Tania A. Baker

Tania A. Baker

E. C. Whitehead Professor of Biology; MacVicar Faculty Fellow; Investigator, Howard Hughes Medical Institute

Tania Baker’s current research explores mechanisms and regulation of enzyme-catalyzed protein unfolding, ATP-dependent protein degradation, and remodeling of the proteome during cellular stress responses.



Sara Kim



Assistant Phone


PhD 1988, Stanford University

Research Summary

Our goal is to understand the mechanisms and regulation behind AAA+ unfoldases and macromolecular machines from the "Clp/Hsp100 family" of protein unfolding enzymes.  We study these biological catalysts using biochemistry, structural biology, molecular biology, genetics, and single molecule biophysics.


  • National Academy of Sciences, Member, 2007
  • American Academy of Arts and Sciences, Fellow, 2005
  • Howard Hughes Medical Institute, HHMI Investigator, 1994

Key Publications

  1. Structural Basis of an N-Degron Adaptor with More Stringent Specificity. Stein, BJ, Grant, RA, Sauer, RT, Baker, TA. 2016. Structure 24, 232-42.
    doi: 10.1016/j.str.2015.12.008PMID: 26805523
  2. Mitochondrial ClpX Activates a Key Enzyme for Heme Biosynthesis and Erythropoiesis. Kardon, JR, Yien, YY, Huston, NC, Branco, DS, Hildick-Smith, GJ, Rhee, KY, Paw, BH, Baker, TA. 2015. Cell 161, 858-67.
    doi: 10.1016/j.cell.2015.04.017PMID: 25957689
  3. Mechanochemical basis of protein degradation by a double-ring AAA+ machine. Olivares, AO, Nager, AR, Iosefson, O, Sauer, RT, Baker, TA. 2014. Nat. Struct. Mol. Biol. 21, 871-5.
    doi: 10.1038/nsmb.2885PMID: 25195048
  4. Single-molecule protein unfolding and translocation by an ATP-fueled proteolytic machine. Aubin-Tam, ME, Olivares, AO, Sauer, RT, Baker, TA, Lang, MJ. 2011. Cell 145, 257-67.
    doi: 10.1016/j.cell.2011.03.036PMID: 21496645
  5. The molecular basis of N-end rule recognition. Wang, KH, Roman-Hernandez, G, Grant, RA, Sauer, RT, Baker, TA. 2008. Mol. Cell 32, 406-14.
    doi: 10.1016/j.molcel.2008.08.032PMID: 18995838
  6. Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals. Flynn, JM, Neher, SB, Kim, YI, Sauer, RT, Baker, TA. 2003. Mol. Cell 11, 671-83.
    PMID: 12667450
  7. A specificity-enhancing factor for the ClpXP degradation machine. Levchenko, I, Seidel, M, Sauer, RT, Baker, TA. 2000. Science 289, 2354-6.
    PMID: 11009422

Recent Publications

  1. Mechanical Protein Unfolding and Degradation. Olivares, AO, Baker, TA, Sauer, RT. 2018. Annu. Rev. Physiol. 80, 413-429.
    doi: 10.1146/annurev-physiol-021317-121303PMID: 29433415
  2. Mutation in humanelevates levels ofaminolevulinate synthase and protoporphyrin IX to promote erythropoietic protoporphyria. Yien, YY, Ducamp, S, van der Vorm, LN, Kardon, JR, Manceau, H, Kannengiesser, C, Bergonia, HA, Kafina, MD, Karim, Z, Gouya, L et al.. 2017. Proc. Natl. Acad. Sci. U.S.A. 114, E8045-E8052.
    doi: 10.1073/pnas.1700632114PMID: 28874591
  3. Effect of directional pulling on mechanical protein degradation by ATP-dependent proteolytic machines. Olivares, AO, Kotamarthi, HC, Stein, BJ, Sauer, RT, Baker, TA. 2017. Proc. Natl. Acad. Sci. U.S.A. , .
    doi: 10.1073/pnas.1707794114PMID: 28724722
  4. Covalently linked HslU hexamers support a probabilistic mechanism that links ATP hydrolysis to protein unfolding and translocation. Baytshtok, V, Chen, J, Glynn, SE, Nager, AR, Grant, RA, Baker, TA, Sauer, RT. 2017. J. Biol. Chem. 292, 5695-5704.
    doi: 10.1074/jbc.M116.768978PMID: 28223361
  5. Two isoforms of Clp peptidase in Pseudomonas aeruginosa control distinct aspects of cellular physiology. Hall, BM, Breidenstein, EB, de la Fuente-Núñez, C, Reffuveille, F, Mawla, GD, Hancock, RE, Baker, TA. 2016. J. Bacteriol. , .
    doi: 10.1128/JB.00568-16PMID: 27849175
  6. A Structurally Dynamic Region of the HslU Intermediate Domain Controls Protein Degradation and ATP Hydrolysis. Baytshtok, V, Fei, X, Grant, RA, Baker, TA, Sauer, RT. 2016. Structure 24, 1766-1777.
    doi: 10.1016/j.str.2016.08.012PMID: 27667691
  7. Highly Dynamic Interactions Maintain Kinetic Stability of the ClpXP Protease During the ATP-Fueled Mechanical Cycle. Amor, AJ, Schmitz, KR, Sello, JK, Baker, TA, Sauer, RT. 2016. ACS Chem. Biol. 11, 1552-1560.
    doi: 10.1021/acschembio.6b00083PMID: 27003103
  8. Structural Basis of an N-Degron Adaptor with More Stringent Specificity. Stein, BJ, Grant, RA, Sauer, RT, Baker, TA. 2016. Structure 24, 232-42.
    doi: 10.1016/j.str.2015.12.008PMID: 26805523
  9. Oxidization without substrate unfolding triggers proteolysis of the peroxide-sensor, PerR. Ahn, BE, Baker, TA. 2016. Proc. Natl. Acad. Sci. U.S.A. 113, E23-31.
    doi: 10.1073/pnas.1522687112PMID: 26677871
  10. Mechanistic insights into bacterial AAA+ proteases and protein-remodelling machines. Olivares, AO, Baker, TA, Sauer, RT. 2016. Nat. Rev. Microbiol. 14, 33-44.
    doi: 10.1038/nrmicro.2015.4PMID: 26639779
More Publications