Endowed funds to support MSRP-Bio
December 22, 2020

Dear colleagues,

I’m writing to share some really good news about our MIT’s Summer Research Program in Biology, or as most of us know it, MSRP-Bio. The simple take-home message: we now have endowed funds from Mike Gould and Sara Moss that will support about a dozen MSRP-Bio students each summer, for a very long time!

In 2015, Mike and Sara established the Bernard S. and Sophie G. Gould Fund to support students participating in MSRP-Bio. This gift was to provide opportunities to deserving students and to honor the memory of Mike’s parents.

Mike’s parents were both MIT alumni, and his father Bernie was a professor in the Biology Department from 1934 – 1987. Bernie and Sophie both committed their lives to supporting and counseling young students, and Mike and Sara chose to establish this fund to honor Mike’s parents and their deep and shared commitment to mentorship. Indeed, Mike and Sara share that commitment to support students and provide them with opportunities that could change their lives.

Mike and Sara have been remarkably dedicated to MSRP-Bio. Beginning with the first cohort of Gould Fellows in 2016, they visited each summer to meet and get to know these talented students. The first four meetings were in person, and then in the summer of 2020, the meeting was virtual due to the pandemic. Mike and Sara insisted on having the meeting, and even attended all of the student talks that summer. They have kept in touch with several of the Gould Fellow alumni and have gotten together with those who are in their hometown (NYC).

Mike and Sara have been so touched by the impact of their initial gift that they decided recently to provide additional support. To acknowledge this support and their commitment to our students and program, we are renaming MSRP-Bio the Bernard S. and Sophie G. Gould MIT Summer Research Program in Biology: BSG-MSRP-Bio, in honor of Mike’s parents.

We are deeply grateful to Mike and Sara for their commitment to and support for our community, their willingness to enable opportunities for students, irrespective of their specific research interests, and for the many talented individuals who will benefit from the experiences afforded by their generous gift. 

This gift is a great way to end the year. Wishing everyone a wonderful holiday season and a Happy Healthy New Year!

Best wishes,
Alan Grossman, Department Head

Ruth Lehmann receives 2020 Francis Amory Prize
Greta Friar | Whitehead Institute
December 21, 2020

Whitehead Institute Director Ruth Lehmann has been awarded the 2020 Francis Amory Prize in Reproductive Medicine and Reproductive Physiology by the American Academy of Arts & Sciences. Lehmann shares the prize with geneticist Gertrud M. Schüpbach, emeritus professor at Princeton University and a longtime friend and colleague. The Amory Prize recognizes outstanding achievements in medicine and reproductive physiology, and Lehmann and Schüpbach are being recognized for their contributions to areas including DNA repair, embryonic development, RNA regulation, and stem cell research. Lehmann, who is also a professor at the Massachusetts Institute of Technology, studies the biological origins of germ cells, the sex cells that produce eggs and sperm. Her research has shed light on many aspects of the germ cell life cycle, including how germ cells first form and become set apart from the rest of the body’s cells, how they migrate to the gonads during embryonic development, and how they remain protected in order to produce the next generation, preserving and passing on the complex instructions to construct a new life. Lehmann and Schüpbach will accept the Amory Prize at a virtual American Academy of Arts & Sciences event on February 3, 2021. To learn more, click here.

Disarming cancer
Greta Friar | Whitehead Institute
December 21, 2020

Cancer is at its most deadly when two things occur: the cancer cells metastasize, spreading to new sites in the body, and the cells become resistant to treatment. The epithelial-mesenchymal transition (EMT) is a process that cancer cells may undergo that enables them to do both of these things. Cells that undergo this process are called “quasi-mesenchymal” cancer cells, and they are mobile, aggressive, and harder to kill. They can resist attacks launched both by the body’s own immune system as well as immune checkpoint blockade therapy (ICB), an increasingly employed clinical treatment that works by liberating cells of the immune system from certain constraints, thereby allowing them to attack cancer cells. Anushka Dongre, a postdoctoral researcher in the lab of Whitehead Institute Founding Member Robert Weinberg, had previously found that even a small population of quasi-mesenchymal cells within a mouse breast cancer tumor—as little as 10% amongst a majority of cells that had not gone through the EMT—could protect the entire tumor from a version of ICB called anti-CTLA4 therapy. Most breast cancers in humans contain some minority populations of quasi-mesenchymal cells, as do many other types of human tumors, likely contributing to ICB therapy’s mixed success rates in the clinic.

Because cells that have been through the EMT process play such a large role in making cancers more deadly and less responsive to treatment, Dongre set out to understand how to defang them. Her first step was to figure out how minority populations of quasi-mesenchymal cells within a breast tumor make the tumors as a whole resistant to immune therapy. Then she studied how to disable those mechanisms. The work, described in a paper published in Cancer Discovery on December 16, includes studies in mice showing that disabling those resistance mechanisms can sensitize otherwise-resistant tumors to anti-CTLA4 checkpoint blockade immunotherapy and reduce the severity of metastasis.

