Multi “-omics” approach uncovers the riches of traditional global medicine
Greta Friar | Whitehead Institute
July 22, 2019

Cambridge, MA — Kava (Piper methysticum) is a plant native to the Polynesian islands that people there have used in a calming drink of the same name in religious and cultural rituals for thousands of years. The tradition of cultivating kava and drinking it during important gatherings is a cultural cornerstone shared throughout much of Polynesia, though the specific customs — and the strains of kava — vary from island to island. Over the last few decades, kava has been gaining interest outside of the islands for its pain relief and anti-anxiety properties as a potentially attractive alternative to drugs like opioids and benzodiazepines because kavalactones, the molecules of medicinal interest in kava, use slightly different mechanisms to affect the central nervous system and appear to be non-addictive. Kava bars have been springing up around the United States, kava supplements and teas lining the shelves at stores like Walmart, and sports figures including former and current NFL players in need of safe pain relief are touting its benefits.

This growing usage suggests that there would be a sizeable market for kavalactone based medical therapies, but there are roadblocks to development: for one, kava is hard to cultivate, especially outside of the tropics. Kava takes years to reach maturity, and as a domesticated species that no longer produces seeds it can only be propagated using cuttings. This can make it difficult for researchers to get a large enough quantity of kavalactones for investigations or clinical trials. New research from Whitehead Institute Member and associate professor of biology at MIT Jing-Ke Weng and postdoctoral researcher Tomáš Pluskal, published online in Nature Plants on July 22, describes a way to solve that problem, as well as to create kavalactone variants not found in nature that may be more effective or safe as therapeutics.

“We’re combining historical knowledge of this plant’s medicinal properties, established through centuries of traditional usage, with modern research tools in order to potentially develop new drugs,” Pluskal says.

Weng’s lab has shown that if researchers figure out the genes behind a desirable natural molecule—in this case, kavalactones—they can clone those genes, insert them into species like yeast or bacteria that grow quickly and are easier to maintain in a variety of environments than a temperamental tropical plant, and then get these microbial bio-factories to mass produce the molecule. In order to achieve this, first Weng and Pluskal had to solve a complicated puzzle: how does kava produce kavalactones? There is no direct kavalactone gene; complex metabolites like kavalactones are created through a series of steps using intermediate molecules. Cells can combine these intermediates, snip out parts of them, and add bits onto them to create the final molecule—most of which is done with the help of enzymes, cells’ chemical reaction catalysts. So, in order to recreate kavalactone production, the researchers had to identify the complete pathway plants use to synthesize it, including the genes for all of the enzymes involved.

The researchers could not use genetic sequencing or common gene editing tools to identify the enzymes because the kava genome is huge; it has 130 chromosomes compared to humans’ 46. Instead they turned to other methods, including sequencing the plant’s RNA to survey the genes expressed, to identify the biosynthetic pathway for kavalactones.

“It’s like you have a lot of LEGO pieces scattered on the floor,” Weng says, “and you have to find the ones that fit together to build a certain object.”

Weng and Pluskal had a good starting point: they recognized that kavalactones had a similar structural backbone to chalcones, metabolites shared by all land plants. They hypothesized that one of the enzymes involved in producing kavalactones must be related to the one involved in producing chalcones, chalcone synthase (CHS). They looked for genes encoding similar enzymes and found two synthases that had evolved from an older CHS gene. These synthases, which they call PmSPS1 and PmSPS2, help to shape the basic scaffolding of kavalactones molecules.

Then, with some trial and error, Pluskal found the genes encoding a number of the tailoring enzymes that modify and add to the molecules’ backbone to create a variety of specific kavalactones. In order to test that he had identified the right enzymes, Pluskal cloned the relevant genes and confirmed that the enzymes they encode produced the expected molecules. The team also identified key enzymes in the biosynthetic pathway of flavokavains, molecules in kava that are structurally related to kavalactones and have been shown in studies to have anti-cancer properties.

Once the researchers had their kavalactone genes, they inserted them into bacteria and yeast to begin producing the molecules. This proof of concept for their microbial bio-factory model demonstrated that using microbes could provide a more efficient and scalable production vehicle for kavalactones. The model could also allow for the production of novel molecules engineered by combining kava genes with other genes so the microbes would produce modified kavalactones. This could allow researchers to optimize the molecules for efficiency and safety as therapeutics.

“There’s a very urgent need for therapies to treat mental disorders, and for safer pain relief options,” Weng says. “Our model eliminates several of the bottlenecks in drug development from plants by increasing access to natural medicinal molecules and allowing for the creation of new-to-nature molecules.”

Kava is only one of many plants around the world containing unique molecules that could be of great medicinal value. Weng and Pluskal hope that their model—combining the use of drug discovery from plants used in traditional medicine, genomics, synthetic biology, and microbial mass production—will be used to better harness the great diversity of plant chemistry around the world in order to help patients in need.

