Whitehead Institute
July 30, 2021
To create eggs and sperm, cells must rewire the process of cell division. Mitosis, the common type of cell division that our bodies use to grow everything from organs to fingernails and to replace aging cells, produces two daughter cells with the same number of chromosomes and approximately the same DNA sequence as the original cell. Meiosis, the specialized cell division that makes egg and sperm in two rounds of cell division, creates four granddaughter cells with new variations in their DNA sequence and half as many chromosomes in each cell. Meiosis uses most of the same cellular machinery as mitosis to achieve this very different outcome; only a few key molecular players prompt the rewiring from one type of division to another. One such key player is the protein Meikin, which is found exclusively in cells undergoing meiosis.
New research from Whitehead Institute Member Iain Cheeseman, graduate student Nolan Maier and collaborators Professor Michael Lampson and senior research scientist Jun Ma at the University of Pennsylvania demonstrates how Meikin is elegantly controlled, and sheds light on how the protein acts to serve multiple roles over different stages of meiosis. The findings, which appear in Developmental Cell on July 30, reveal that Meikin is precisely cut in half midway through meiosis. Instead of this destroying the protein, one half of the molecule, known as C-Meikin, goes on to play a critical role as a previously hidden protein actor in meiosis.
“Cells have this fundamental process, mitosis, during which they have to divide chromosomes evenly or it will cause serious problems like cancer, so the system has to be very robust,” Maier says. “What’s incredible is that you can add one or two unique meiotic proteins like Meikin and dramatically change the whole system very quickly.”