Dongre had previously studied how quasi-mesenchymal cells alter the area in and around a tumor to render it more favorable for the outgrowth of a cancer. They keep out of the core of the tumor the type of immune cells that can destroy cancers, and instead let in other types of immune cells that the tumor is able to co-opt to its benefit, thereby protecting it from immune attack. 

In her latest research, Dongre identified six molecules that quasi-mesenchymal cells produce and release that help them perturb the tumor’s surroundings, protecting cells throughout the tumor from immune attack and elimination. She then tested what happened when the release of each of the protective molecules was suppressed. She discovered that eliminating release of either of two molecules, CSF1 and SPP1, made the tumors significantly more susceptible to the immune attack and thus elimination by ICB therapyHoweverthe strongest therapeutic benefit came when she prevented production of CD73, an enzyme usually made by the quasi-mesenchymal cells that produces the immunosuppressive molecule adenosine. In mice, anti-CTLA4 therapy was very effective against tumors in which CD73 and thus adenosine had been eliminated from the quasi-mesenchymal cells, in some cases, succeeding in eliminating the tumors entirely. These findings are consistent with previous research that identified CD73 as a good complementary target for immunotherapy. Furthermore, the experiments demonstrated the utility of combining anti-CD73 therapy with anti-CTLA4 immunotherapy in order to successfully treat tumors that would usually not respond to treatment by ICB therapy alone. Dongre was particularly excited to see the combination of anti-CD73 and anti-CTLA4 reduce the number and size of metastatic tumors.

Dongre hopes that these insights will prove useful for patients.

“There is this minority population of mesenchymal cells present in many patient tumors, creating a big barrier to therapy. I’m hopeful that by identifying the drivers that can sensitize this population to treatment, our work can one day help patients suffering from cancers that are resistant to current therapies,” Dongre says.

Weathering the storm

Professors Heald and Li provide stellar advising in challenging times.

Ellie Immerman | Office of Graduate Education
December 19, 2020

Professors Colette Heald and Gene-Wei Li have been honored as “Committed to Caring” for crafting inclusive laboratory environments, as well as continually empowering their students. A hurdle like the Covid-19 pandemic can easily throw student well-being and research off-kilter. Having such caring advisors can help students persevere amid uncertainty.

Colette Heald: an inspirational advocate

Colette Heald is a professor in the Department of Civil and Environmental Engineering as well as a professor of earth, atmospheric, and planetary sciences. Through her research, Heald investigates global atmospheric composition and chemistry, focusing on how this impacts air quality, climate, and environmental health. Heald’s research has significantly advanced discussions of the combined effects of climate change and air pollution on diminishing crop yields and global food insecurity.

Heald emphasizes that a PhD is an arduous process that “inevitably [has] personal and professional bumps.” Most of all, Heald wants to “create an environment where members of [her] group can rely on [her] for research guidance and for support whenever they need it, while feeling empowered to lead their own research.”

To achieve this balance, Heald provides a forum for regular, clear communication and mutually agreeable expectations. Writes one advisee on speaking with Heald: “I know that I will be heard no matter what the case may be.” Heald meets with each member of her lab weekly, finding that individual needs for these meetings vary greatly. Consistently and empathetically engaging with advisees is a Committed to Caring (C2C) Mentoring Guidepost.

In the midst of the Covid-19 pandemic, Heald is keenly aware of the ways isolation hampers positivity and productivity. She devotes extra time to meeting with students and creating informal Zoom breaks where students share “stories about how we are all adapting to this [shifting] normal.” She looks forward to the time when it will be safe to return to an in-person “vibrant back-and-forth on research and technical questions.”

Structural and individual support

Navigating an academic field is often rife with obstacles. Heald supports her students by communicating with them about the norms of the field, as well as advocating for them in inequitable situations and when dealing with challenging personalities.

In one instance, a postdoc lost their funding, and Heald found financial support for them. According to a nominator, she also “fought to remove potentially discriminatory practices in funding [maternity] leave, that might bias professors away from hiring women postdocs.” Heald’s advocacy spans both individual situations and work on structural reform.

Heald developed conscientious and considerate advising practices over time, through observing what was effective in her and others’ mentoring relationships. As a postdoc, she attended three laboratory groups’ meetings and observed the professors’ differing approaches. She emphasizes the development of an advising style that works for both the individual mentee and the advisor.

Describing Heald concisely, one advisee opts for “#mentorgoals.”

Gene-Wei Li: amplifying diverse voices

Gene-Wei Li is an assistant professor of biology. He joined the MIT faculty in 2015, after completing a PhD at Harvard University and a postdoc at the University of California at San Francisco. A biophysicist, Li studies how bacteria optimize the proteins they produce. His laboratory focuses on design principles of transcription, translation, and RNA maturation in the face of competing cellular processes.

“Metaphorically an endlessly deep vessel,” according to a student nominator, Li “nurture[s] everyone around him both in scien[ce] and, more importantly, personal development.”

Harmonious support

Intrinsically attuned to students’ needs, Li often notices when students could use academic or personal support without being prompted. When one student was feeling burnt out, Li listened closely to understand their individual experience of burnout and what could help them recuperate. The student returned refreshed, “engaged and motivated to work on a day-to-day basis.” Li prioritizes mental health and makes clear that he values students.

