Study suggests glaucoma may be an autoimmune disease

Unexpected findings show that the body’s own immune system destroys retinal cells.

Anne Trafton | MIT News Office
August 11, 2018

Glaucoma, a disease that afflicts nearly 70 million people worldwide, is something of a mystery despite its prevalence. Little is known about the origins of the disease, which damages the retina and optic nerve and can lead to blindness.

A new study from MIT and Massachusetts Eye and Ear has found that glaucoma may in fact be an autoimmune disorder. In a study of mice, the researchers showed that the body’s own T cells are responsible for the progressive retinal degeneration seen in glaucoma. Furthermore, these T cells appear to be primed to attack retinal neurons as the result of previous interactions with bacteria that normally live in our body.

The discovery suggests that it could be possible to develop new treatments for glaucoma by blocking this autoimmune activity, the researchers say.

“This opens a new approach to prevent and treat glaucoma,” says Jianzhu Chen, an MIT professor of biology, a member of MIT’s Koch Institute for Integrative Cancer Research, and one of the senior authors of the study, which appears in Nature Communications on Aug. 10.

Dong Feng Chen, an associate professor of ophthalmology at Harvard Medical School and the Schepens Eye Research Institute of Massachusetts Eye and Ear, is also a senior author of the study. The paper’s lead authors are Massachusetts Eye and Ear researchers Huihui Chen, Kin-Sang Cho, and T.H. Khanh Vu.

Genesis of glaucoma

One of the biggest risk factors for glaucoma is elevated pressure in the eye, which often occurs as people age and the ducts that allow fluid to drain from the eye become blocked. The disease often goes undetected at first; patients may not realize they have the disease until half of their retinal ganglion cells have been lost.

Most treatments focus on lowering pressure in the eye (also known as intraocular pressure). However, in many patients, the disease worsens even after intraocular pressure returns to normal. In studies in mice, Dong Feng Chen found the same effect.

“That led us to the thought that this pressure change must be triggering something progressive, and the first thing that came to mind is that it has to be an immune response,” she says.

To test that hypothesis, the researchers looked for immune cells in the retinas of these mice and found that indeed, T cells were there. This is unusual because T cells are normally blocked from entering the retina, by a tight layer of cells called the blood-retina barrier, to suppress inflammation of the eye. The researchers found that when intraocular pressure goes up, T cells are somehow able to get through this barrier and into the retina.

The Mass Eye and Ear team then enlisted Jianzhu Chen, an immunologist, to further investigate what role these T cells might be playing in glaucoma. The researchers generated high intraocular pressure in mice that lack T cells and found that while this pressure induced only a small amount of damage to the retina, the disease did not progress any further after eye pressure returned to normal.

Further studies revealed that the glaucoma-linked T cells target proteins called heat shock proteins, which help cells respond to stress or injury. Normally, T cells should not target proteins produced by the host, but the researchers suspected that these T cells had been previously exposed to bacterial heat shock proteins. Because heat shock proteins from different species are very similar, the resulting T cells can cross-react with mouse and human heat shock proteins.

To test this hypothesis, the team brought in James Fox, a professor in MIT’s Department of Biological Engineering and Division of Comparative Medicine, whose team maintains mice with no bacteria. The researchers found that when they tried to induce glaucoma in these germ-free mice, the mice did not develop the disease.

Human connection

The researchers then turned to human patients with glaucoma and found that these patients had five times the normal level of T cells specific to heat shock proteins, suggesting that the same phenomenon may also contribute to the disease in humans. The researchers’ studies thus far suggest that the effect is not specific to a particular strain of bacteria; rather, exposure to a combination of bacteria can generate T cells that target heat shock proteins.

One question the researchers plan to study further is whether other components of the immune system may be involved in the autoimmune process that gives rise to glaucoma. They are also investigating the possibility that this phenomenon may underlie other neurodegenerative disorders, and looking for ways to treat such disorders by blocking the autoimmune response.