 

This work was supported by grants from the Smith Family Foundation, Edward N. and Della L. Thome Memorial Foundation, the Family Larsson-Rosenquist Foundation, and the National Science Foundation (CHE-1709616). T.P. is a Simons Foundation Fellow of the Helen Hay Whitney Foundation. J.K.W is supported by the Beckman Young Investigator Program, Pew Scholars Program in the Biomedical Sciences (grant number 27345), and the Searle Scholars Program (grant number 15-SSP-162).

 

Written by Greta Friar

 

***

Jing-Ke Weng’s primary affiliation is with Whitehead Institute for Biomedical Research, where his laboratory is located and all his research is conducted. He is also an associate professor of biology at Massachusetts Institute of Technology.

***

 

Full citation:

“The biosynthetic origin of psychoactive kavalactones in kava”

Nature Plants, online July 22, 2019, doi: 10.1038/s41477-019-0474-0

Tomáš Pluskal (1), Michael P. Torrens-Spence (1), Timothy R. Fallon (1,2), Andrea De Abreu (1,2), Cindy H. Shi (1,2), and Jing-Ke Weng (1,2)

1. Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142 USA.

2. Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA.

Genetic study takes research on sex differences to new heights

Differences in male and female gene expression, including those contributing to height differences, found throughout the body in humans and other mammals.

Greta Friar | Whitehead Institute
July 19, 2019

Throughout the animal kingdom, males and females frequently exhibit sexual dimorphism: differences in characteristic traits that often make it easy to tell them apart. In mammals, one of the most common sex-biased traits is size, with males typically being larger than females. This is true in humans: Men are, on average, taller than women. However, biological differences among males and females aren’t limited to physical traits like height. They’re also common in disease. For example, women are much more likely to develop autoimmune diseases, while men are more likely to develop cardiovascular diseases.

In spite of the widespread nature of these sex biases, and their significant implications for medical research and treatment, little is known about the underlying biology that causes sex differences in characteristic traits or disease. In order to address this gap in understanding, Whitehead Institute Director David Page has transformed the focus of his lab in recent years from studying the X and Y sex chromosomes to working to understand the broader biology of sex differences throughout the body. In a paper published in Science, Page, a professor of biology at MIT and a Howard Hughes Medical Institute investigator; Sahin Naqvi, first author and former MIT graduate student (now a postdoc at Stanford University); and colleagues present the results of a wide-ranging investigation into sex biases in gene expression, revealing differences in the levels at which particular genes are expressed in males versus females.

The researchers’ findings span 12 tissue types in five species of mammals, including humans, and led to the discovery that a combination of sex-biased genes accounts for approximately 12 percent of the average height difference between men and women. This finding demonstrates a functional role for sex-biased gene expression in contributing to sex differences. The researchers also found that the majority of sex biases in gene expression are not shared between mammalian species, suggesting that — in some cases — sex-biased gene expression that can contribute to disease may differ between humans and the animals used as models in medical research.

Having the same gene expressed at different levels in each sex is one way to perpetuate sex differences in traits in spite of the genetic similarity of males and females within a species — since with the exception of the 46th chromosome (the Y in males or the second X in females), the sexes share the same pool of genes. For example, if a tall parent passes on a gene associated with an increase in height to both a son and a daughter, but the gene has male-biased expression, then that gene will be more highly expressed in the son, and so may contribute more height to the son than the daughter.

The researchers searched for sex-biased genes in tissues across the body in humans, macaques, mice, rats, and dogs, and they found hundreds of examples in every tissue. They used height for their first demonstration of the contribution of sex-biased gene expression to sex differences in traits because height is an easy-to-measure and heavily studied trait in quantitative genetics.

“Discovering contributions of sex-biased gene expression to height is exciting because identifying the determinants of height is a classic, century-old problem, and yet by looking at sex differences in this new way we were able to provide new insights,” Page says. “My hope is that we and other researchers can repeat this model to similarly gain new insights into diseases that show sex bias.”

Because height is so well studied, the researchers had access to public data on the identity of hundreds of genes that affect height. Naqvi decided to see how many of those height genes appeared in the researchers’ new dataset of sex-biased genes, and whether the genes’ sex biases corresponded to the expected effects on height. He found that sex-biased gene expression contributed approximately 1.6 centimeters to the average height difference between men and women, or 12 percent of the overall observed difference.

The scope of the researchers’ findings goes beyond height, however. Their database contains thousands of sex-biased genes. Slightly less than a quarter of the sex-biased genes that they catalogued appear to have evolved that sex bias in an early mammalian ancestor, and to have maintained that sex bias today in at least four of the five species studied. The majority of the genes appear to have evolved their sex biases more recently, and are specific to either one species or a certain lineage, such as rodents or primates.