Setbacks are inevitable in experimental work. Li works with students to build resilience to research impediments, as well as to collaboratively problem-solve. This emphasis on learning, development, and practice over achievement is a Mentoring Guidepost.

In thinking about guidance during the Covid-19 pandemic, Li offers a thoughtful framework. Being “proactive” amid uncertainty is central. Li’s lab started preparing to work from home in February. He writes, “Acting early is important to both ensure research continuity and reduce emotional impact when an avalanche of restrictions are implemented.”

Li has developed individualized plans with students based on two key principles: “safety cannot be sacrificed,” and “[the student’s] career must advance.” A lingering challenge that many faculty including Li face is how to find ways to interact regularly and informally with lab members while simultaneously homeschooling their own kids.

Building an inclusive community

Li works to intentionally craft a caring laboratory environment. According to Li, he purposefully seeks out “a team with diverse viewpoints and [an] eagerness to help each other.” Students are grateful for this effort, feeling supported by their colleagues. Writes one student nominator, “I’ve always come out of chats with my labmates feeling like my thoughts were heard and that people were genuinely invested in giving me good feedback.”

Being adaptable and requesting feedback in ways that enable students to comfortably share their candid views is a strong skill of Li’s. Referencing how Li solicits feedback and his genuine interest in students’ lives, students describe it as “refreshing to have an advisor who treats us as equals.”

Li also knows how to gracefully guide others in crafting inclusive environments. One student writes that Li “always corrects my implicit biases … Thanks to his awareness, I have been able to start correcting these biases.” This is vital, challenging, and delicate work. Having courageous conversations and fostering inclusivity are Mentoring Guideposts identified by the C2C program.

Nurturing and perceptive, Li is dedicated to the personal and scientific growth of all those around him.

More on Committed to Caring

The Committed to Caring program is an initiative of the Office of Graduate Education and contributes to its mission of making graduate education at MIT “empowering, exciting, holistic, and transformative.”

Since 2014, C2C has invited graduate students from across MIT’s campus to nominate professors whom they believe to be outstanding mentors. Selection criteria for the honor include the scope and reach of advisor impact on graduate students’ experience, excellence in scholarship, and demonstrated commitment to diversity and inclusion.

The most recent outgrowth in 2019 took the form of a Faculty Peer Mentorship Program (FPMP) in which C2C faculty act as peer mentors to incoming MIT professors. The program provides one-to-one matches with the goal of fostering strong mentorship practices and providing a network of support.

By recognizing the human element of graduate education, C2C seeks to encourage excellent advising and mentorship across MIT’s campus.

Harvey Lodish receives two international honors
Merrill Meadow | Whitehead Institute
December 16, 2020

Founding Member Harvey Lodish has been twice honored by the international science community for his path-breaking scientific accomplishments and intellectual leadership.

The Royal Academy of Medicine of Belgium has elected Lodish as a Foreign Member, recognizing his pioneering role in the field of molecular cell biology, his seminal contributions to understanding protein translation and protein traffic processes, and his discovery and cloning of cell surface receptors for many hormones and cytokines. Collectively, Lodish’s work has helped to explain key aspects of hematopoiesis, obesity, and diabetes.

In addition, the Chinese University of Hong Kong has conferred on Lodish an honorary Doctor of Science degree, recognizing both his research achievements and his long-term efforts to help build Hong Kong’s biotechnology ecosystem.

In nominating him for Royal Academy membership, former Lodish-lab fellow Stefan Constantinescu—now Head of the Cell Signaling and Molecular Hematology at Brussels’ Ludwig Institute for Cancer Research—noted that beyond making discoveries that led to effective treatments, Lodish was “one of the pioneers of modern biotechnology, being a founder of Genzyme Inc., [plus] Arris Pharmaceuticals, Inc., Millennium Pharmaceuticals, Inc., Allozyne, Inc, and most recently Rubius Therapeutics.”

RNA molecules are masters of their own destiny
Eva Frederick | Whitehead Institute
December 16, 2020

At any given moment in the human body, in about 30 trillion cells, DNA is being “read” into molecules of messenger RNA, the intermediary step between DNA and proteins, in a process called transcription.

Scientists have a pretty good idea of how transcription gets started: proteins called RNA polymerases are recruited to specific regions of the DNA molecules and begin skimming their way down the strand, synthesizing mRNA molecules as they go. But part of this process is less well understood: how does the cell know when to stop transcribing?

Now, new work from the labs of Whitehead Institute Member Richard Young, also a professor of biology at Massachusetts Institute of Technology (MIT), and Arup K. Chakraborty, professor of chemical engineering, physics and chemistry at MIT, suggests that RNA molecules themselves are responsible for regulating their formation through a feedback loop. Too few RNA molecules, and the cell initiates transcription to create more. Then, at a certain threshold, too many RNA molecules cause transcription to draw to a halt.