“What we learn from the eye can be applied to the brain diseases, and may eventually help develop new methods of treatment and diagnosis,” Dong Feng Chen says.

The research was funded by the National Institutes of Health, the Lion’s Foundation, the Miriam and Sheldon Adelson Medical Research Foundation, the National Nature Science Foundation of China, the Ivan R. Cottrell Professorship and Research Fund, the Koch Institute Support (core) Grant from the National Cancer Institute, and the National Eye Institute Core Grant for Vision Research.

Study suggests perioperative NSAIDs may prevent early metastatic relapse in post-surgical breast cancer patients
Nicole Giese Rura | Whitehead Institute
April 11, 2018

Cambridge, MA – According to research conducted in mice by Whitehead Institute scientists, surgery in breast cancer patients, which while often curative, may trigger a systemic immunosuppressive response, allowing the outgrowth of dormant cancer cells at distant sites whose ability to generate tumors had previously been kept in check by the immune system. Taking a non-steroidal anti-inflammatory drug (NSAID) around the time of surgery may thwart such early metastatic relapse without impeding post-surgical wound healing.

The team’s work was published in the April 11 issue of the journal Science Translational Medicine.

“This represents the first causative evidence of surgery having this kind of systemic response,” says Jordan Krall, the first author of the paper and a former postdoctoral researcher in the lab of Whitehead Founding Member Robert Weinberg. “Surgery is essential for treating a lot of tumors, especially breast cancer. But there are some side effects of surgery, just as there are side effects to any treatment.  We’re starting to understand what appears to be one of those potential side effects, and this could lead to supportive treatment alongside of surgery that could mitigate some of those effects.”

Although the association between surgery and metastatic relapse has been documented, a causal line between the two has never been established, leading many to consider early metastatic relapse to be the natural disease progression in some patients. Previous studies of breast cancer patients have shown a marked peak in metastatic relapse 12-18 months following surgery. Although the underlying mechanism for such a spike has not been understood, a 2010 retrospective clinical trial conducted in Belgium provides a clue: Breast cancer patients taking a non-steroidal anti-inflammatory (NSAID) for pain following tumor resection had lower rates of this early type of metastatic relapse than patients taking opioids for post-surgical pain. Anti-inflammatory drugs also have previously been shown to directly inhibit tumor growth, but Krall and Weinberg thought that the NSAIDs’ effects in these studies may be independent of the mechanism responsible for the effects noted in the retrospective clinical trial.

To investigate the causes of early metastatic relapse after surgery, the team created a mouse model that seems to mirror the immunological detente keeping in check dormant, disseminated tumor cells in breast cancer patients. In this experimental model, the mice’s T cells stall the growth of tumors that are seeded by injected cancer cells. When mice harboring dormant cancer cells underwent simulated surgeries at sites distant from the tumor cells, tumor incidence and size dramatically increased. Analysis of the blood and tumors from wounded mice showed that wound healing increases levels of cells called inflammatory monocytes, which differentiate into tumor-associated macrophages.  Such macrophages, in turn, can act at distant sites to suppress the actions of T lymphocytes that previously succeeded in keeping the implanted tumors under control. Krall and Weinberg then tested the effects of the NSAID meloxicam (Mobic®), thinking that this anti-inflammatory drug might block the effects of immuno-suppressive effects of wound healing.  In fact, when mice received the NSAID after or at the time of surgery, the drug prevented a systemic inflammatory response created by the wound healing and the meloxicam-treated mice developed significantly smaller tumors than wounded, untreated mice; often these tumors completely disappeared. Notably, meloxicam did not impede the mice’s wound healing

Still, Weinberg cautions that scientists are just beginning to understand the connections between post-surgical wound healing, inflammation, and metastasis.

“This is an important first step in exploring the potential importance of this mechanism in oncology,” says Weinberg, who is also a professor of biology at Massachusetts Institute of Technology (MIT) and director of the MIT/Ludwig Center for Molecular Oncology.

