvatin. In fact, cryobiosis is so intense that tardigrades’ metabolic activity drops to undetectable levels, rendering them virtually, but not quite, dead. The organisms can then remain in this state from months to years, only to revive as healthy when conditions become favorable once again.

Frozen in time

In 2014, a group of Japanese researchers at Tokyo’s National Institute for Polar Research undertook an intriguing experiment. They began by thawing moss samples collected from East Antarctica in November 1983. Then, they carefully teased apart each sample using tweezers to retrieve tardigrades that might be nestled within. Among the tardigrades the researchers found, two stood out: Sleeping Beauty 1 and Sleeping Beauty 2 who were believed to be undergoing cold induced-dormancy. Turns out, the researchers were right — within the first day of being placed in the Petri dish with water, the tardigrades began exhibiting slow movements despite having been frozen for over 30 years.

The Swiss army knife in tardigrades’ toolbox

Yet, the remarkable resilience of tardigrades continues to baffle scientists. Recently, they’ve uncovered what could be another potential weapon in the creatures’ arsenal: intrinsically disordered proteins or IDPs. Picture them as putty — a group of proteins that do not have a well-defined three-dimensional structure and can interact with other molecules to produce a range of different outcomes. Some researchers have linked these tardigrade-specific IDPs to the animals extraordinary resilience: under extreme heat, these proteins remain stable. And when desiccated, they form protective glasses that shield cells and vital enzymes from dehydration.

If confirmed, the implications of this work would extend beyond tardigrades’ survival, potentially revolutionizing dry vaccine storage and the development of drought-resistant crops.

Pausing the biological clock

This is just the tip of the iceberg — scientists have plenty more to discover about these microscopic organisms. At the Hrvatin lab, graduate student Aleksandar Markovski is working with six different species of tardigrades, with a particular focus on an aquatic species isolated from the bottom of a lake.

Markovski’s work entails conducting a range of experiments aimed at unraveling tardigrades’ mysterious biology. This includes RNA-sequencing to understand how tardigrades recover after a freeze-thaw cycle; knocking-down and knocking-in genes to investigate the function and relevance of different genes and pathways; performing electron microscopy for high-resolution visualization of cellular structures and morphological changes that may be taking place in the frozen state.

The ultimate goal of this work, Markovski says, is to extend the shelf life of humans. “Whenever someone donates an organ, it can be stored for hours on ice. Then, unless someone in close proximity is in need of that organ and is compatible, the organ has to be thrown away,” he adds. “But if you were able to freeze those organs and transplant them whenever needed, that would be revolutionary.”

Achilles heel

Tardigrades are best known for surviving in the margins of typical life, but they also share a surprising vulnerability with humans and most other organisms: climate change. Entering the tun state to withstand high temperatures requires desiccation. If the water temperature goes up before the tardigrades have had the opportunity to dry out, they’re stuck in a vulnerable state, where they can ultimately succumb to heat.

But all is not lost. Tardigrades, the first microscopic interstellar travelers capable of surviving vacuum and radiation in outer space, are also paving the path for human space exploration with a protein called Damage suppressor or Dsup, which binds to DNA and shields it from reactive forms of oxygen.

Researchers are drawing hope and inspiration from their unparalleled persistence, envisioning that these organisms cannot only ensure their survival but also aid humanity.