The research, published in Cell on December 16, represents a collaboration between biologists and physicists, and provides some insight into the potential roles of the thousands of RNAs that are not translated into any proteins, called noncoding RNAs, which are common in mammals and have mystified scientists for decades.

A question of condensates

Previous work in Young’s lab has focused on transcriptional condensates, small cellular droplets that bring together the molecules needed to transcribe DNA to RNA. Scientists in the lab discovered the transcriptional droplets in 2018, noticing that they typically formed when transcription began and dissolved a few seconds or minutes later when the process was finished.

The researchers wondered if the force that governed the dissolution of the transcriptional condensates could be related to the chemical properties of the RNA they produced — specifically, its highly negative charge. If this were the case, it would be the latest example of cellular processes being regulated via a feedback mechanism — an elegant, efficient system used in the cell to control biological functions such as red blood cell production and DNA repair.

As an initial test, the researchers used an in vitro experiment to test whether the amount of RNA had an effect on condensate formation. They found that within the range of physiological levels observed in cells, low levels of RNA encouraged droplet formation and high levels of RNA discouraged it.

Thinking outside the biology box 

With these results in mind, Young Lab postdocs and co-first authors Ozgur Oksuz and Jon Henninger teamed up with physicist and co-first author Krishna Shrinivas, a graduate student in Arup Chakraborty’s lab, to investigate what physical forces were at play.

Shrinivas proposed that the team build a computational model to study the physical and chemical interactions between actively transcribed RNA and condensates formed by transcriptional proteins. The goal of the model was not to simply reproduce existing results, but to create a platform with which to test a variety of situations.

“The way most people study these kinds of problems is to take mixtures of molecules in a test tube, shake it and see what happens,” Shrinivas said. “That is as far away from what happens in a cell as one can imagine. Our thought was, ‘Can we try to study this problem in its biological context, which is this out-of-equilibrium, complex process?’”

Studying the problem from a physics perspective allowed the researchers to take a step back from traditional biology methods. “As a biologist, it’s difficult to come up with new hypotheses, new approaches to understanding how things work from available data,” Henninger said. “You can do screens, you can identify new players, new proteins, new RNAs that may be involved in a process, but you’re still limited by our classical understanding of how all these things interact. Whereas when talking with a physicist, you’re in this theoretical space extending beyond what the data can currently give you. Physicists love to think about how something would behave, given certain parameters.”

Once the model was complete, the researchers could ask it questions about situations that may arise in cells — for instance, what happens to condensates when RNAs of different lengths are produced at different rates as time ensues? — and then follow it up with an experiment at the lab bench. “We ended up with a very nice convergence of model and experiment,” Henninger said. “To me, it’s like the model helps distill the simplest features of this type of system, and then you can do more predictive experiments in cells to see if it fits that model.”

The charge is in charge

Through a series of modeling and experiments at the lab bench, the researchers were able to confirm their hypothesis that the effect of RNA on transcription is due to RNAs molecules’ highly negative charge. Furthermore, it was predicted that initial low levels of RNA enhance and subsequent higher levels dissolve condensates formed by transcriptional proteins. Because the charge is carried by the RNAs’ phosphate backbone, the effective charge of a given RNA molecule is directly proportional to its length.

In order to test this finding in a living cell, the researchers engineered mouse embryonic stem cells to have glowing condensates, then treated them with a chemical to disrupt the elongation phase of transcription. Consistent with the model’s predictions, the resulting dearth of condensate-dissolving RNA molecules increased the size and lifetime of condensates in the cell. Conversely, when the researchers engineered cells to induce the production of extra RNAs, transcriptional condensates at these sites dissolved. “These results highlight the importance of understanding how non-equilibrium feedback mechanisms regulate the functions of the biomolecular condensates present in cells,” said Chakraborty.

Confirmation of this feedback mechanism might help answer a long-standing mystery of the mammalian genome: the purpose of non-coding RNAs, which make up a large portion of genetic material. “While we know a lot about how proteins work, there are tens of thousands of noncoding RNA species, and we don’t know the functions of most of these molecules,” said Young. “The finding that RNA molecules can regulate transcriptional condensates makes us wonder if many of the noncoding species just function locally to tune gene expression throughout the genome. Then this giant mystery of what all these RNAs do has a potential solution.”

The researchers are optimistic that understanding this new role for RNA in the cell could inform therapies for a wide range of diseases. “Some diseases are actually caused by increased or decreased expression of a single gene,” said Oksuz, a co-first author. “We now know that if you modulate the levels of RNA, you have a predictable effect on condensates. So you could hypothetically tune up or down the expression of a disease gene to restore the expression — and possibly restore the phenotype — that you want, in order to treat a disease.”

Young added that a deeper understanding of RNA behavior could inform therapeutics more generally. In the last 10 years, a variety of drugs have been developed that directly target RNA successfully. “RNA is an important target,” Young said. “Understanding mechanistically how RNA molecules regulate gene expression bridges the gap between gene dysregulation in disease and new therapeutic approaches that target RNA.”

The untidy experiment that catalyzed recombinant DNA technology

Salvador Luria is known for his research on phage genetics, but his lab’s contribution to the discovery of restriction enzymes also sparked important technological advances.

