Peter Reddien

Education

  • PhD, 2002, MIT
  • SB, 1996, Molecular Biology, University of Texas at Austin

Research Summary

We investigate how stem cells are regulated to regenerate missing tissues. We study the cellular events involved in this process and the attendant roles for regulatory genes that control regeneration steps. We utilize an array of methodologies, including high-throughput sequencing, RNA interference (RNAi) screening, and numerous assays and tools for phenotypic analysis to characterize regeneration regulatory genes.

Awards

  • Howard Hughes Medical Institute, HHMI Investigator, 2013
David C. Page

Education

  • MD, 1984, Harvard Medical School
  • BS, 1978, Chemistry, Swarthmore College

Research Summary

We seek to understand the genetic differences between males and females — both within and beyond the reproductive tract. We study the medical ramifications of these differences in a broad context, through comparative biological, evolutionary, developmental and clinically focused analyses. Our three main veins of research relate to sex differences in health and disease, sex chromosome genomics, and germ cell origins and development.

Awards

  • American Academy of Arts and Sciences, Fellow, 2012
  • March of Dimes, Developmental Biology, 2011
  • National Academy of Medicine, Member, 2008
  • National Academy of Sciences, Member, 2005
  • Howard Hughes Medical Institute, HHMI Investigator, 1990
  • MacArthur Foundation, MacArthur Fellowship, 1986
Adam C. Martin

Education

  • PhD, 2006, University of California, Berkeley
  • BS, 2000, Biology and Genetics, Cornell University

Research Summary

We study how cells and tissues change shape during embryonic development, giving rise to different body parts. We visualize these changes to determine how mechanical forces drive massive tissue movements in the fruit fly, Drosophila melanogaster. In addition, we also study the regulation of tissue integrity, investigating the processes that regulate the epithelial-to-mesenchymal transition or EMT.

Joseph (Joey) Davis

Education

  • PhD, 2010, MIT
  • BA,  2003, Computer Science, University of California, Berkeley
  • BS, 2003, Biological Engineering, University of California, Berkeley

Research Summary

The Davis lab is working to uncover how cells construct and degrade complex molecular machines rapidly and efficiently. We apply a variety of biochemical, biophysical, and structural approaches including quantitative mass spectrometry and single particle cryo-electron microscopy to understand the detailed molecular mechanisms of these processes. Ongoing projects in the lab are focused on autophagy, an essential eukaryotic protein and organelle degradation pathway, and assembly of the ribosome, which is essential in all cells.

Awards

  • Sloan Research Fellowship, Alfred P. Sloan Foundation, 2021
  • National Institute on Aging R00 Fellowship, 2017
  • National Institute on Aging K99 Fellowship, 2015
Christopher Burge

Education

  • PhD, 1997, Stanford University
  • BS, 1990, Biological Sciences, Stanford University

Research Summary

We aim to understand the code for RNA splicing: how the precise locations of introns and splice sites are identified in primary transcripts and how its specificity changes in different cell types. Toward this end, we are mapping the RNA-binding affinity spectra of dozens of human RNA-binding proteins and integrating this information with in vivo binding and activity data.  We are also studying the functions of 3’ untranslated regions, including their roles in mRNA localization and microRNA regulation. The lab uses a combination of computational and experimental approaches to address these questions.

Awards

  • Schering-Plough Research Institute Award (ASBMB), 2007
  • Overton Prize for Computational Biology (ISCB), 2001
David Bartel

Education

  • PhD, 1993, Harvard University
  • BA, 1982, Biology, Goshen College

Research Summary

We study microRNAs and other small RNAs that specify the destruction and/or translational repression of mRNAs. We also study mRNAs, focusing on their untranslated regions and poly(A) tails, and how these regions recruit and mediate regulatory phenomena.

