3 Questions: Ibrahim Cissé on using physics to decipher biology

A biophysicist employs super-resolution microscopy to peer inside living cells and witness never-before-seen phenomena.

Raleigh McElvery | Department of Biology
July 23, 2020

How do cells use physics to carry out biological processes? Biophysicist Ibrahim Cissé explores this fundamental question in his interdisciplinary laboratory, leveraging super-resolution microscopy to probe the properties of living matter. As a postdoc in 2013, he discovered that RNA polymerase II, a critical protein in gene expression, forms fleeting (“transient”) clusters with similar molecules in order to transcribe DNA into RNA. He joined the Department of Physics in 2014, and was recently granted tenure and a joint appointment in biology. He sat down to discuss how his physics training led him to rewrite the textbook on biology.

Q: How does your work revise conventional models describing how RNA polymerases carry out their cellular duties?

A: My interest in biology has always been curiosity-driven. As a physicist reading biology textbooks, I thought that transcription — the process by which DNA is made into RNA — was fully understood. It’s so basic, and the textbooks write about it with such confidence. Come to find out, most of what we know about the cell nucleus, where gene expression starts, comes from people studying these processes outside the cell, inside a test tube. I started to wonder: Do we actually know how they work in a living cell?

The textbook models say that when a specific gene is being activated, RNA polymerase and dozens of other molecules are recruited to the DNA to begin transcription. If you don’t look closely enough, the polymerases appear to be uniformly distributed and acting randomly throughout the nucleus. However, my single-molecule and “super-resolution” microscopy methods allowed me to see something different when I looked inside live cells: polymerase clusters, which are very dynamic. In the mid-’90s, people had observed similar clusters in so-called “fixed” cells that were chemically frozen. But these findings were dismissed as possible artifacts of the fixation procedure. However, when we saw these same protein clusters in living cells that were not treated with harsh chemicals, it suggested that the textbook explanation may be incomplete.

Q: How has your background in physics given you a unique perspective on the mechanics of living cells?

A: When I arrived at the University of Illinois at Urbana-Champaign to begin my PhD in physics, I hadn’t enrolled in a biology class since high school. I was really taken with the interdisciplinary work of one physics professor, Taekjip Ha, who became my PhD mentor. He had developed single-molecule fluorescence resonance energy transfer techniques, to study with unprecedented sensitivity when two biomolecules are close to each other and monitor the distance between them in real time.

Taekjip graciously accepted me into his lab despite my limited biology background, and I never looked back. His work mirrored my interest in condensed matter physics, but the material we were looking at wasn’t from the inanimate world, it was living matter.

Between 2006 and 2008, as I was working on my PhD, super-resolution microscopy really took off from the single-molecule microscopes I used in grad school. It was a natural progression, in my mind, to learn cell biology during my postdoc fellowship at École Normale Supérieure in Paris, and to try to visualize weak and transient interactions directly in living cells using single-molecule and super-resolution imaging. You could now pinpoint molecules with nanometer accuracy; you could “turn on” and “off” molecules to observe them individually and ensure there was no overlap between those that were side-by-side.

Thanks to these new techniques, we saw clusters of RNA polymerases in living cells for the first time during my postdoc, and I pushed the technique further to reveal the cluster dynamics. But the fact that you had to turn individual molecules on and off made it really hard to see these clusters assembling or disassembling. I didn’t want to trade temporal resolution for spatial resolution. So I came up with an approach called Time-Correlated Photoactivated Localization Microscopy (tcPALM). It allowed us to measure the lifetimes of these ephemeral polymerase clusters, and we found that they last just a few seconds.

Once I arrived at MIT, we wanted to test whether the clusters could be fleeting but still biologically relevant. We pushed a dual-color super-resolution technique where we correlated the clusters with gene activity. With RNA live-imaging experts at Howard Hughes Medical Institute’s Janelia Research Campus, Brian English and Tim Lionnet, and my postdoc, Wonki Cho, we found that roughly 80 to 100 polymerases form a cluster on a gene where transcription is about to start. Although the cluster is only there for a few seconds, that’s enough time to load a handful of polymerases and generate “bursts” of RNA transcription. In fact, there was a linear correlation between the clusters’ transient dynamics and the number of messenger RNAs made in each burst.