Saima Sidik
December 15, 2020

In the early 1950s, a woman named Mary Human found the first evidence of a group of proteins called restriction enzymes — a discovery that would reverberate throughout the research community for decades. But many important discoveries, from penicillin to medical X-rays, are inspired by a messy fluke rather than carefully reasoned logic, and Human’s discovery was no different.

Fortunately, Human’s boss was a jovial scientist named Salvador Luria, who appreciated that life’s quirks often yield the most valuable results — so much so that he wrote a 1955 Scientific American article in which he praised Human’s approach. “It often pays to do somewhat untidy experiments, provided one is aware of the element of untidiness,” he wrote.

Indeed, Luria’s life was far from being a tidy package. This Italian native fled Europe to escape Nazis, was briefly blacklisted by the NIH presumably because of his vocal opposition to American foreign policy, and suffered from depression despite his outwardly cheery appearance. But Luria’s life was also extraordinary. He earned a medical degree in Torino, Italy, but decided he preferred performing research over practicing medicine. After leaving Europe in the 1940s to escape the persecution of Jews like himself, he held professorships at three American institutions, including MIT. He was known as an insightful scientist, a kind colleague, and a thoughtful mentor, right up until his death in 1991.

A Surprising Observation in the Midwest

For much of his career, Luria applied his keen insight to phages — viruses that invade and kill bacteria. He and two collaborators won the Nobel Prize after realizing that genetic mutations in bacteria can protect them from deadly phages. But the untidy experiment Luria referred to in his Scientific American article related to a lesser-known aspect of his lab’s phage work: restriction enzymes, which cut DNA at specific places. Luria was the first person to find evidence of these critical tools, which opened a whole new field of genetic manipulation. A cascade of research spanning two decades eventually led a scientist supervised by Luria’s former research associate to win a Nobel prize for characterizing these enzymes, which catalyzed modern molecular biology.

The restriction enzyme story starts in the late 1940s, when Luria was a professor at Indiana University. He noticed that a phage called T2 didn’t seem to grow inside and kill certain mutant strains of Escherichia coli. T2 always killed the first batch of mutant E. coli, but when he tested whether a new batch of the same type of bacteria would catch the virus from the dead bacteria, the new batch didn’t succumb to the virus.

In 1950, Luria moved to the University of Illinois, Urbana, where one of his employees, a woman named Mary Human, continued to work on the T2 mystery. One day, in the midst of an experiment, Human realized she’d run out of the strain of E. coli she usually used, and this is where the experiment got a little untidy. Instead of waiting to do the experiment on another day with a healthy batch of E. coli, Human mixed phage-killed E. coli with a different type of bacteria called Shigella. T2 always seemed to act the same in Shigella as it did in E. coli, so she didn’t expect the switch to matter. But the next morning, the Shigella were dead! It seemed that T2 could only reproduce once in the particular mutant strain of E. coli that Human was studying, but when she moved T2 from these mutant E. coli to Shigella, it restored the virus’ ability to reproduce. Human and Luria concluded that something about the mutant E. coli changed the T2, and limited the kinds of bacteria in which it could grow.

At the time, Human and Luria couldn’t explain what was happening to T2 in these mutant bacteria. Luria went about his career, still carrying this mystery with him.

An explanation in Cambridge, Massachusetts

In 1958, Luria came to MIT Biology for a sabbatical. The structure of DNA had been discovered just five years earlier, and MIT needed someone who understood its implications to usher the Institute into the genomics era. Luria was renowned for his ability to predict which direction biology would move, so the Institute wanted him to fill this role. At the end of his sabbatical, Luria accepted a permanent position in MIT Biology, where he stayed for the rest of his career.

“I asked Luria if he thought it was possible to do molecular biology with animal viruses, and he said, ‘I don’t know, why don’t you find out and tell me?’” Baltimore says.In addition to being a skilled scientist, Luria was a thoughtful mentor. David Baltimore, professor at the California Institute of Technology, was one of Luria’s early mentees at MIT. At the time, most research into viruses focused on the phages that Luria studied, but Baltimore wanted to break new ground by studying viruses that infect animals. He credits Luria for encouraging him to go down this path — one that led him to become a Nobel Laureate himself.

In addition to being a skilled scientist, Luria was deeply opposed to McCarthyism and the Vietnam War, and he devoted a lot of time to political activism like writing letters, to newspaper editors as well as to other scientists, trying to gather support for his views.

Fortunately, Luria had a deputy to help him run his lab while he was revamping MIT Biology and trying to stop the war. “If you wanted to know something on a daily basis, you went to Helen Revel,” recalls Costa Georgopoulos, a professor at the University of Utah who earned his PhD in Luria’s lab in the 1960s.

Revel earned her PhD with MIT Biology’s Boris Magasanik before becoming Luria’s research associate. “Those days, women were not readily made professors, so she worked on Luria’s grants,” Georgopoulos says.

Georgopoulos describes Revel as reserved and meticulous. She didn’t advertise her skill as a scientist; she just got to work. With this attitude, she led the scientists who figured out the mystery of the mutant bacteria that changed the T2 phage.