Whether or not a sex-biased gene is shared across species is a particularly important consideration for medical and pharmaceutical research using animal models. For example, previous research identified certain genetic variants that increase the risk of Type 2 diabetes specifically in women; however, the same variants increase the risk of Type 2 diabetes indiscriminately in male and female mice. Therefore, mice would not be a good model to study the genetic basis of this sex difference in humans. Even when the animal appears to have the same sex difference in disease as humans, the specific sex-biased genes involved might be different. Based on their finding that most sex bias is not shared between species, Page and colleagues urge researchers to use caution when picking an animal model to study sex differences at the level of gene expression.

“We’re not saying to avoid animal models in sex-differences research, only not to take for granted that the sex-biased gene expression behind a trait or disease observed in an animal will be the same as that in humans. Now that researchers have species and tissue-specific data available to them, we hope they will use it to inform their interpretation of results from animal models,” Naqvi says.

The researchers have also begun to explore what exactly causes sex-biased expression of genes not found on the sex chromosomes. Naqvi discovered a mechanism by which sex-biased expression may be enabled: through sex-biased transcription factors, proteins that help to regulate gene expression. Transcription factors bind to specific DNA sequences called motifs, and he found that certain sex-biased genes had the motif for a sex-biased transcription factor in their promoter regions, the sections of DNA that turn on gene expression. This means that, for example, a male-biased transcription factor was selectively binding to the promoter region for, and so increasing the expression of, male-biased genes — and likewise for female-biased transcription factors and female-biased genes. The question of what regulates the transcription factors remains for further study — but all sex differences are ultimately controlled by either the sex chromosomes or sex hormones.

The researchers see the collective findings of this paper as a foundation for future sex-differences research.

“We’re beginning to build the infrastructure for a systematic understanding of sex biases throughout the body,” Page says. “We hope these datasets are used for further research, and we hope this work gives people a greater appreciation of the need for, and value of, research into the molecular differences in male and female biology.”

This work was supported by Biogen, Whitehead Institute, National Institutes of Health, Howard Hughes Medical Institute, and generous gifts from Brit and Alexander d’Arbeloff and Arthur W. and Carol Tobin Brill.

Researchers identify important proteins hijacked by pathogens during cell-to-cell spread
Raleigh McElvery
July 9, 2019

Listeria monocytogenes, the food-borne bacterium responsible for listeriosis, can creep from one cell to the next, stealthily evading the immune system. This strategy of cell-to-cell spread allows them to infect many different cell types, and can spur complications like meningitis. Yet the molecular details of this spread remain a mystery.

In a paper recently published in Molecular Biology of the Cell, researchers from the MIT Department of Biology, University of California, Berkeley, and Chan Zuckerberg Biohub are beginning to piece together the elusive means by which Listeria moves from one cell to the next. This mode of transport, the scientists suggest, looks a lot like trans-endocytosis, a process that healthy, uninfected cells use to exchange organelles and various cytoplasmic components. In fact, the two processes are so similar that Listeria may be co-opting the host cell’s trans-endocytosis machinery for its own devices.

Although the particulars of trans-endocytosis are poorly understood, the process permits neighboring cells to exchange materials via membrane-bound compartments called vacuoles, which release their cargo upon reaching their final destination.

Much like trans-endocytosis, cell-to-cell spread relies on vacuoles to ferry Listeria. First, the pathogen commandeers the host cell’s own machinery to assemble a tail of proteins that allows it to rocket around inside the cell and ram against both the membrane of the host and that of the adjacent cell. The resulting protrusion is then somehow engulfed into a double-membrane vacuole, and the bacteria burst through their containment to begin the process anew in the recipient cell.

“There’s been a lot of work looking at Listeria cell-to-cell spread,” says Rebecca Lamason, the Robert A. Swanson (1969) Career Development Assistant Professor in the MIT Department of Biology and senior author on the study. “But we still don’t really understand the molecular mechanisms that allow the bacteria to manipulate the membrane to promote engulfment. Depending on what we uncover, we might also be able to apply that information to better grasp how an uninfected cell regulates trans-endocytosis.”

Lamason and her team anticipated that the same proteins implicated in trans-endocytosis would also be involved in Listeria cell-to-cell spread, which would indicate that the pathogen was appropriating these proteins for its own purposes. The researchers made a list of 115 host genes of interest, and then used an RNAi screen to identify just 22 that are critical for cell-to-cell spread.

They were excited to find that, of those 22 genes, several are also implicated in endocytosis, which suggests Listeria is using a similar strategy. These include genes encoding caveolin proteins that control membrane trafficking and remodeling, as well as another protein called PACSIN2 that interacts with caveolins to regulate protrusion engulfment.

Now that the researchers have pinpointed these key proteins, the next step is to determine how they work together in order to promote cell-to-cell spread — especially since the protrusions created by Listeria are much larger than those required for trans-endocytosis.

“As we drill down even deeper into the molecular mechanisms, it will be interesting to see where trans-endocytosis and cell-to-cell spread differ, and where they are similar,” Lamason says. “Our hope is that investigating the mechanisms of bacterial spread will reveal fundamental insights into host intercellular communication.”