This work was supported by the Advanced Medical Research Foundation, the Transcend Program (a partnership between the Koch Institute and Janssen Pharmaceuticals Inc.), the Breast Cancer Research Foundation, the Ludwig Center for Molecular Oncology at MIT, and the Samuel Waxman Cancer Research Foundation, the American Cancer Society, Hope Funds for Cancer Research, the Charles A. King Trust, the National Health and Medical Research Council of Australia (NHMRC APP1071853), the National Institutes of Health (NIH/NCI 1K99CA201574-01A1), the American Cancer Society Ellison Foundation (PF-15-131-01-CSM), and the U.S. Department of Defense (W81XWH-10-1-0647).

* * *
Robert Weinberg’s primary affiliation is with Whitehead Institute for Biomedical Research, where his laboratory is located and all his research is conducted. He is also a professor of biology at Massachusetts Institute of Technology and director of the MIT/Ludwig Center for Molecular Oncology.
* * *
Full Citation:
“The systemic response to surgery triggers the outgrowth of distant immune-controlled tumors in mouse models of dormancy”
Science Translational Medicine, April 11, 2018.
 Jordan A. Krall (1), Ferenc Reinhardt (1), Oblaise A. Mercury (1), Diwakar R. Pattabiraman (1), Mary W. Brooks (1), Michael Dougan (1,2), Arthur W. Lambert (1), Brian Bierie (1), Hidde L. Ploegh (1,3 *) Stephanie K. Dougan (1,4), Robert A. Weinberg (1,3,5).
1. Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
2. Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA.
3. Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
4. Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
5. Ludwig Center for Molecular Oncology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
*Present address: Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA.
Novel human/mouse model could boost type 1 diabetes research
Nicole Giese Rura | Whitehead Institute
March 27, 2018

Cambridge, MA – About 1.5 million people in the United States have type 1 diabetes, according to the Centers for Disease Control and Prevention (CDC), and yet doctors know very little about what triggers the disease. Now researchers at Whitehead Institute have developed a novel platform with human beta cells that could allow scientists to better understand the mechanisms underlying this disease and what provokes it.

In Type 1 diabetes, an autoimmune disease also called juvenile or insulin-dependent diabetes, the immune system destroys beta cells—the cells in the pancreas that produce insulin. Insulin is required for glucose to enter the body’s cells, so people with type 1 diabetes must closely monitor their glucose levels and take insulin daily. Type 1 diabetes is usually diagnosed during childhood or young adulthood, and possible causes of the disease that are being actively researched include genetics, viral infection, other environmental factors, or some combination of these.

Currently, scientists studying the disease may use animal models, such as non-obese diabetic (NOD) mice that do not include human cells, or mouse and rat models with beta cells derived from human induced pluripotent stem cells (iPSCs)—cells that have been pushed to a pluripotent state—implanted into the animals’ kidney capsules. These models hint at clinical applications that may control glucose levels in type 1 diabetes patients, but because the beta cells do not reside in the pancreas, the models do not reflect the cell-tissue interactions that are likely intrinsic in the development of type 1 diabetes.

To address these shortcomings, a team of researchers led by Haiting Ma, a postdoctoral researcher in Whitehead Founding Member Rudolf Jaenisch’s lab, implanted beta cells derived from iPSCs into the pancreas of neonatal mice. As the mice grow, the human beta cells become integrated into the mice’s pancreases, respond to increased glucose levels, and secrete insulin into the mouse’s bloodstream for several months following implantation. The team’s work is described online in the journal PNAS this week.

Using mice with human beta cells successfully engrafted into their pancreases, scientists will be able to study how beta cells function in normal and disease conditions, and perhaps help identify the causes of type 1 diabetes. Such insights may lead to new approaches to treat this autoimmune disease.

This work was supported by Liliana and Hillel Bachrach, the National Institutes of Health (NIH RO1-CA084198, 5R01-MH104610-16, R37-HD045022, R01-GM114864, RF1-AG048029, U19-AI3115135, and 1R01-1NS088538-01), the Harvard Stem Cell Institute, the JBP Foundation, and Howard Hughes Medical Institute. Jaenisch is co-founder advisor of Fate Therapeutics, Fulcrum Therapeutics, and Omega Therapeutics, and Doug Melton is the founder of Semma Therapeutics.