Q: What is it like to be a physicist working with biologists?

A: Even though I joined MIT as a physics hire, I was lucky enough to get lab space in Building 68 alongside amazing biologists. They were the perfect people to talk to about my crazy ideas. And it turned out that renowned researchers like Rick Young and Phil Sharp actually had similar theories. They had genomic evidence for clusters of gene regulators, which they call “super enhancers,” that we all thought could relate to what my lab was seeing. That’s led to hours of exciting discussions between our labs, and has evolved into one of my most rewarding collaborations — and revealed that clusters associate as tiny transcriptional condensates with properties of liquid droplets.

Now, students and postdocs in my lab are wondering about the clusters’ functions and mechanisms of action, and whether protein clustering extends beyond transcription. For instance, clustering could explain some aspects of neurodegeneration. One perplexing idea that came out of this work is that perhaps it gets harder for our cells to clear protein condensates as we age, leading to Parkinson’s, Alzheimer’s, and other diseases. It’s becoming clearer that physics may be just as important as biology for understanding how cells work. The physics of how condensates and droplets form in the inanimate world is increasingly helpful in determining how living cells can evolve to regulate the same process for specific biological functions like transcription. Nature uses physics in much more elaborate ways than we initially anticipated.

Lindsay Case

Education

  • PhD, 2014, University of North Carolina at Chapel Hill
  • BA, 2008, Biology, Franklin and Marshall College

Research Summary

We study how cells regulate the spatial organization of signaling molecules at the plasma membrane to control downstream signaling. For example, receptor clustering and higher-order assembly with cytoplasmic proteins can create compartments with unique biochemical and biophysical properties. We use quantitative experimental approaches from biochemistry, molecular biophysics, and cell biology to study transmembrane signaling pathways and how they are misregulated in diseases like cancer.

Awards

  • NSF Career Award, 2025
  • Searle Scholar, 2022
  • NIH Director’s New Innovator Award, 2022
  • AFOSR Young Investigator Award, 2021
  • Brown-Goldstein Award, 2020
  • Damon Runyon-Dale F. Frey Breakthrough Scientist, 2020
Yukiko Yamashita

Education

  • PhD, 1999, Kyoto University
  • BS, Biology, 1994, Kyoto University

Research Summary

Two remarkable feats of multicellular organisms are generation of many distinct cell types via asymmetric cell division and transmission of the germline genome to the next generation, essentially in eternity. Studying these processes using the Drosophila male germline as a model system has led us to venture into new areas of study, such as functions of satellite DNA, a ‘genomic junk,’ and how they might be involved in speciation.

Awards

  • National Academy of Sciences, 2025
  • Tsuneko and Reiji Okazaki Award, 2016
  • Howard Hughes Medical Institute, Investigator, 2014
  • MacArthur Fellow, 2011
  • Women in Cell Biology Early Career Award, American Society for Cell Biology, 2009
  • Searle Scholar, 2008
Seemingly similar, two neurons show distinct styles as they interact with the same muscle partner
Picower Institute
July 7, 2020

A new study by MIT neuroscientists into how seemingly similar neuronal subtypes drive locomotion in the fruit fly revealed an unexpected diversity as the brain’s commands were relayed to muscle fibers. A sequence of experiments revealed a dramatic difference between the two nerve cells – one neuron scrambled to adjust to different changes by the other, but received no requital in response when circumstances were reversed.

The findings published in the Journal of Neuroscience suggest that these subclasses of neurons, which are also found abundantly in people and many other animals, exhibit a previously unappreciated diversity in their propensity to respond to changes, a key property known as “synaptic plasticity.” Synaptic plasticity is considered an essential mechanism of how learning and memory occur in the brain, and aberrations in of the process are likely central to disorders such as autism.