Citation:
“RNAi screen reveals a role for PACSIN2 and caveolins during bacterial cell-to-cell spread”
Molecular Biology of the Cell, online June 26, 2019, DOI: 10.1091/mbc.E19-04-0197
Allen G. Sanderlin, Cassandra Vondrak, Arianna J. Scricco, Indro Fedrigo, Vida Ahyong, and Rebecca L. Lamason

Drug makes tumors more susceptible to chemo

Compound that knocks out a DNA repair pathway enhances cisplatin treatment and helps prevent drug-resistance.

Anne Trafton | MIT News Office
June 6, 2019

Many chemotherapy drugs kill cancer cells by severely damaging their DNA. However, some tumors can withstand this damage by relying on a DNA repair pathway that not only allows them to survive, but also introduces mutations that helps cells become resistant to future treatment.

Researchers at MIT and Duke University have now discovered a potential drug compound that can block this repair pathway. “This compound increased cell killing with cisplatin and prevented mutagenesis, which is was what we expected from blocking this pathway,” says Graham Walker, the American Cancer Society Research Professor of Biology at MIT, a Howard Hughes Medical Institute Professor, and one of the senior authors of the study.

When they treated mice with this compound along with cisplatin, a DNA-damaging drug, tumors shrank much more than those treated with cisplatin alone. Tumors treated with this combination would be expected not to develop new mutations that could make them drug-resistant.

Cisplatin, which is used as the first treatment option for at least a dozen types of cancer, often successfully destroys tumors, but they frequently grow back following treatment. Drugs that target the mutagenic DNA repair pathway that contributes to this recurrence could help to improve the long-term effectiveness of not only cisplatin but also other chemotherapy drugs that damage DNA, the researchers say.

“We’re trying to make the therapy work better, and we also want to make the tumor recurrently sensitive to therapy upon repeated doses,” says Michael Hemann, an associate professor of biology, a member of MIT’s Koch Institute for Integrative Cancer Research, and a senior author of the study.

Pei Zhou, a professor of biochemistry at Duke University, and Jiyong Hong, a professor of chemistry at Duke, are also senior authors of the paper, which appears in the June 6 issue of Cell. The lead authors of the paper are former Duke graduate student Jessica Wojtaszek, MIT postdoc Nimrat Chatterjee, and Duke research assistant Javaria Najeeb.

Overcoming resistance

Healthy cells have several repair pathways that can accurately remove DNA damage from cells. As cells become cancerous, they sometimes lose one of these accurate DNA repair systems, so they rely heavily on an alternative coping strategy known as translesion synthesis (TLS).

This process, which Walker has been studying in a variety of organisms for many years, relies on specialized TLS DNA polymerases. Unlike the normal DNA polymerases used to replicate DNA, these TLS DNA polymerases can essentially copy over damaged DNA, but the copying they perform is not very accurate. This enables cancer cells to survive treatment with a DNA-damaging agent such as cisplatin, and it leads them to acquire many additional mutations that can make them resistant to further treatment.

“Because these TLS DNA polymerases are really error-prone, they are accountable for nearly all of the mutation that is induced by drugs like cisplatin,” Hemann says. “It’s very well-established that with these frontline chemotherapies that we use, if they don’t cure you, they make you worse.”

One of the key TLS DNA polymerases required for translesion synthesis is Rev1, and its primary function is to recruit a second TLS DNA polymerase that consists of a complex of the Rev3 and Rev7 proteins. Walker and Hemann have been searching for ways to disrupt this interaction, in hopes of derailing the repair process.

In a pair of studies published in 2010, the researchers showed that if they used RNA interference to reduce the expression of Rev1, cisplatin treatment became much more effective against lymphoma and lung cancer in mice. While some of the tumors grew back, the new tumors were not resistant to cisplatin and could be killed again with a new round of treatment.

After showing that interfering with translesion synthesis could be beneficial, the researchers set out to find a small-molecule drug that could have the same effect. Led by Zhou, the researchers performed a screen of about 10,000 potential drug compounds and identified one that binds tightly to Rev1, preventing it from interacting with Rev3/Rev7 complex.

The interaction of Rev1 with the Rev7 component of the second TLS DNA polymerase had been considered “undruggable” because it occurs in a very shallow pocket of Rev1, with few features that would be easy for a drug to latch onto. However, to the researchers’ surprise, they found a molecule that actually binds to two molecules of Rev1, one at each end, and brings them together to form a complex called a dimer. This dimerized form of Rev1 cannot bind to the Rev3/Rev7 TLS DNA polymerase, so translesion synthesis cannot occur.

Chatterjee tested the compound along with cisplatin in several types of human cancer cells and found that the combination killed many more cells than cisplatin on its own. And, the cells that survived had a greatly reduced ability to generate new mutations.

“Because this novel translesion synthesis inhibitor targets the mutagenic ability of cancer cells to resist therapy, it can potentially address the issue of cancer relapse, where cancers continue to evolve from new mutations and together pose a major challenge in cancer treatment,” Chatterjee says.