* * *
Rudolf Jaenisch’s primary affiliation is with Whitehead Institute for Biomedical Research, where his laboratory is located and all his research is conducted. He is also a professor of biology at Massachusetts Institute of Technology.
* * *
Full Citation:
“Establishment of human pluripotent stem cell derived pancreatic β-like cells in the mouse pancreas”
PNAS, online March 26, 2018.
Haiting Ma (1), Katherine Wert (1), Dmitry Shvartsman (2), Douglas Melton (2), and Rudolf Jaenisch (1,3).
1. Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
2. Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
3. Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
Biology by Numbers

Undergraduate Camilo Espinosa grew up with a love for math, before developing a second passion for immunology at MIT

Raleigh McElvery
November 10, 2017

Biology by Numbers

Person with short brown hair and green jacket stands in front of MIT pillars.

Undergraduate Camilo Espinosa grew up with a love for math, before developing a second passion for immunology at MIT

Raleigh McElvery

 

Undergraduate Camilo Espinosa, now in his senior year, tackles biological problems with the mindset of a mathematician. That’s because he initially approached the STEM fields (science, technology, engineering and mathematics) starting with the “M” and ending with the “S” — developing an appetite for math before realizing a second love for biology.

Every six months, beginning his first year of middle school, Espinosa would venture from his home on the north coast of Colombia to the nation’s capital. There, for several weeks, he would do nothing but math.

“These were math olympiads — basically a combination of math camp and competitions,” he explains. “That was the first real community I had outside my school.

But he didn’t just glean formulas and analytical strategies from those competitions; it was his olympiad team that first introduced him to MIT. In Colombia, he explains, students must select a major almost immediately upon entering university, and are offered limited electives. MIT came to represent “academic freedom” for Espinosa, who, despite his avid and early love of math, intended to explore multiple academic avenues before limiting himself to just one.

Now, as a math and chemistry-biology double major with a concentration in philosophy, he says MIT has enabled him to pursue his many academic interests, as well as his non-academic ones. He has served as an active member of not one but four dance teams, as well as president of his fraternity. He also helped establish a channel of communication between the International Students Office and the Department of Biology, to streamline the work authorization process for international students.

He was drawn to biology, he explains, because he prefers learning processes over basic facts. “I don’t care much for memorization, but I do care about the underlying reasons for why and how things function,” he says. “I think that mindset stems from my dad.”

Espinosa’s father is an OB/GYN specializing in female oncology, who initially helped to popularize laparoscopic surgery techniques in Colombia. Often, he sees patients at a discounted price or for free if they could not afford his services.

“At the end of the day, he is just trying to help people,” Espinosa explains. “He taught me the way I think about the world. He’s the reason I do what I do, and why I’m so oriented towards the life sciences.”  

Espinosa’s siblings are studying to become doctors and veterinarians, and he himself is intrigued by the possibilities of using our body’s innate defense mechanisms to treat diseases like cancer.

His foray into the field of immunology began with antibodies — special ones taken from furry, gawky alpacas — so tiny and versatile that they can be employed for all manner of imaging, therapeutic, and diagnostic techniques. These “single domain” antibodies were a popular area of interest in Hidde Ploegh’s lab (formerly a Professor of Biology at the Whitehead Institute for Biomedical Research), where Espinosa began mid-way through October of his freshman year. Using these single-domain antibodies, the Ploegh lab had developed a treatment for melanoma in mice, and Espinosa worked to pinpoint antibodies directed against melanoma in humans.

The summer between his sophomore and junior years, Espinosa began a separate project that eventually evolved into his thesis. He honed in on one tiny antibody, known as A4, which binds to a particular protein expressed on the surface of red blood cells, and has the potential to thwart the immune response by activating a process known as “tolerance.”