Awards

  • National Academy of Sciences, Member, 2011
  • Howard Hughes Medical Institute, HHMI Investigator, 2005
  • National Academy of Sciences Award in Molecular Biology, 2005
  • AAAS Newcomb Cleveland Prize, 2002
Muscle plays surprising role in tissue regeneration

Whitehead Institute researchers have pinpointed distinct muscle subsets that orchestrate and pattern regrowth.

Nicole Davis | Whitehead Institute
November 22, 2017

Researchers at the Whitehead Institute have illuminated an important role for different subtypes of muscle cells in orchestrating the process of tissue regeneration.

In a paper appearing online today in Nature, they reveal that a subtype of muscle fibers in flatworms is required for triggering the activity of genes that initiate the regeneration program. Notably, in the absence of these muscles, regeneration fails to proceed. Another type of muscle, they report, is required for giving regenerated tissue the proper pattern — for example, forming one head instead of two.

“One of the central mysteries in organ and tissue regeneration is: How do animals initiate all of the cellular and molecular steps that lead to regeneration?” says senior author Peter Reddien, a member of Whitehead Institute, professor of biology at MIT, and investigator with the Howard Hughes Medical Institute. “We’ve helped answer this question by revealing a surprising molecular program that operates within a subgroup of muscle cells that helps establish the molecular information required for proper tissue regeneration after injury.”

For more than a decade, Reddien and the researchers in his laboratory have studied the biological mechanisms that underlie regeneration in a tiny flatworm called planarians. These worms possess some impressive regenerative capabilities: When sliced in two, each piece of the worm can regrow the body parts needed to form two complete organisms. In previous studies, Reddien’s team identified a set of always-on genes, known as position control genes (PCGs), that provide cells with region-specific instructions, like a set of GPS coordinates, that tell cells where they are in the body, and thus what body part to regenerate. Interestingly, PGCs are active in planarian muscle cells, suggesting muscle may play a major role in the regeneration process.

“This discovery raised a lot of questions about how muscle participates in this process,” Reddien says.

In planarians, there are a handful of muscle cell types. For example, if you imagine the worms as simple cylindrical tubes, there are longitudinal muscle fibers, which run head-to-tail along the tubes’ long axis. There are also circular fibers, which are perpendicular to the longitudinal fibers and hug the tubes’ outer circumference.

To assess the roles of these different muscle cell types in regeneration, first author Lucila Scimone and her colleagues needed a method to selectively remove them. When myoD, a gene found specifically in the longitudinal fibers, is inhibited, those fibers fail to form. Similarly, the nkx1-1 gene marks the circular fibers, and when its function is reduced, they do not develop. Using these genes as molecular scalpels, Scimone and her co-authors could test the effects of ablating these distinct muscle groups on regeneration.

Surprisingly, when the longitudinal fibers were removed, the results were dramatic. The worms live quite normally, but when they are injured (the head removed, for example) they cannot regenerate the missing parts.

“This is an amazing result; it tells us that these longitudinal fibers are essential for orchestrating the regeneration program from the very beginning,” says Scimone, a scientist in Reddien’s lab.

As the researchers dug deeper into the finding, they learned that the functions of two critical genes are disrupted when longitudinal fibers are missing. These genes, called notum and follistatin, are known for their fundamental roles in regeneration, controlling head-versus-tail decisions and sustained cell proliferation, respectively, following tissue injury.

In addition to this essential role for longitudinal fibers, the research team also uncovered a key role for circular fibers. When these muscles are missing, planarians are able to regenerate missing body parts, but what regrows is abnormally patterned. For example, two heads may be regenerated within a single outgrowth, instead of one.

These results underscore an important and previously unappreciated role for muscle, widely known for its contractile properties, in instructing the tissue regeneration program. The Whitehead researchers will continue to probe the role of different muscle cell types in planarian regeneration and also explore whether other animals with regenerative capabilities possess a similar muscle-localized program for conferring positional information.

“It’s hard to understand what limits humans’ abilities to regenerate and repair wounds without first knowing what mechanisms are enabling some animals, like planarians, to do it so amazingly well,” Reddien says.