“By seeing that these two different types of motor neurons actually show very distinct types of plasticity, that’s exciting because it means it’s not just one thing happening,” said senior author Troy Littleton, a member of The Picower Institute for Learning and Memory and Menicon Professor of Neuroscience in MIT’s Departments of Biology and of Brain and Cognitive Sciences. “There’s multiple types of things that can be altered to change connectivity within the neuromuscular system.”

Tonic and phasic neurons

Both of the neurons work in the same way, by emitting the neurotransmitter glutamate onto their connections, or synapses, with the muscles. But these two neurons do so with different styles. The “tonic” neuron, which connects only to a single muscle, emits its glutamate at a constant but low rate while the muscle is active. Meanwhile, the “phasic” neuron connects to a whole group of muscles and jumps in with a strong quick pulse of activity to spring the muscles into action.

Heading into the study Littleton and lead author Nicole Aponte-Santiago were curious to explore whether these different neurons compete or cooperate to drive the muscle fibers, and if they exhibited different plasticity when their functions were altered. To get started on what ultimately became her dissertation research, Aponte-Santiago developed the means to tailor genetic alterations specifically in each of the two neurons.

“The reason we were able to answer these questions in the first place was because we produced tools to start differentially manipulating one neuron versus the other one, or label one versus the other one,” said Aponte-Santiago, who earned her PhD in Littleton’s lab earlier this spring and is now a postdoc at the University of California at San Francisco.

With genetic access to each neuron, Aponte-Santiago distinctly labeled them to watch each one grow in fly larvae as they developed. She saw that the tonic neuron reached the muscle first and that the phasic one connected to the muscle later. She also observed that unlike in mammals, the neurons did not compete to control the muscle but remained side by side, each contributing in its characteristic way to the total electrical activity needed to drive movement.

To study the neurons’ plasticity, Aponte-Santiago employed two manipulations of each neuron. She either wiped them out completely by making them express a lethal protein called “reaper” or she substantially tamped down their glutamate activity via expression of tetanus toxin.

When she wiped out the phasic neuron with reaper, the tonic neuron quickly stepped up its signaling, attempting to compensate as much as it could. But in flies where she wiped out the tonic neuron, the phasic neuron didn’t budge at all, continuing as if nothing had changed.

Similarly when Aponte-Santiago reduced the activity of the phasic neuron with the toxin, the tonic neuron increased the number of boutons and active zone structures in its synapses to respond to the loss of its partner. But when she reduced the activity of the tonic neuron the phasic neuron again didn’t appear to respond.

In all the experiments, the muscle received less overall drive from the neurons than when everything was normal. And while the phasic neuron  apparently didn’t bother to make up for any loss on the part of the tonic neuron, the tonic neuron employed different means to compensate – either increasing its signaling or by enhancing the number of its connections on the muscle – depending on how the phasic neuron was diminished.

“It was quite intriguing that Nicole found that when the phasic input wasn’t there, there was a unique form of plasticity that the tonic neuron showed,” Littleton said, “but if the phasic neuron was there and wasn’t working, the tonic neuron behaved in a very different way.”

Another intriguing aspect of the study is the role of the muscle itself, which may be an active intermediary of the plasticity, Littleton said. The neurons may not sense when each other have been wiped out or inactivated. Instead the muscle appears to call for those changes.

“Even though a muscle has two distinct inputs, it can sort of uniquely control those two,” Littleton said. “When the muscle is getting glutamate, does it know whether it is coming from the tonic or the phasic neuron and does it care? It appears that it does care, that it really needs the tonic more than the phasic. When the phasic is gone it shifts some of the plasticity, but when the tonic is gone the phasic can’t do much about it.”

In new work, the lab is now looking at differences in gene expression between the two neurons to identify which proteins are responsible for the unique properties and plasticity of the tonic and phasic neurons. By defining the genetic underpinnings of their unique properties, the lab hopes to begin to get a handle on the molecular underpinnings of neuronal diversity in the brain.