Our body’s immune system is programmed to discern self from non-self, targeting foreign entities for destruction. It does so in two distinct steps. First, it creates an army of cells, that together express antibodies tailored to combat virtually every possible substance, both self and non-self. The immune system is then primed to spring into action whenever it senses something foreign, amplifying those cells that express antibodies against it. However, the body would also attack itself if not for the second step in this process: tolerance. The immune system essentially deletes the cells expressing antibodies against itself, and in doing so learns to “tolerate” its own proteins.

For example, when red blood cells die of old age (and many do every day), this triggers tolerance to the various protein components that constitute those cells — preventing related antibodies from being created.

Previous work has shown that binding a foreign protein to red blood cells triggers tolerance for that specific protein, despite being “non-self.” This could have implications for therapies to treat conditions like hemophilia, Espinosa explains, which require injections of proteins to reinstate the body’s blood-clotting abilities.

In a large proportion of patients, the immune system responds and attacks these proteins as foreign, rendering the treatment useless and barring the patients from receiving it again in the future. However, Espinosa proposes, if he could couple A4 to the treatment protein, then A4 would link the protein to the red blood cells and initiate tolerance to it. Since the body can no longer create antibodies against the treatment proteins, the therapy can run its course. In other words, the body would now see the injected proteins as self.

After months of methodical experiments, A4 didn’t appear to disguise proteins as self in the way Espinosa had initially hoped, although it did reduce the immune response triggered by the protein injection, if he staggered the protein and antibody infusions in the proper manner.

“So maybe A4 doesn’t work as a camouflage per se, but rather as a suppressor of certain immune responses,” he says. “So the results didn’t turn out exactly as we expected, but it is still a step in the right direction.”

He ultimately submitted his thesis to MIT’s Ilona Karmel Writing Prizes, earning second place in the technical writing category.  

Last summer, Espinosa explored a different side of basic research — the corporate side — during an internship at the biotechnology company Genentech. There, he investigated the pathways by which uncontrolled cell death leads to sepsis in patients.

As he wraps up his senior year and begins applying to graduate programs, Espinosa reflects on his transition from student to instructor, having served as a teaching assistant in a number of biology courses during the past three years. “As someone who arrived at MIT with a weak foundation in biology, almost everything I’ve learned since was because someone taught it to me, and taught it to me well,” he says. “I feel honored to be able to pass it on.”

Photo credit: Raleigh McElvery
Posted: 1.18.18
The need to know

Driven by curiosity, former auto mechanic Ryan Kohn now pursues a PhD in biology.

Bridget E. Begg | Office of Graduate Education
December 18, 2017

The name of Ryan Kohn’s son, Jayden, is tattooed in Hindi on his left outer forearm. Other tattoos on his inner arms declare “Respect” and “Loyalty.” A Latin phrase balances the tableau on his right outer forearm: “Many fear their reputation. Few their conscience.”

Kohn may stand out in the corporate milieu of Kendall Square, but he feels home at MIT. No one has ever judged me,” he says. “For as rigorous scientifically and academically as MIT is, it can be such a laid-back place. I’ve always felt included, if I wanted to be.”

Kohn, now a PhD candidate in the Jacks Lab at MIT’s Koch Institute for Integrative Cancer Research, has overcome a challenging adolescence, colored by economic difficulties and punctuated by personal loss. These hardships developed in him a resilient curiosity that made an unexpected cultural match between MIT and Kohn, a father and former mechanic from Boyertown, Pennsylvania.

Compelled to seek answers

After being placed in an alternative high school outside of Philadelphia for insubordination, Kohn graduated with a 1.8 GPA. His son was born three years later, while Kohn worked for six and a half years as a mechanic and manager at a Dodge dealership. After losing his job during the Great Recession, he decided to go back to school, attending his local community college on a premed track before transferring to Kutztown University after two years.