A powerful combination

Chatterjee then tested the drug combination in mice with human melanoma tumors and found that the tumors shrank much more than tumors treated with cisplatin alone. They now hope that their findings will lead to further research on compounds that could act as translesion synthesis inhibitors to enhance the killing effects of existing chemotherapy drugs.

Zhou’s lab at Duke is working on developing variants of the compound that could be developed for possible testing in human patients. Meanwhile, Walker and Hemann are further investigating how the drug compound works, which they believe could help to determine the best way to use it.

“That’s a future major objective, to identify in which context this combination therapy is going to work particularly well,” Hemann says. “We would hope that our understanding of how these are working and when they’re working will coincide with the clinical development of these compounds, so by the time they’re used, we’ll understand which patients they should be given to.”

The research was funded, in part, by an Outstanding Investigator Award from the National Institute of Environmental Health Sciences to Walker, and by grants from the National Cancer Institute, the Stewart Trust, and the Center for Precision Cancer Medicine at MIT.

Study reveals how glial cells may play key epilepsy role

Mutation in disease model flies undermines maintenance of key ion balance.

David Orenstein | Picower Institute
May 2, 2019

A new study provides potential new targets for treating epilepsy and new fundamental insights into the relationship between neurons and their glial “helper” cells. In eLife, scientists at MIT’s Picower Institute for Learning and Memory report finding a key sequence of molecular events in which the genetic mutation in a fruit fly model of epilepsy leaves neurons vulnerable to becoming hyperactivated by stress, leading to seizures.

About 60 million people worldwide have epilepsy, a neurological condition characterized by seizures resulting from excessive neural activity. The “zydeco” model flies in the study experience seizures in a similar fashion. Since discovering zydeco, the lab of MIT neurobiologist Troy Littleton, the Menicon Professor in Neuroscience, has been investigating why the flies’ zydeco mutation makes it a powerful model of epilepsy.

Heading into the study, the team led by postdoc Shirley Weiss knew that the zydeco mutation was specifically expressed by cortex glial cells and that the protein it makes helps to pump calcium ions out of the cells. But that didn’t explain much about why a glial cell’s difficulty maintaining a natural ebb and flow of calcium ions would lead adjacent neurons to become too active under seizure-inducing stresses, such as fever-grade temperatures or the fly being jostled around.

The activity of neurons rises and falls based on the flow of ions — for a neuron to “fire,” for instance, it takes in sodium ions, and then to calm back down it releases potassium ions. But the ability of neurons to do that depends on there being a conducive balance of ions outside the cell. For instance, too much potassium outside makes it harder to get rid of potassium and calm down.

The need for an ion balance — and the way it is upset by the zydeco mutation — turned out to be the key to the new study. In a four-year series of experiments, Weiss, Littleton, and their co-authors found that excess calcium in cortex glia cells causes them to hyper-activate a molecular pathway that leads them to withdraw many of the potassium channels that they typically deploy to remove potassium from around neurons. With too much potassium left around, neurons can’t calm down when they are excited, and seizures ensue.

“No one has really shown how calcium signaling in glia could directly communicate with this more classical role of glial cells in potassium buffering,” Littleton says. “So this is a really important discovery linking an observation that’s been found in glia for a long time — these calcium oscillations that no one really understood — to a real biological function in glial cells, where it’s contributing to their ability to regulate ionic balance around neurons.”

Weiss’s work lays out a detailed sequence of events, implicating several specific molecular players and processes. That richly built knowledge meant that along the way, she and the team found multiple steps in which they could intervene to prevent seizures.

She started working the problem from the calcium end. With too much calcium afoot, she asked, what genes might be in a related pathway such that, if their expression was prevented, seizures would not occur? She interfered with expression in 847 potentially related genes and found that about 50 affected seizures. Among those, one stood out both for being closely linked to calcium regulation and also for being expressed in the key cortex glia cells of interest: calcineurin. Inhibiting calcineurin activity, for instance with the immunosuppressant medications cyclosprorine A or FK506, blocked seizures in zydeco mutant flies.

Weiss then looked at the genes affected by the calcineurin pathway and found several. One day at a conference where she was presenting a poster of her work, an onlooker mentioned that glial potassium channels could be involved. Sure enough, she found a particular one called “sandman” that, when knocked down, led to seizures in the flies. Further research showed that hyperactivation of calcineurin in zydeco glia led to an increase in a cellular process called endocytosis, in which the cell was bringing too much sandman back into the cell body. Without sandman staying on the cell membrane, the glia couldn’t effectively remove potassium from the outside.

When Weiss and her co-authors interfered to suppress endocytosis in zydeco flies, they also were able to reduce seizures, because that allowed more sandman to persist where it could reduce potassium. Sandman, notably, is equivalent to a protein in mammals called TRESK.

“Pharmacologically targeting glial pathways might be a promising avenue for future drug development in the field,” the authors wrote in eLife.