Since Human’s fortuitously messy experiment, a lineage of phage researchers that originated in Luria’s lab had learned a lot about how bacteria and phages interact. First, Luria’s former research associate, Guiseppe Bertani, showed that phages other than T2 also behave differently in different types of bacteria. Later, Bertani’s own research associate, Werner Arber, went on to discover that bacteria can mark the DNA of phages that replicate within them. When marked phages try to enter new bacteria, the marks can signal that the phages are foreign invaders, allowing the new bacteria to kill the phages. Arber and two of his colleagues, Daniel Nathans and Hamilton O. Smith, eventually won their own Nobel prize for their work on restriction enzymes.

Certain bacteria mark phage DNA by replacing one of the bases that make up the genetic code, called cytosine, with a modified version called 5-hydroxymethylcytosine. Revel, with help from Luria, Georgopoulos, and others, found that the T2 phage takes this system one step farther by using a bacterial enzyme to attach sugars to modified cytosines. Some mutant bacteria are unable to transfer sugars to phage cytosines, and so the phages grown in these bacteria come out “sour” instead of “sweet,” as Luria wrote. Restriction enzymes recognize these sweet-natured phages as foreign, and destroy them.

As researchers learned more about restriction enzymes, they realized that they can work in all sorts of ways. Bacteria can also mark their own DNA to prevent restriction enzymes from cutting it, allowing certain kinds of restriction enzymes to cut naked DNA sequences in the genomes of invading phages. Soon, biologists realized that restriction enzymes would let them cut any kind of DNA, not just phage genomes. This discovery had many consequences, one of which was that scientists could paste snipped DNA back together in new combinations. Many people were initially wary that combining DNA from different organisms could have unintended consequences. But by the 1980s, scientists had harnessed restriction enzymes for a whole host of safe purposes, and technologies centered around these enzymes continue to evolve.

Today, after decades of work, scientists have used restriction enzymes to study genetic variations in humans, find sequences that cause disease, identify relationships between people, and solve crimes. Scientists have used restriction enzymes to make proteins glow like jellyfish, to study the structure of DNA, and to make bacteria produce insulin.

T2 phages and their relationship to restriction enzymes are just one area of biology where Luria and his lab made profound contributions. Among his biggest achievements was recruiting and employing many forward-thinking scientists who built MIT Biology into the department it is today. In fact, as the first director of the Center for Cancer Research, Luria recruited Phillip Sharp, who would go on to win a Nobel Prize for discovering RNA splicing. Sharp joined a center that already included David Baltimore, as well as current MIT Biology professors Nancy Hopkins and Robert Weinberg, all of whom have made huge contributions to cancer research.

Scientists had just begun to elucidate the link between genetics, viruses, and cancer in the early 1970s, but Baltimore says that Luria was often the first person to jump on new applications for the techniques and thinking underlying molecular biology.

“Luria’s genius was understanding where biology was going,” says Baltimore. “At every stage, he was wondering what the next step would be.” But even geniuses need a messy fluke like Human’s now and then.

Explained: Why RNA vaccines for Covid-19 raced to the front of the pack

Many years of research have enabled scientists to quickly synthesize RNA vaccines and deliver them inside cells.

Anne Trafton | MIT News Office
December 11, 2020

Developing and testing a new vaccine typically takes at least 12 to 18 months. However, just over 10 months after the genetic sequence of the SARS-CoV-2 virus was published, two pharmaceutical companies applied for FDA emergency use authorization of vaccines that appear to be highly effective against the virus.

Both vaccines are made from messenger RNA, the molecule that cells naturally use to carry DNA’s instructions to cells’ protein-building machinery. A vaccine based on mRNA has never been approved by the FDA before. However, many years of research have gone into RNA vaccines, which is one reason why scientists were able to start testing such vaccines against Covid-19 so quickly. Once the viral sequences were revealed in January, it took just days for pharmaceutical companies Moderna and Pfizer, along with its German partner BioNTech, to generate mRNA vaccine candidates.

“What’s particularly unique to mRNA is the ability to rapidly generate vaccines against new diseases. That I think is one of the most exciting stories behind this technology,” says Daniel Anderson, a professor of chemical engineering at MIT and a member of MIT’s Koch Institute for Integrative Cancer Research and Institute for Medical Engineering and Science.

Most traditional vaccines consist of either killed or weakened forms of a virus or bacterium. These provoke an immune response that allows the body to fight off the actual pathogen later on.

Instead of delivering a virus or a viral protein, RNA vaccines deliver genetic information that allows the body’s own cells to produce a viral protein. Synthetic mRNA that encodes a viral protein can borrow this machinery to produce many copies of the protein. These proteins stimulate the immune system to mount a response, without posing any risk of infection.

A key advantage of mRNA is that it is very easy to synthesize once researchers know the sequence of the viral protein they want to target. Most vaccines for SARS-CoV-2 provoke an immune response that targets the coronavirus spike protein, which is found on the surface of the virus and gives the virus its characteristic spiky shape. Messenger RNA vaccines encode segments of the spike protein, and those mRNA sequences are much easier to generate in the lab than the spike protein itself.