Kohn attributes some of his troubled youth to early tragedy. His older sister, Nicole, died from sepsis when she was a senior in college, just 10 days after 9/11; on the morning of her funeral, Kohn’s grandfather passed away from colon cancer. Kohn felt compelled to understand why and how these illnesses happened to his loved ones, and found himself spending his time googling the immune system, the inflammatory response, and cancer.

This habit remained with him. Kohn recalls scouring the internet again and again to understand illness when it arose near him, from his own son’s immunoglobulin A deficiency to the early-onset multiple sclerosis of a friend. Though he admits he did not yet have the core scientific knowledge to fully grasp what he read at the time, Kohn says he needed, deeply, to try.

At Kutztown University, Kohn met his undergraduate mentor Angelika Antoni, a professor who taught both oncology and immunology. According to Kohn, Antoni constantly encouraged him to pursue his curiosity despite the college’s lack of laboratory resources. In fact, Antoni paid for laboratory reagents with her own credit card, while Kohn wrote his own grants and subscribed to well-known biology journals out of his own pocket because journal access was not available through Kutztown.

These challenges shaped Kohn as an experimental biologist, requiring him to precisely understand the mechanisms of experimental techniques in order to reconstruct them in the most creative and inexpensive ways possible. Perhaps most importantly, this small-college experience cultivated Kohn’s persistent curiosity.

Diving into cancer research

In his current position at the Jacks Lab, Kohn studies cancer immunotherapy, the use of a cancer patient’s own immune system to fight cancer cells. To do this, Kohn uses a mouse model of lung cancer that mimics the natural development of human cancer: Mutations identical to those found in many human cancers are triggered in the mouse, causing a tumor to arise that originates from the mouse’s own cells. These mice, like human cancer patients, have an immune system that can recognize the cancer as aberrant. Kohn’s work focuses modifying mouse immune cells to identify and attack a tumor.

Kohn is excited by the translational potential of his work, but also eagerly defends basic research at MIT when he encounters skepticism about its practicality in his conservative hometown.

Kohn often draws on metaphors in these types of conversations. He may leverage car talk, for example, to explain why there will never be a single cure for cancer: “So your ‘check engine’ light always presents the same way … but there’s literally a multitude of different things that can [cause] it. It could be a loose gas cap for the evaporative emissions system that set it off, it could be a misfire because of a bad spark plug, it could be a catalytic converter.”

Likewise, cancer can be caused by many possible biological errors that lead to an overgrowth of cells, Kohn explains. “So just like there will never be a cure for ‘check engine light,’ there will never be a [single] cure for cancer.”

Perhaps unsurprisingly, Kohn embraces the scientific freedom of the research in his lab. His advisor, Tyler Jacks, director of the Koch Institute, an HHMI investigator, and a David H. Koch Professor of Biology at MIT, is frequently in high demand, but Kohn says he has felt fully supported in his work — including in the bold ideas and unconventional projects he undertakes in his free time.

Jacks remains accessible despite his busy schedule, according to Kohn, and his emphasis on mentorship has inspired the postdocs in the lab to mentor the graduate students. The Jacks Lab also enjoys a thriving social environment. Kohn regularly attends casual weekend parties held by his labmates, and every other year Jacks organizes a cross-campus themed scavenger hunt for which the whole lab dresses in elaborate costumes.

“Real conversations about ideas”

Outside of lab, Kohn calls himself a homebody and prefers to relax after a full day, often with a beer and a movie. He spends much of this down time with his partner Ruthlyn, whether they are exploring the Boston area or talking with friends and colleagues at local pubs.

Kohn speaks about these conversations with genuine excitement: “You meet so many different people, every religion, every gender identity, every country, every language, and you just meet these people and you get to have these cool conversations … these real conversations about ideas. Because that’s really what you want, right?”

He enthusiastically notes that, in contrast to his largely homogenous hometown, more than 200 countries are represented at MIT. Kohn says the diversity and ideals of MIT reflect his own worldview.

Despite his deep sense of belonging on campus, leaving home did lay an exceptional burden on Kohn: Twelve-year-old Jayden remains in Pennsylvania with his mother, over 300 miles away.