This work was supported by the National Institutes of Health, Howard Hughes Medical Institute, and the Eleanor Schwartz Charitable Foundation.

Eric S. Lander

Education

  • PhD, 1981, Oxford University
  • AB, 1978, Mathematics, Princeton University

Research Summary

Following the successful completion of the Human Genome Project, the challenge now is to decipher the information encoded within the human genetic code — including genes, regulatory controls and cellular circuitry. Such understanding is fundamental to the study of physiology in both health and disease. At the Broad Institute, my lab collaborates with other to discover and understand the genes responsible for rare genetic diseases, common diseases, and cancer; the genetic variation and evolution of the human genome; the basis of gene regulation via enhancers, long non-coding RNAs, and three-dimensional folding of the genome; the developmental trajectories of cellular differentiation; and the history of the human population.

Awards

  • William Allan Award, American Society of Human Genetics, 2018
  • James R. Killian Jr. Faculty Achievement Award, MIT, 2016
  • Block Memorial Award for Distinguished Achievement in Cancer Research, Ohio State University, 2013
  • AAAS Philip Hauge Abelson Prize, 2015
  • Breakthrough Prize in Life Sciences, 2013
  • Harvey Prize for Human Health, Technion University, Israel, 2012
  • Dan David Prize, 2012
  • Albany Prize in Medicine and Biomedical Research, Albany Medical College, 2010
  • Gairdner Foundation International Award, Canada, 2002
  • Max Delbruck Medal, Berlin, 2001
  • MacArthur Foundation, MacArthur Fellowship, 1987
Retinoic acid regulates transitions in mouse sperm production
November 7, 2017

CAMBRIDGE, MA – Sperm production requires progression through a well-orchestrated series of transitions in the testes that move diploid spermatogonia cells, with two complete sets of chromosomes, through a series of transitions to produce haploid sperm, with one copy of each chromosome, poised to swim and fertilize an available egg. There are four major transitions in sperm production, or spermatogenesis. The first is spermatogonial differentiation, during which spermatogonia differentiate, losing their stem-cell like qualities. The resulting spermatocytes then initiate meiosis and undergo two rounds of cell division to generate haploid spermatids. The spermatids undergo elongation and then the resulting sperm are released.

The signals that control progression through these transitions were poorly understood until 2015, when David Page, Member and Director of Whitehead Institute, professor of biology at Massachusetts Institute of Technology, and investigator with Howard Hughes Medical Institute and colleagues determined that retinoic acid (RA), a derivative of vitamin A that has been shown to play a key role in a number of developmental processes, was responsible for coordinating the first two stages of spermatogenesis-differentiation and meiosis. Now, in a paper published this week in the journal Proceedings of the National Academy of Sciences, Page, first author Tsutomu Endo, and colleagues extend those findings to show that RA signaling in mice coordinates the second two transitions as well.

Diagram of model by which retinoic acid coordinates spermatogenesisThe researchers used chemical manipulation of RA levels to determine that RA controlled the second two transitions, spermatid elongation and sperm release, in addition to the first two. With this knowledge in hand, the researchers were then able to drill down and get a better picture of how RA regulates male gamete production. One outstanding question has been how males are able to continually produce sperm throughout their lifetime, in contrast with females whose egg production and maturation is limited. Page and colleagues measured RA levels in the testes and discovered that it is cyclically produced, driving production of sperm during the male lifetime. In addition to the timing of RA production, the researchers also examined its source. From which cells was the RA signal coming? During the first two transitions, they determined that the RA was coming from the somatic Sertoli cells, the support cells of the testes, and in the second two transitions they determined that it was being released by the germ cells themselves-the meiotic (pachytene-stage) spermatocytes were found to be secreting RA to other germ cells in the testes.