In addition to Aponte-Santiago and Littleton, the paper’s other authors are Kiel Ormerod and Yulia Akbergenova.

The National Institutes of Health and the JPB Foundation supported the study.

Parasite research heats up
Greta Friar | Whitehead Institute
July 7, 2020

Apicomplexan parasites infect hundreds of millions of people around the world each year. Several species of apicomplexan parasites in the Plasmodium genus cause malaria, while another apicomplexan species, Toxoplasma gondii (T. gondii), causes toxoplasmosis, a disease with flu-like symptoms that can be lethal for people with weakened immune systems. In spite of their impact, the biology of these disease-causing parasites is not very well understood and treatment options for infection are limited.

One potential approach to treat infection could be drugs that disrupt the parasites’ calcium signaling, which they rely on to spread from cell to cell in their hosts. The parasites need an influx of calcium in order to burst out of an infected host cell—a process called egress—and move through the host’s body and invade other cells. In previous work, a researcher from Whitehead Institute Member Sebastian Lourido’s lab, Saima Sidik, had tested a large collection of molecules and identified one called enhancer 1 (ENH1), which perturbed the parasites’ calcium levels and prevented egress, as a promising anti-parasitic lead. However, the original experiments did not determine how ENH1 acts. In research published in the journal ACS Chemical Biology on June 29, Alice Herneisen, a graduate student in Lourido’s lab, and Lourido, who is also an assistant professor of biology at the Massachusetts Institute of Technology, used an approach called thermal proteome profiling to discover how ENH1 prevents T. gondii parasites from egress. They identified the main target of ENH1 as a calcium-dependent molecule called CDPK1 that parasites use to prepare for egress, moving between cells, and invasion of host cells. ENH1 binds to and prevents CDPK1 from functioning.

“Advances over the past few decades have made discovering a molecule’s potentially therapeutic activity much easier, but the next step of figuring out how the molecule works is often still a challenge,” Lourido says. “By applying newer expansive approaches, we are starting to build a more holistic picture of the parasites’ cell biology.”

Understanding the biology responsible for a potential drug’s observed effects is important because most drugs require modification before they are ready for human use—they may need to be made less toxic, more potent, or more amenable to the environment of the human body—and these sorts of modifications cannot be made until the molecule and its activity are understood.

Herneisen decided to use a relatively new approach in parasites, thermal proteome profiling, to discover the targets of ENH1—the molecules it binds to, leading to its therapeutic effects. The approach works by graphing how each of the proteins inside the parasite reacts to changes in heat with and without being exposed to ENH1. One advantage of this approach is that it is unbiased, meaning that instead of researchers picking likely targets up front to test, they investigate as many molecules as possible, which can lead to unexpected findings. For example, Lourido has been investigating CDPK1 in other contexts for many years, and based on his lab’s previous understanding of its role would not have expected it to be a main target of ENH1—such surprises can direct research in exciting new directions.

Although CDPK1 is ENH1’s main target, the investigations did not uncover the target that allows ENH1 to cause oscillations in the parasites’ calcium levels. Finding this missing target is one of the lab’s next goals.

“The fact that ENH1 affects multiple aspects of calcium signaling may be what makes it such an effective antiparasitic agent,” Herneisen says. “It’s messing with the parasites on several levels.”

Translation of the research for clinical testing is a long way off, but there are multiple indicators that this is a promising direction for investigation. Not only is calcium signaling key to the parasites’ life cycle and ability to spread inside of a host, but the molecules and mechanisms that the parasites use to modulate calcium levels are very different from the ones found in mammals. This means that a drug that disrupts the parasites’ calcium signaling is unlikely to interfere with calcium signaling in human patients, and so could be deadly to the parasites without harming the patients’ cells.

Written by Greta Friar

***

Sebastian Lourido’s primary affiliation is with Whitehead Institute for Biomedical Research, where his laboratory is located and all his research is conducted. He is also an assistant professor of biology at the Massachusetts Institute of Technology.