Kohn speaks about his son with immense pride, describing Jayden as not only an extremely talented baseball player, but as a positive, energetic, and deeply mature young person. Kohn recounts with admiration, and a trace of relief, that despite the difficulty of the distance, Jayden said his father’s coming to MIT was the right thing to do.

As for his own parents, Kohn finally feels that all the headaches he has given them over the years have been worthwhile. His intense desire for knowledge has driven him through many obstacles, connected him with like minds from all over the world, and still shows no signs of waning.

Kohn has a reputation in his lab for asking questions, big and small. Asked if he’s ever afraid to admit what he doesn’t know, he says no: “I want to know … and that’s really what it comes down to.”

Tania A. Baker

Education

  • PhD, 1988, Stanford University
  • BS, 1983, Biochemistry, University of Wisconsin-Madison

Research Summary

Our goal is to understand the mechanisms and regulation behind AAA+ unfoldases and macromolecular machines from the “Clp/Hsp100 family” of protein unfolding enzymes. We study these biological catalysts using biochemistry, structural biology, molecular biology, genetics, and single molecule biophysics.

No longer accepting students.

Awards

  • Margaret MacVicar Faculty Fellow, 2008-2018
  • National Academy of Sciences, Member, 2007
  • American Academy of Arts and Sciences, Fellow, 2005
  • Howard Hughes Medical Institute, HHMI Investigator, 1994
Tyler Jacks

Education

  • PhD, 1988, University of California, San Francisco
  • SB, 1983, Biology, Harvard University

Research Summary

Dr. Jacks’ research has focused on developing new methods for the construction and characterization of genetically engineered mouse models or GEMMs of human cancer, and recently has moved into the burgeoning area of tumor immunology to understand the interactions between the immune system and cancer.  His group has produced GEMMs with constitutive and conditional mutations in several tumor suppressor genes, oncogenes, and genes involved in oxidative stress, DNA repair and epigenetic control of gene expression. These GEMMS have been used to examine the mechanism of tumor initiation and progression, to uncover the molecular, genetic and biochemical relationship to the human diseases, as tools to study response and resistance to chemotherapy, and to explore methods in molecular imaging and early detection of cancer.

Awards

  • AACR Princess Takamatsu Memorial Lectureship, 2020
  • Massachusetts Institute of Technology, James R Killian Jr Faculty Achievement Award, 2015
  • Sergio Lombroso Award in Cancer Research, 2015
  • American Academy of Arts and Sciences, Fellow, 2012
  • National Academy of Sciences, Member, 2009
  • Institute of Medicine of the National Academies, Member, 2009
  • Paul Marks Prize for Cancer Research, 2005
  • Howard Hughes Medical Institute, HHMI Investigator, 1994
Stefani Spranger

Education

  • PhD, 2011, Ludwig-Maximilian University Munich/Helmholtz-Zentrum Munich
  • MSc, Biology, 2008, Ludwig-Maximilian University Munich/Helmholtz-Zentrum Munich
  • BSc, Biology, 2005, Ludwig-Maximilian University Munich/Helmholtz-Zentrum Munich

Research Summary

We examine the interaction between cancer and immune cells. Using tumor mouse models designed to mimic tumor progression in humans, we investigate the co-evolution of the anti-tumor immune response and cancer. Understanding the interplay between tumor cells and immune cells will help develop and improve effective cancer immunotherapies.

Awards

  • Forbeck Fellow, 2015
Jianzhu Chen

Education

  • PhD, 1990, Stanford University
  • BS, 1982, Biology, Wuhan University

Research Summary 

We seek to understand the immune system and its application in cancer immunotherapy and vaccine development. We study the molecular and cellular mechanisms behind immunological and disease processes, leveraging the vast array of genomic data, humanized mice and clinical samples.

Awards

  • American Association for the Advancement of Science, Fellow, 2012
Department of Biology hosts its first Science Slam

Eight biology trainees had just three minutes to explain their research and earn favor with the judges and audience in new yearly event.