“With traditional vaccines, you have to do a lot of development. You need a big factory to make the protein, or the virus, and it takes a long time to grow them,” says Robert Langer, the David H. Koch Institute Professor at MIT, a member of the Koch Institute, and one of the founders of Moderna. “The beauty of mRNA is that you don’t need that. If you inject nanoencapsulated mRNA into a person, it goes into the cells, and then the body is your factory. The body takes care of everything else from there.”

Langer has spent decades developing novel ways to deliver medicines, including therapeutic nucleic acids such as RNA and DNA. In the 1970s, he published the first study showing that it was possible to encapsulate nucleic acids, as well as other large molecules, in tiny particles and deliver them into the body. (Work by MIT Institute Professor Phillip Sharp and others on RNA splicing, which also laid groundwork for today’s mRNA vaccines, began in the ’70s as well.)

“It was very controversial at the time,” Langer recalls. “Everybody told us it was impossible, and my first nine grants were rejected. I spent about two years working on it, and I found over 200 ways to get it to not work. But then eventually I did find a way to get it to work.”

That paper, which appeared in Nature in 1976, showed that tiny particles made of synthetic polymers could safely carry and slowly release large molecules such as proteins and nucleic acids. Later, Langer and others showed that when polyethylene glycol (PEG) was added to the surface of nanoparticles, they could last in the body for much longer, instead of being destroyed almost immediately.

In subsequent years, Langer, Anderson, and others have developed fatty molecules called lipid nanoparticles that are also very effective at delivering nucleic acids. These carriers protect RNA from being broken down in the body and help to ferry it through cell membranes. Both the Moderna and Pfizer RNA vaccines are carried by lipid nanoparticles with PEG.

“Messenger RNA is a large hydrophilic molecule. It doesn’t naturally enter cells by itself, and so these vaccines are wrapped up in nanoparticles that facilitate their delivery inside of cells. This allows the RNA to be delivered inside of cells, and then translated into proteins,” Anderson says.

In 2018, the FDA approved the first lipid nanoparticle carrier for RNA, which was developed by Alnylam Pharmaceuticals to deliver a type of RNA called siRNA. Unlike mRNA, siRNA silences its target genes, which can benefit patients by turning off mutated genes that cause disease.

One drawback to mRNA vaccines is that they can break down at high temperatures, which is why the current vaccines are stored at such cold temperatures.  Pfizer’s SARS-CoV-2 vaccine has to be stored at -70 degrees Celsius (-94 degrees Fahrenheit), and the Moderna vaccine at -20 C (-4 F). One way to make RNA vaccines more stable, Anderson points out, is to add stabilizers and remove water from the vaccine through a process called lyophilization, which has been shown to allow some mRNA vaccines to be stored in a refrigerator instead of a freezer.

The striking effectiveness of both of these Covid-19 vaccines in phase 3 clinical trials (roughly 95 percent) offers hope that not only will those vaccines help to end the current pandemic, but also that in the future, RNA vaccines may help in the fight against other diseases such as HIV and cancer, Anderson says.

“People in the field, including myself, saw a lot of promise in the technology, but you don’t really know until you get human data. So to see that level of protection, not just with the Pfizer vaccine but also with Moderna, really validates the potential of the technology — not only for Covid, but also for all these other diseases that people are working on,” he says. “I think it’s an important moment for the field.”

3 Questions: Phillip Sharp on the discoveries that enabled RNA vaccines for Covid-19

Curiosity-driven basic science in the 1970s laid the groundwork for today’s leading vaccines against the novel coronavirus.

School of Science
December 11, 2020

Some of the most promising vaccines developed to combat Covid-19 rely on messenger RNA (mRNA) — a template cells use to carry genetic instructions for producing proteins. The mRNA vaccines take advantage of this cellular process to make proteins that then trigger an immune response that targets SARS-CoV-2, the virus that causes Covid-19.

Compared to other types of vaccines, recently developed technologies allow mRNA vaccines to be rapidly created and deployed on a large-scale — crucial aspects in the fight against Covid-19. Within the year since the identification and sequencing of the SARS-CoV-2 virus, companies such as Pfizer and Moderna have developed mRNA vaccines and run large-scale trials in the race to have a vaccine approved by the U.S. Food and Drug Administration — a feat unheard of with traditional vaccines using live attenuated or inactive viruses. These vaccines appear to have a greater than 90 percent efficacy in protecting against infection.

The fact that these vaccines could be rapidly developed within these last 10 months rests on more than four decades of study of mRNA. This success story begins with Institute Professor Phillip A. Sharp’s discovery of split genes and spliced RNA that took place at MIT in the 1970s — a discovery that would earn him the 1993 Nobel Prize in Physiology or Medicine.

Sharp, a professor within the Department of Biology and member of the Koch Institute for Integrative Cancer Research at MIT, commented on the long arc of scientific research that has led to this groundbreaking, rapid vaccine development — and looked ahead to what the future might hold for mRNA technology.