These findings not only contribute to our fundamental understanding of male gamete formation, they also provide important clues for the field of reproductive technology. For years, scientists have been working on making gametes in the laboratory, but have had difficulty making functional sperm. This discovery of the role of RA in spermatogenesis adds important tools to the toolbox of assisted reproduction. The work shows that RA is required in both the early and late transitions of spermatogenesis and sheds light on an important component of laboratory efforts for sperm production.

Other researchers involved include Elizaveta Freinkman and Dirk G. de Rooij.

This research was supported by Howard Hughes Medical Institute (HHMI) and the United States Department of Defense (DoD W81XWH-15-1-0337)

Written by Lisa Girard
****
David Page’s primary affiliation is with Whitehead Institute for Biomedical Research, where his laboratory is located and all his research is conducted. He is also a Howard Hughes Medical Institute Investigator and a Professor of Biology at the Massachusetts Institute of Technology.
 ****
Paper cited: Endo, T et al.  Periodic production of retinoic acid by meiotic and somatic cells coordinates four transitions in mouse spermatogenesis. Proc Natl Acad Sci. DOI: 10.1073/pnas.1710837114. Epub 2017 Nov 6.
Other work cited: Endo T et al. Periodic retinoic acid-STRA8 signaling intersects with periodic germ-cell competencies to regulate spermatogenesis. Proc Natl Acad Sci. DOI: 10.1073/pnas.1505683112. Epub 2015 Apr 20.
Stuck on the membrane

A pro-metastatic transcription factor’s journey from anonymity to a promising target for breast cancer therapy

October 20, 2017

An overwhelming majority of deaths from cancer are associated not with the primary tumor, but instead with its metastases to other sites in the body. For this reason, understanding the properties of cancer cells that give them a high metastatic potential, and identifying molecular strategies to intervene, is critical for improving clinical outcomes.

One of the hallmarks of cancer cells with high metastatic potential is an epithelial to mesenchymal transition (EMT). This shift in their gene expression landscape is a harbinger for both invasive behavior and anti-cancer drug resistance. One signaling pathway active in cells that have undergone EMT transition, the PERK pathway, has been of particular interest to Whitehead Institute Member and Massachusetts Institute of Technology associate professor of biology Piyush Gupta and postdoctoral researchers in Gupta’s lab, Yu-Xiong Feng and Dexter Jin. The PERK signaling pathway has been a sought-after target for a number of types of cancer, including breast cancer. Drug companies had largely given up on the PERK signaling pathway as a target, however, because when it is inhibited, it also has the unintended consequence of affecting glucose regulation to the degree that mice given PERK inhibitors typically develop diabetes within a few weeks. Gupta and colleagues hypothesized that downstream elements of the pathway could include targets with more specific effects on metastatic behavior, potentially enabling the development of therapies that do not result in the unintended consequences associated with inhibiting PERK. 

In a recent article in Nature Communications, Gupta, Feng, Jin, and colleagues describe CREB3L1, a factor downstream of the PERK pathway that is active in the subset of triple negative breast cancer cells and tumor cells that have undergone an EMT transition. CREB3L1 expression is associated with distant metastasis and is important for the transformed cell’s invasive and drug resistant properties. While factors like CREB3L1, called transcription factors, are usually difficult to target with small molecules, Gupta and his team zeroed in on a unique property it shares with only a small handful of other factors-it is normally stuck to the membrane of a cellular compartment called the endoplasmic reticulum and, in order for it to be active, it need to be cut free by factors called proteases. Gupta and colleagues show that certain protease inhibitors can actually stop the activation of CREB3L1 in its tracks, along with the invasive and drug resistance properties its activation confers. 

While the PERK signaling pathway has been an attractive target for anticancer therapy, its more general cellular role made it an intractable target. The downstream factor of the pathway  CREB3L1 is a potential new target for breast cancer therapy whose specificity of action makes it an attractive option for targeting metastatic behavior.

By Lisa Girard
Citation:
Feng Y-X, Jin DX, et al. “Cancer-specific PERK signaling drives invasion and metastasis through CREB3L1.” Nature Communications DOI:10.1038/s41467-017-01052-y