***

Herneisen, Alice L. et al. “Identifying the target of an antiparasitic compound in Toxoplasma using thermal proteome profiling.” ACS Chemical Biology, June 29, 2020. https://doi.org/10.1021/acschembio.0c00369

Ruth Lehmann

Education

  • Dr. rer. nat., 1985, University of Tübingen
  • MS, 1981, Biology, University of Freiburg

Research Summary

We study germ cells, the only cells in the body naturally able to generate completely new organisms. In addition to the nuclear genome, cytoplasmic information is passed though the egg cell to the next generation. We analyze the organization and regulation of germ line specific RNA-protein condensates, and explore mechanisms used by endosymbionts such as mitochondria and the intracellular bacterium, Wolbachia, to propagate through the cytoplasm of the female germ line.

Awards

  • Vanderbilt Prize in Biomedical Science, 2022
  • Gruber Genetics Prize, 2022
  • Thomas Hunt Morgan Medal, Genetics Society of America, 2021
  • Francis Amory Prize in Reproductive Medicine and Reproductive Physiology, American Academy of Arts and Sciences, 2020
  • Vilcek Prize in Biomedical Science, 2020
  • Keith R. Porter Award, American Society for Cell Biology, 2018
  • Inaugural Klaus Sander Prize, German Society for Developmental Biology, 2017
  • European Molecular Biology Organization, Foreign Associate, 2012
  • Conklin Medal of the Society of Developmental Biology, 2011
  • National Academy of Sciences, Foreign Associate, 2005; Member, 2008
  • American Academy of Arts and Sciences, Member, 1998
  • Howard Hughes Medical Institute, Investigator, 1990 and 1997
Bringing computers into the protein fold

In the lab, Biology Professor Amy Keating researches the interactions of proteins with a mix of modeling and synthetic lab work and diverse minds

School of Science
June 11, 2020

Almost everything in biology is a multistep process, from the metabolization of carbohydrates and fats as fuel to information transcription from DNA and RNA. Without proteins and their interactions, cells couldn’t perform any of these biological tasks. But how do proteins establish their individual roles? And how do they interact with each other?  These questions drive Professor Amy Keating’s research, and both lab experiments and computational modeling are helping her reveal the mysteries behind the basic functions of life.

In Keating’s field of research, as with most areas of science, the use of artificial intelligence is a relatively new – and growing – trend. “It’s pretty scary how fast new methods in machine learning are changing the landscape,” says Keating, who holds appointments in both the Department of Biology and the Department of Biological Engineering. “I think that we will see a disruptive change in protein modeling over the coming years.” She has found that incorporating basic machine learning methods in her own work has generated some success in uncovering how protein sequences determine their interactions.

However, there are limits to using only computational modeling due to the complexities of protein-protein interaction and a general need for empirical data to calibrate the models. Her lab group integrates computation with biological engineering in a laboratory setting. Keating’s team often starts by using computational modeling to narrow down their search from a massive collection of protein structure models. This step limits their output from an effectively infinite space (~1030) to something on the order of 106 potential promising molecules that can be experimentally tested. They can feed the results of experiments into other algorithms that help designate the specific features of the protein that prove important. This process is cyclical, and Keating emphasizes that experimental efforts are crucial for improving the success rate of this kind of work. That is where the lab comes in. There, they do what the computer cannot: they build proteins.

With the disruption of the COVID-19 crisis the Keating lab has focused their attention on computational projects, as well as on reviewing the literature and writing up papers and theses. The members are also using their time at home to brainstorm and plan their research. “We are having multiple group meetings per week by Zoom, including a ‘Keating Group Idea Lab,’ at which everyone throws out ideas, ranging from practical suggestions about current projects to out-there new concepts, for group discussion,” says Keating. “We are confident that we can use this time productively, to advance our science, even as we make long lists of things that we are eager to do as soon as we can get back into the laboratory.”