Q: Professor Sharp, take us back to the fifth floor of the MIT Center for Cancer Research in the 1970s. Were you and your colleagues thinking about vaccines when you studied viruses that caused cancer?

A: Not RNA vaccines! There was a hope in the ’70s that viruses were the cause of many cancers and could possibly be treated by conventional vaccination with inactivated virus. This is not the case, except for a few cancers such as HPV causing cervical cancer.

Also, not all groups at the MIT Center for Cancer Research (CCR) focused directly on cancer. We knew so little about the causes of cancer that Professor Salvador Luria, director of the CCR, recruited faculty to study cells and cancer at the most fundamental level. The center’s three focuses were virus and genetics, cell biology, and immunology. These were great choices.

Our research was initially funded by the American Cancer Society, and we later received federal funding from the National Cancer Institute, part of the National Institutes of Health and the National Science Foundation — as well as support from MIT through the CCR, of course.

At Cold Spring Harbor Laboratory in collaboration with colleagues, we had mapped the parts of the adenovirus genome responsible for tumor development. While doing so, I became intrigued by the report that adenovirus RNA in the nucleus was longer than the RNA found outside the nucleus in the cytoplasm where the messenger RNA was being translated into proteins. Other scientists had also described longer-than-expected nuclear RNA from cellular genes, and this seemed to be a fundamental puzzle to solve.

Susan Berget, a postdoc in my lab, and Claire Moore, a technician who ran MIT’s electron microscopy facility for the cancer center and would later be a postdoc in my lab, were instrumental in designing the experiments that would lead to the iconic electron micrograph that was the key to unlocking the mystery of this “heterogeneous” nuclear RNA. Since those days, Sue and Claire have had successful careers as professors at Baylor College of Medicine and Tufts Medical School, respectively.

The micrograph showed loops that would later be called “introns” — unnecessary extra material in between the relevant segments of mRNA, or “exons.” These exons would be joined together, or spliced, to create the final, shorter message for the translation to proteins in the cytoplasm of the cell.

This data was first presented at the Cancer Center fifth floor group meeting that included Bob Weinberg, David Baltimore, David Housman, and Nancy Hopkins. Their comments, particularly those of David Baltimore, were catalysts in our discovery. Our curiosity to understand this basic cellular mechanism drove us to learn more, to design the experiments that could elucidate the RNA splicing process. The collaborative environment of the MIT Cancer Center allowed us to share ideas and push each other to see problems in a new way.

Q: Your discovery of RNA splicing was a turning point, opening up new avenues that led to new applications. What did this foundation allow you to do that you couldn’t do before?

A: Our discovery in 1977 occurred just as biotechnology appeared with the objective of introducing complex human proteins as therapeutic agents, for example interferons and antibodies. Engineering genes to express these proteins in industrial tanks was dependent on this discovery of gene structure. The same is true of the RNA vaccines for Covid-19: By harnessing new technology for synthesis of RNA, researchers have developed vaccines whose chemical structure mimics that of cytoplasmic mRNA.

In the early 1980s, following isolation of many human mutant disease genes, we recognized that about one-fifth of these were defective for accurate RNA splicing. Further, we also found that different isoforms of mRNAs encoding different proteins can be generated from a single gene. This is “alternative RNA splicing” and may explain the puzzle that humans have fewer genes — 21,000 to 23,000 — than many less complex organisms, but these genes are expressed in more complex protein isoforms. This is just speculation, but there are so many things about biology yet to be discovered.

I liken RNA splicing to discovering the Rosetta Stone. We understood how the same letters of the alphabet could be written and rewritten to form new words, new meaning, and new languages. The new “language” of mRNA vaccines can be developed in a laboratory using a DNA template and readily available materials. Knowing the genetic code of the SARS-CoV-2 is the first step in generating the mRNA vaccine. The effective delivery of vaccines into the body based on our fundamental understanding of mRNA took decades more work and ingenuity to figure out how to evade other cellular mechanisms perfected over hundreds of millions of years of evolution to destroy foreign genetic material.

Q: Looking ahead 40 more years, where do you think mRNA technology might be?

A: In the future, mRNA vaccine technology may allow for one vaccine to target multiple diseases. We could also create personalized vaccines based on individuals’ genomes.

Messenger RNA vaccines have several benefits compared to other types of vaccines, including the use of noninfectious elements and shorter manufacturing times. The process can scaled up, making vaccine development faster than traditional methods. RNA vaccines can also be moved rapidly into clinical trials, which is critical for the next pandemic.

It is impossible to predict the future of RNA therapies, such as the new vaccines, but there are some signs that new advancements could happen very quickly. A few years ago, the first RNA-based therapy was approved for treatment of lethal genetic disease. This treatment was designed through the discovery of RNA interference. Messenger RNA-based therapies will also likely be used to treat genetic diseases, vaccinate against cancer, and generate transplantable organs. It is another tool at the forefront of modern medical care.

But keep in mind that all mRNAs in human cells are encoded by only 2 percent of the total genome sequence. Most of the other 98 percent is transcribed into cellular RNAs whose activities remain to be discovered. There could be many future RNA-based therapies.