In addition to that clinical lead, the study also offers some new insights for more fundamental neuroscience, Littleton and Weiss said. While zydeco flies are good models of epilepsy, Drosophila’s cortex glia do have a property not found in mammals: They contact only the cell body of neurons, not the synaptic connections on their axon and dendrite branches. That makes them an unusually useful test bed to learn how glia interact with neurons via their cell body versus their synapses. The new study, for instance, shows a key mechanism for maintaining ionic balance for the neurons.

In addition to Weiss and Littleton, the paper’s other authors are Jan Melom, who helped lead the discovery of zydeco, postdoc Kiel Ormerod, and former postdoc Yao Zhang.

The National Institutes of Health and the JPB Foundation funded the research.

A Troubling Inheritance
Greta Friar | Whitehead Institute
April 9, 2019

CAMBRIDGE, MA — Cancers have a habit of running in the family. This is due in large part to the inheritance of versions of genes that are linked with cancer, but some researchers are investigating another heritable risk factor: epigenetic modifications. These are not changes in the DNA sequence of a gene itself but rather are processes that change a DNA sequence’s accessibility or ability to be expressed. These changes can regulate gene expression, and in certain circumstances, be passed down from parent to child alongside the genes they regulate. New research published in eLife on April 9 from the lab of Whitehead Member and Institute Director David Page, also a professor of biology at the Massachusetts Institute of Technology and a Howard Hughes Medical Institute investigator, and colleagues has found evidence that when atypical epigenetic modifications, or marks, caused by a gene deletion in the parent’s cells, are inherited it can lead to increased cancer incidence and shorter lifespans in mice.

Studying epigenetic inheritance in mammals can be difficult because mammalian embryos undergo strong epigenetic reprogramming, a kind of “erasing and starting over” for the next generation. Some of the parents’ epigenetic marks resist this reprogramming, but the vast majority are erased, and often what may appear to be epigenetic inheritance can be explained by other factors like environmental exposures during fetal development leading to similar epigenetic profiles.

“We had to design an experiment with a specific, well-defined initiating event, so the epigenetic patterns and health effects would be easy to track,” says first author Bluma Lesch, then a postdoctoral researcher in the Page lab at Whitehead Institute and now an assistant professor of Genetics at Yale School of Medicine and a member of the Genomics, Genetics and Epigenetics Program at Yale Cancer Center.

In order to do this, the researchers first deleted Kdm6a (also called Utx), a gene on the X chromosome that encodes a protein involved in epigenetic regulation, in the male mouse germline—the repository of cells that become sperm. Kdm6a removes epigenetic modifications from histones, the spool-like proteins that house strands of DNA. Deleting Kdm6a led to higher than usual levels of specific types of histone modifications in the genome of the mice’s sperm, which in turn prompted a secondary epigenetic shift, an increase in DNA methylation—the addition of a methyl group to DNA that can alter gene expression.

The researchers used the hypermethylated sperm to create a generation of offspring. A crucial aspect of the experiment was creating offspring that inherited the atypical epigenetic marks but not the gene deletion that caused them in order to uncouple the effects of the two changes. Offspring were bred from a modified male germline and an unmodified female germline, so male offspring inherited a healthy X chromosome from their mothers, and an unaffected Y chromosome from their fathers. Genetically, the mice were normal, but they were formed from sperm that had been exposed to the Kdm6a deletion’s epigenetic effects.

When the researchers studied the epigenome of these offspring, they found that while many of the modifications had been erased due to reprogramming, more than 200 of the sections of DNA that had been hypermethylated in the father’s germline following Kdm6a deletion were likewise hypermethylated in the offspring. That persistence is much higher than would be expected by chance or observed in normal mice. The researchers found matching instances of hypermethylation in the offspring’s bone marrow, liver tumors, and spleen, indicating that the inherited epigenetic changes stuck with the offspring though embryonic development into adulthood. The researchers did not pinpoint the mechanism that allowed these epigenetic marks to resist reprogramming; Lesch hopes to pursue that question in the future.

Then the researchers watched the mice grow, waiting to see how the unusual DNA methylation would affect the mice’s health. For a while, the mice appeared perfectly healthy — until they hit middle age. The mice then began developing tumors, experiencing an increase in cancer incidence and a decrease in lifespan.

To get a better understanding of the effects they were seeing, Page and Lesch sought help from cancer experts Benjamin Ebert, chair of medical oncology at the Dana Farber Cancer Institute (DFCI) and member of the Broad Institute; Zuzana Tothova, DFCI investigator and associate member of the Broad Institute; and Roderick Bronson, veterinary pathologist at Harvard Medical School. The experts helped characterize the mice’s diseases. Instead of becoming more susceptible to one specific type of cancer, the mice had a diverse set of diagnoses, similar to what would be expected of normal mice at a much older age. The researchers believe this is due to hypermethylation that they observed in enhancers, regions of DNA that help increase transcription of many genes but are also commonly implicated in cancer.