A topic of current interest to Keating and her group members is interactions among proteins with “short linear motifs” or SLiMs, which are abundant –more than one hundred thousand such motifs are thought to exist in one human. One family of these SLiM-binding proteins regulates movement of cells within the body and is implicated in the spread of cancer cells to a secondary location (metastasis). The lab’s novel mini-protein and peptide designs aim to disrupt these protein interactions and could be useful for eventually disrupting and treating cancer and other diseases.

FOSTERING MULTIPLE INTERACTIONS

Currently, Keating’s research team consists of six students who have backgrounds in almost as many different cultures. Her students’ diversity, which stems not just from different focuses in formal training but also from life experiences, is integral to their success, according to Keating. She wishes that more women like herself and members of underrepresented minority groups who love STEM would consider pursuing academic careers. “It’s hard work, but it’s very rewarding,” she entices. The best thing about being a faculty member, she believes, is having a team of bright minds who contribute unique ideas and insights to a problem and provide information beyond her own areas of expertise.

“I learn facts that they know and I do not. I learn interesting ways of thinking about science and also ways of doing science,” she says, noting that novel ideas in methodology lead to advances in research. “I’ve learned a lot of things about computer science from my students. I’m happy that one of my former biology students is [now] a professor of computer science,” she admits, appreciating his expertise as a benefit in frequent collaborations. “I love that students at MIT question everything.” Keating’s ever-expanding knowledge builds on top of a diverse background gleaned during her time as a student.

Keating’s bachelor’s degree from Harvard University is in physics. During her PhD at University of California, Los Angeles, she shifted to chemistry — specifically computational physical organic chemistry. When browsing for a postdoctoral position, she discovered the work of former MIT Department of Biology faculty and Whitehead Institute member Peter Kim and joined him. She maintained her interest in computation as a tool for biological research, concurrently co-advised by MIT Professor of Electrical Engineering and Computer Science Bruce Tidor. It was somewhat down to chance that her academic job search led her to MIT. “I certainly never thought I would be a biology professor, especially at MIT,” she remarks of her convoluted career path through the wide world of science.

But it is an unexpected result for which Keating is grateful. “My undergrad self would have been surprised by the MIT School of Science,” she muses, which makes MIT “so much more than ‘just’ the world’s best engineering school.” That is something of a common misconception about the Institute, she feels. “I think a lot of people outside of MIT don’t know how outstanding our basic science programs are.” Keating is a part of the strong science education at MIT, which is constantly adapting to keep up with the digital age, which led to her receiving the most recent Fund for the Future of Science Award.

“I was thrilled, and pretty surprised, to receive the award; my fantastic colleagues in the School of Science are not people that you want to be competing with.” This support is invaluable to her research on the foundations of biological interactions, and to ensure a robust team that has what it needs to develop important advances.  The curious minds with which she collaborates are equally as invaluable.

“The people at MIT are amazingly smart, curious, and focused on things that I value,” Keating adds, “like good ideas, intellectual rigor, discovering new things, and education.”

This article appeared in the Summer 2020 issue of Science@MIT

Jonathan Weissman

Education

  • PhD, 1993, MIT
  • AB, 1988, Physics, Harvard

Research Summary

We study how cells ensure that proteins fold into their correct shape, as well as the role of protein misfolding in disease and normal physiology. We also build innovative tools for broadly exploring organizational principles of biological systems. These include ribosome profiling, which globally monitors protein translation, CRIPSRi/a for controlling the expression of human genes and rewiring the epigenome, and lineage tracing tools, to record the history of cells.

Awards

  • Ira Herskowitz Award, Genetic Society of America, 2020
  • European Molecular Biology Organization, Member, 2017
  • National Academy of Sciences Award for Scientific Discovery, 2015
  • American Academy of Microbiology, Fellow, 2010
  • National Academy of Sciences, Member, 2009
  • Raymond and Beverly Sackler International Prize in Biophysics, Tel Aviv University, 2008
  • Protein Society Irving Sigal Young Investigator’s Award, 2004
  • Howard Hughes Medical Institute, Assistant Investigator, 2000
  • Searle Scholars Program Fellowship, 1997
  • David and Lucile Packard Fellowship, 1996