Tania A. Baker

Tania A. Baker

E. C. Whitehead Professor of Biology; MacVicar Faculty Fellow; Investigator, Howard Hughes Medical Institute

Tania Baker’s current research explores mechanisms and regulation of enzyme-catalyzed protein unfolding, ATP-dependent protein degradation, and remodeling of the proteome during cellular stress responses.

68-523

Office

617-324-7833

Assistant Phone

Education

  • PhD, 1988, Stanford University
  • BS, 1983, Biochemistry, University of Wisconsin-Madison

Research Summary

Our goal is to understand the mechanisms and regulation behind AAA+ unfoldases and macromolecular machines from the "Clp/Hsp100 family" of protein unfolding enzymes.  We study these biological catalysts using biochemistry, structural biology, molecular biology, genetics, and single molecule biophysics.

Awards

  • National Academy of Sciences, Member, 2007
  • American Academy of Arts and Sciences, Fellow, 2005
  • Howard Hughes Medical Institute, HHMI Investigator, 1994

Key Publications

  1. Structural Basis of an N-Degron Adaptor with More Stringent Specificity. Stein, BJ, Grant, RA, Sauer, RT, Baker, TA. 2016. Structure 24, 232-42.
    doi: 10.1016/j.str.2015.12.008PMID:26805523
  2. Mitochondrial ClpX Activates a Key Enzyme for Heme Biosynthesis and Erythropoiesis. Kardon, JR, Yien, YY, Huston, NC, Branco, DS, Hildick-Smith, GJ, Rhee, KY, Paw, BH, Baker, TA. 2015. Cell 161, 858-67.
    doi: 10.1016/j.cell.2015.04.017PMID:25957689
  3. Mechanochemical basis of protein degradation by a double-ring AAA+ machine. Olivares, AO, Nager, AR, Iosefson, O, Sauer, RT, Baker, TA. 2014. Nat. Struct. Mol. Biol. 21, 871-5.
    doi: 10.1038/nsmb.2885PMID:25195048
  4. Single-molecule protein unfolding and translocation by an ATP-fueled proteolytic machine. Aubin-Tam, ME, Olivares, AO, Sauer, RT, Baker, TA, Lang, MJ. 2011. Cell 145, 257-67.
    doi: 10.1016/j.cell.2011.03.036PMID:21496645
  5. The molecular basis of N-end rule recognition. Wang, KH, Roman-Hernandez, G, Grant, RA, Sauer, RT, Baker, TA. 2008. Mol. Cell 32, 406-14.
    doi: 10.1016/j.molcel.2008.08.032PMID:18995838
  6. Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals. Flynn, JM, Neher, SB, Kim, YI, Sauer, RT, Baker, TA. 2003. Mol. Cell 11, 671-83.
    doi: 10.1016/s1097-2765(03)00060-1PMID:12667450
  7. A specificity-enhancing factor for the ClpXP degradation machine. Levchenko, I, Seidel, M, Sauer, RT, Baker, TA. 2000. Science 289, 2354-6.
    doi: 10.1126/science.289.5488.2354PMID:11009422

Recent Publications

  1. Structures of the ATP-fueled ClpXP proteolytic machine bound to protein substrate. Fei, X, Bell, TA, Jenni, S, Stinson, BM, Baker, TA, Harrison, SC, Sauer, RT. 2020. Elife 9, .
    doi: 10.7554/eLife.52774PMID:32108573
  2. The Non-dominant AAA+ Ring in the ClpAP Protease Functions as an Anti-stalling Motor to Accelerate Protein Unfolding and Translocation. Kotamarthi, HC, Sauer, RT, Baker, TA. 2020. Cell Rep 30, 2644-2654.e3.
    doi: 10.1016/j.celrep.2020.01.110PMID:32101742
  3. Mitochondrial ClpX activates an essential biosynthetic enzyme through partial unfolding. Kardon, JR, Moroco, JA, Engen, JR, Baker, TA. 2020. Elife 9, .
    doi: 10.7554/eLife.54387PMID:32091391
  4. Interactions between a subset of substrate side chains and AAA+ motor pore loops determine grip during protein unfolding. Bell, TA, Baker, TA, Sauer, RT. 2019. Elife 8, .
    doi: 10.7554/eLife.46808PMID:31251172
  5. Roles of the ClpX IGF loops in ClpP association, dissociation, and protein degradation. Amor, AJ, Schmitz, KR, Baker, TA, Sauer, RT. 2019. Protein Sci. 28, 756-765.
    doi: 10.1002/pro.3590PMID:30767302
  6. N domain of the Lon AAA+ protease controls assembly and substrate choice. Brown, BL, Vieux, EF, Kalastavadi, T, Kim, S, Chen, JZ, Baker, TA. 2019. Protein Sci. 28, 1239-1251.
    doi: 10.1002/pro.3553PMID:30461098
  7. Structure of the Mitochondrial Aminolevulinic Acid Synthase, a Key Heme Biosynthetic Enzyme. Brown, BL, Kardon, JR, Sauer, RT, Baker, TA. 2018. Structure 26, 580-589.e4.
    doi: 10.1016/j.str.2018.02.012PMID:29551290
  8. Mechanical Protein Unfolding and Degradation. Olivares, AO, Baker, TA, Sauer, RT. 2018. Annu. Rev. Physiol. 80, 413-429.
    doi: 10.1146/annurev-physiol-021317-121303PMID:29433415
  9. Mutation in human CLPX elevates levels of δ-aminolevulinate synthase and protoporphyrin IX to promote erythropoietic protoporphyria. Yien, YY, Ducamp, S, van der Vorm, LN, Kardon, JR, Manceau, H, Kannengiesser, C, Bergonia, HA, Kafina, MD, Karim, Z, Gouya, L et al.. 2017. Proc. Natl. Acad. Sci. U.S.A. 114, E8045-E8052.
    doi: 10.1073/pnas.1700632114PMID:28874591
  10. Effect of directional pulling on mechanical protein degradation by ATP-dependent proteolytic machines. Olivares, AO, Kotamarthi, HC, Stein, BJ, Sauer, RT, Baker, TA. 2017. Proc. Natl. Acad. Sci. U.S.A. 114, E6306-E6313.
    doi: 10.1073/pnas.1707794114PMID:28724722
More Publications

Multimedia