Although the researchers cannot say whether the same sort of epigenetic inheritance is occurring in humans, they believe that this is a valuable question for future research. Inherited epigenetic marks would not appear in a typical genetic screen for cancer risk, and as such could be overlooked to the detriment of preventative care. Likewise, the researchers note, cancer drugs that target epigenetic mechanisms are on the rise, and there has been no research into the effects that this might have on children conceived by people taking the drugs. If human embryos are inheriting aberrant epigenetic marks in the manner observed in mice in this investigation, then people taking drugs with epigenetic targets should be warned against conceiving children until after they are clear of the effects of their medication.

“We hope that this research demonstrating the cancer risk of inherited epigenetic marks in mice adds to the burgeoning field of mammalian epigenetic inheritance research,” Page says, “and that we have drawn attention to the possible implications for human health.”

 

Written by Greta Friar

***

David Page’s primary affiliation is with Whitehead Institute for Biomedical Research, where his laboratory is located and all his research is conducted. He is also a Howard Hughes Medical Institute Investigator and a Professor of Biology at the Massachusetts Institute of Technology.

***

Full citation:

“Intergenerational epigenetic inheritance of cancer susceptibility in mammals”

eLife, April 9, 2019, DOI: https://doi.org/10.7554/eLife.39380

Bluma J. Lesch, Zuzana Tothova, Elizabeth A. Morgan, Zhicong LiaoRoderick T. Bronson, Benjamin L. Ebert, and David C. Page.

Biologists find a way to boost intestinal stem cell populations

Study suggests that stimulating stem cells may protect the gastrointestinal tract from age-related disease.

Anne Trafton | MIT News Office
March 28, 2019

Cells that line the intestinal tract are replaced every few days, a high rate of turnover that relies on a healthy population of intestinal stem cells. MIT and University of Tokyo biologists have now found that aging takes a toll on intestinal stem cells and may contribute to increased susceptibility to disorders of the gastrointestinal tract.

The researchers also showed that they could reverse this effect in aged mice by treating them with a compound that helps boost the population of intestinal stem cells. The findings suggest that this compound, which appears to stimulate a pathway that involves longevity-linked proteins known as sirtuins, could help protect the gut from age-related damage, the researchers say.

“One of the issues with aging is organ dysfunction, accompanied by a decline in the activity of the stem cells that nurture and replenish that organ, so this is a potentially very useful intervention point to either slow or reverse aging,” says Leonard Guarente, the Novartis Professor of Biology at MIT.

Guarente and Toshimasa Yamauchi, a professor at the University of Tokyo, are the senior authors of the study, which appears online in the journal Aging Cell on March 28. The lead author of the paper is Masaki Igarashi, a former MIT postdoc who is now at the University of Tokyo.

Population growth

Guarente’s lab has long studied the link between aging and sirtuins, a class of proteins found in nearly all animals. Sirtuins, which have been shown to protect against the effects of aging, can also be stimulated by calorie restriction.

In a paper published in 2016, Guarente and Igarashi found that in mice, low-calorie diets activate sirtuins in intestinal stem cells, helping the cells to proliferate. In their new study, they set out to investigate whether aging contributes to a decline in stem cell populations, and whether that decline could be reversed.

By comparing young (aged 3 to 5 months) and older (aged 2 years) mice, the researchers found that intestinal stem cell populations do decline with age. Furthermore, when these stem cells are removed from the mice and grown in a culture dish, they are less able to generate intestinal organoids, which mimic the structure of the intestinal lining, compared to stem cells from younger mice. The researchers also found reduced sirtuin levels in stem cells from the older mice.

Once the effects of aging were established, the researchers wanted to see if they could reverse the effects using a compound called nicotinamide riboside (NR). This compound is a precursor to NAD, a coenzyme that activates the sirtuin SIRT1. They found that after six weeks of drinking water spiked with NR, the older mice had normal levels of intestinal stem cells, and these cells were able to generate organoids as well as stem cells from younger mice could.

To determine if this stem cell boost actually has any health benefits, the researchers gave the older, NR-treated mice a compound that normally induces colitis. They found that NR protected the mice from the inflammation and tissue damage usually produced by this compound in older animals.

“That has real implications for health because just having more stem cells is all well and good, but it might not equate to anything in the real world,” Guarente says. “Knowing that the guts are actually more stress-resistant if they’re NR- supplemented is pretty interesting.”

Protective effects

Guarente says he believes that NR is likely acting through a pathway that his lab previously identified, in which boosting NAD turns on not only SIRT1 but another gene called mTORC1, which stimulates protein synthesis in cells and helps them to proliferate.

“What we would hypothesize is that the NAD replenishment in old mice is driving this pathway of growth that’s working through SIRT1 and TOR to reverse the decline that has occurred with aging,” he says.

The findings suggest that NAD might have a protective effect against diseases of the gut, such as colitis, in older people, he says. Guarente and his colleagues have previously found that NAD precursors can also stimulate the growth of blood vessels and muscles and boost endurance in aged mice, and a 2016 study from researchers in Switzerland found that boosting NAD can help replenish muscle stem cell populations in aged mice.