Raleigh McElvery | Department of Biology
October 5, 2017

Nearly 300 spectators crowded into a lecture hall at the Ray and Maria Stata Center on a recent Tuesday to witness the first annual Science Slam, hosted by MIT’s Department of Biology.

A science slam features a series of short presentations where researchers explain their work in a compelling manner and — as the name suggests — make an impact. The presentations aren’t just talks, they’re performances geared towards a science-literate but non-specialized public audience. In this case, competitors were each given one slide and three minutes to tell their scientific tales and earn votes from audience members and judges.

The jury included Ellen Clegg, editorial page editor of The Boston Globe and co-author of two award-winning books, “ChemoBrain” and “The Alzheimer’s Solution;” Emilie Marcus, CEO of Cell Press and editor-in-chief of the flagship journal, Cell; and Ari Daniel, an independent science reporter who produces digital videos for PBS NOVA and co-produces the Boston branch of Story Collider.

Among the competitors were five graduate students and three postdocs who hailed from labs scattered throughout Building 68, the Whitehead Institute, the Broad Institute, the Koch Institute for Integrative Cancer Research, and the Picower Institute for Learning and Memory. The storytellers were:

  • Sahin Naqvi, from David Page’s lab, who spoke about the evolution of genetic sex differences in mammals, as well as how these differences impact the likelihood of developing certain diseases based on gender;
  • Sudha Kumari, from Darrell Irvine’s lab, who spoke about her work investigating immune cell interactions — specifically how T cells communicate using physical contact;
  • Deniz Atabay, from Peter Reddien’s lab, who spoke about the ways cells in flatworms self-organize during regeneration to re-form organs, tissues, and even neural circuits;
  • Emma Kowal, from Christopher Burge’s lab, who spoke about her goals to demystify the ways in which certain noncoding regions of genetic sequence, known as introns, contribute to protein production;
  • Xin Tang, from Rudolf Jaenisch’s lab, who spoke about a technique to illuminate the seemingly invisible changes in brain cells that trigger disease, using a glowing enzyme from a firefly;
  • Nicole Aponte, from Troy Littleton’s lab, who spoke about her ability to manipulate brain cell activity in the fruit fly, and study how defects in neuronal connections contribute to developmental disorders;
  • Karthik Shekhar, from Aviv Regev’s lab, who spoke about his efforts to identify and manipulate different types of brain cells, understanding how they assemble into complex networks to facilitate learning, memory, and — in some cases — disease; and
  • Monika Avello, from Alan Grossman’s lab, who spoke about “bacterial sexology,” that is, how and why these organisms choose to block unwanted sexual advances from fellow bacteria.

Vivian Siegel, who oversees the department’s communications efforts, moderated the event. Siegel and the Building 68 communications team joined forces with three members of the Building 68 MIT Postdoctoral Association — Ana Fiszbein, Isabel Nocedal, and Peter Sudmant — to publicize the event and to host two pre-slam workshops, as well as one-on-one training sessions with individual participants.

“Participating in a Science Slam seemed like a great way for our trainees to learn how to communicate to a nonspecialized audience, which is something they will need to be able to do throughout their careers,” Siegel said. “We really wanted to develop a camaraderie among the participants, and bring trainees together from across the department to help each other tell compelling stories about their science.”

Kowal — whose talk was titled “Gone but Not Forgotten: How Do Introns Enhance Gene Expression?”  — ultimately took home both the audience and jury cash prizes. Kowal completed her undergraduate degree in chemical and physical biology at Harvard before coming to MIT for graduate school. Her dream is to write science fiction, so she decided she’d better study science so she’d know what to write about.

“I really enjoyed seeing people get stoked about introns, and the fact that they enhance gene expression,” she said. “It’s a great way to get comfortable explaining your project in a compelling way to a broad audience. Since you’ll probably be telling people about your work for a while, I think it’s a very good use of time to practice doing that.”