In 2014, Guarente started a company called Elysium Health, which sells a dietary supplement containing NR combined with another natural compound called pterostilbene, which is an activator of SIRT1.

The research was funded, in part, by the National Institutes of Health and the Glenn Foundation for Medical Research.

A Wide Net to Trap Cancer

Stefani Spranger is exploring multiple avenues for the next immunotherapy breakthrough

Pamela Ferdinand | Spectrum
March 12, 2019

A YOUNG LAB AT THE FOREFRONT OF IMMUNOTHERAPY DISCOVERIES is an exciting yet challenging place to be. MIT faculty member Stefani Spranger, an expert in cancer biology and immunology, understands that better than most people.

Spranger knows that new labs such as hers, which opened in July 2017 at the Koch Institute for Integrative Cancer Research at MIT, face distinct advantages and disadvantages when it comes to making their mark. While younger labs typically have startup grants, they lack the long-term funding, track record, and name recognition of established researchers; on the other hand, new labs tend to have smaller, close-knit teams open to tackling a wider array of investigative avenues to see what works, what doesn’t work, and where promise lies.

That’s when the funds and recognition of an endowed professorship can make a big difference, says Spranger, an assistant professor of biology who last year was named the Howard S. (1953) and Linda B. Stern Career Development Professor. “Not everything will work, so being able to test multiple approaches accelerates discovery and success,” she says.

Spranger is working to understand the mechanisms underlying interactions between cancer and the immune system—and ultimately, to find ways to activate immune cells to recognize and fight the disease. Cancer immunotherapies (the field in which this past year’s Nobel Prize in Physiology or Medicine was awarded) have revolutionized cancer treatment, leading to a new class of drugs called checkpoint inhibitors and resulting in lasting remissions, albeit for a very limited number of cancer patients. According to Spranger, there won’t be a single therapy, one-size-fits-all solution, but targeted treatments for cancers depending on their characteristics.

To discover new treatments, Spranger’s lab casts a wide net, asking big-picture questions about what influences anti-tumor immune response and disease outcome while also zooming in to investigate, for instance, specifically how cancer-killing T cells are excluded from tumors. In 2015, as a University of Chicago postdoc, Spranger made the novel discovery that malignant melanoma tumors with high beta-catenin protein lack T cells and fail to respond to treatment while tumors with normal beta-catenin do.

Her lab focuses on understanding lung and pancreatic cancers, employing a multidisciplinary research team with expertise ranging from immunology and biology to math and computation. One of her graduate students is using linear algebra to develop a mathematical model for translating mouse data into more accurate predictions about key signaling pathways in humans.

Another project involves exploring the relationship between homogenous tumors and immune response. Not every cancer cell is identical, nor does it have the same molecules on its surface that can be recognized by an immune cell; cancer patients with a more homogenous expression of those cells do better with immunotherapy. To investigate whether that homogeneity is due to the tumor or to the immune response to the tumor, Spranger is seeking to build a model system. The research involves a lot of costly sequencing—up to $3,000 per attempt, which is fairly expensive for a young lab—and each try has an element of what Spranger half-jokingly describes as “close your eyes and hope it worked.”

“Being able to generate preliminary proof of concept data for high-risk projects is of outstanding importance for any principal investigator,” she says. “However, it is particularly important to have freedom and flexibility early on.”

Boosting potential

Advancing cancer research and supporting the careers of promising faculty were the intentions of Linda Stern and her late husband Howard Stern ’53, SM ’54, whose gift has supported a series of biology professors since 1993. The first appointee to the chair was Tyler Jacks, now director of the Koch Institute.

Linda Stern says her husband, the cofounder and chairman of E-Z-EM, Inc., and a pioneer in the field of medical imaging, gave thoughtfully to many charitable causes. Yet MIT, where he earned undergraduate and graduate degrees in chemical engineering, had a special place in his heart.

“He was very involved and loved MIT,” says Stern, whose own career path included working as a private detective for 28 years. “He made wonderful contacts and got a wonderful education. He was a real heavy hitter when it came to defending the university.”

MIT’s continued excellence in a competitive environment depends on its ability to recognize and retain faculty, nurture careers, support students, and allow for the pursuit of novel ideas. Like the full professorships awarded to tenured faculty members, career development professorships such as the one endowed by the Sterns fund salary, benefits, and a scholarly allowance. These shorter-term (typically three-year) appointments, however, are specifically meant to accelerate the research and career progression of junior professors with exceptional potential.

“The professorship showed me that MIT as a community is invested and interested in fostering my career,” says Spranger. The discretionary funds she receives from the chair can cover, without need for an approval process, expenses that are not paid for by grants or that suddenly arise from a new idea or opportunity. They can keep projects running in tough times, fund travel to conferences, and purchase equipment. “It gives you a little more traction,” Spranger says. “It’s probably the best invested money because you have a lot of ideas you want to test, and at the same time, you are still checking the pulse of where the field might go and where you want to build your niche.”