Proteins and labs come together to prevent Rett syndrome
Greta Friar | Whitehead Institute
July 22, 2020

New discoveries about the disruption of condensates in the neurodevelopmental disorder Rett syndrome provide insights into how cells compartmentalize chromosomes as well as new potential paths for therapies.

Scientists have, for many years, conceptualized the cell as a relatively free-flowing space, where–apart from the organization provided by specific cellular structures–molecules float freely, somehow ultimately ending up in the right place at the right time. In recent years, however, scientists have discovered that cells have much more spatial organization than previously thought thanks to a mechanism called phase separation, which occurs in cells when certain molecules form large droplet-like structures that separate what’s inside of the droplet from the rest of the cell. The droplets, called condensates, help sequester and concentrate molecules in specific locations, and appear to increase the efficiency of certain cellular functions.

Whitehead Institute Member Richard Young, also a professor of biology at Massachusetts Institute of Technology (MIT), has been exploring the previously unknown role that condensates play in gathering the molecules needed for gene transcription–the process by which DNA is read into RNA. In order to better understand when and how cells use phase separation, Charles Li, a graduate student in Young’s lab, set out to identify more proteins that can form condensates. That search led him to MeCP2, a protein associated with the severe neurodevelopmental disorder Rett syndrome, studied by Young’s colleague at Whitehead Institute, Founding Member Rudolf Jaenisch, who is also a professor of biology at MIT. No cure for Rett syndrome currently exists, and Jaenisch’s lab has been investigating the biology of the disorder in the hopes of discovering a medical therapy that can rescue neurons affected by Rett syndrome.

With the discovery of MeCP2’s condensate forming ability, Young and Jaenisch saw the opportunity for a promising collaboration between their labs. Led by co-first authors Li and Eliot Coffey, another graduate student in Young’s lab, the two labs investigated MeCP2 and whether the disruption of its condensate-forming ability contributes to Rett syndrome. During these investigations, the researchers also uncovered how cells may use condensates to help organize the active and inactive parts of chromosomes. Their findings, published in the journal Nature on June 22, report on these insights and suggest new paths for developing therapies for Rett syndrome.

PHASE SEPARATION AND RETT SYNDROME

Proteins that form condensates often contain intrinsically disordered regions (IDRs), long spaghetti-like strands that transiently stick together to form a dynamic mesh. Research has historically focused on the structured regions of proteins, which bind very specifically to other molecules, while IDRs have largely been overlooked. In this case, MeCP2’s large IDRs were exactly what drew Li to it.

“What was striking to me was that this protein has been studied for decades, and so much function has been ascribed to the protein as a whole, yet it only has one structured domain with a recognized function, the DNA binding domain. Beyond that, the entire protein is disordered, and how its parts function was largely unknown,” Li says.

The researchers found that MeCP2 used its IDRs to glom together and form condensates. Then they tested many of the mutations in the MECP2 gene that are associated with Rett syndrome and found that they all disrupt MeCP2’s ability to form condensates. Their findings suggest that therapies targeting condensates associated with the protein, rather than the protein itself, may be promising in the hunt for a Rett syndrome treatment.

“MeCP2 and Rett syndrome have been studied intensely for many years in many labs and yet not a single therapy has been developed. When the project began, I was immediately fascinated by the idea that we might find a new disease mechanism that could help us finally understand how Rett syndrome arises and how it could be treated,” Coffey says.

“Rick [Young] has shown that condensates play key roles in maintaining normal cellular function, and our latest collaboration illuminates how their disruption may drive diseases such as Rett syndrome,” Jaenisch says. “I hope the insights we have gained will prove useful both in our continued search for a treatment for Rett syndrome and more broadly in research on condensates and disease.”

COMPARTMENTALIZING CHROMOSOMES

The researchers’ investigation into MeCP2’s condensate forming behavior also shed light on how chromosomes are organized into regions of active and inactive genes. When MeCP2 is functioning normally, it helps to maintain heterochromatin, the roughly half of our chromosomes where genes are “turned off,” unable to be read into RNA or further processed to make proteins. MeCP2 binds to sequences of DNA marked with a certain type of regulatory tag that is typically found in heterochromatin. This helps crowd MeCP2 to the threshold concentration needed to form heterochromatin condensates. These condensates, in turn, help to sequester the molecules needed to maintain it apart from euchromatin, the half of our chromosomes filled with active genes. Different proteins form condensates near euchromatin, concentrating the molecular machinery needed to transcribe active genes there.

Since condensates form when proteins with large spaghetti-like IDRs stick together, one might expect that any protein containing IDRs could interact with any other IDR-containing protein to form droplets, and that is what the researchers have often seen. However, what they observed with MeCP2, which is associated with heterochromatin, is that key condensate-forming proteins associated with euchromatin refused to mix.

It’s important for the health of the cell that the genes in heterochromatin not be inadvertently turned on. The researchers reason that discrete euchromatin and heterochromatin condensates may play a key role in ensuring that transcriptional machinery localizes to euchromatin only, while repressive machinery–like MeCP2–localizes to heterochromatin. The researchers are excited to turn their attention to how proteins are able to join condensates selectively, and when and where else in the cell they do so.

“There’s a chemical grammar waiting to be deciphered that explains this difference in the ability of some proteins to move into one condensate versus another,” Young says. “Discovering that grammar can help us understand how cells maintain the crucial balance between the active and silent halves of our genome, and it could help us understand how to treat disorders such as Rett syndrome.”

***

Written by Greta Friar

Richard Young’s primary affiliation is with Whitehead Institute for Biomedical Research, where his laboratory is located and all his research is conducted. He is also a professor of biology at the Massachusetts Institute of Technology.

Rudolf Jaenisch’s primary affiliation is with Whitehead Institute for Biomedical Research, where his laboratory is located and all his research is conducted. He is also a professor of biology at Massachusetts Institute of Technology.

Li, C.H., Coffey, E., et al. (2020). MeCP2 links heterochromatin condensates and neurodevelopmental disease. Nature. DOI: 10.1038/s41586-020-2574-4

Yukiko Yamashita

Education

  • PhD, 1999, Kyoto University
  • BS, Biology, 1994, Kyoto University

Research Summary

Two remarkable feats of multicellular organisms are generation of many distinct cell types via asymmetric cell division and transmission of the germline genome to the next generation, essentially in eternity. Studying these processes using the Drosophila male germline as a model system has led us to venture into new areas of study, such as functions of satellite DNA, a ‘genomic junk,’ and how they might be involved in speciation.

Awards

  • National Academy of Sciences, 2025
  • Tsuneko and Reiji Okazaki Award, 2016
  • Howard Hughes Medical Institute, Investigator, 2014
  • MacArthur Fellow, 2011
  • Women in Cell Biology Early Career Award, American Society for Cell Biology, 2009
  • Searle Scholar, 2008
Ruth Lehmann

Education

  • Dr. rer. nat., 1985, University of Tübingen
  • MS, 1981, Biology, University of Freiburg

Research Summary

We study germ cells, the only cells in the body naturally able to generate completely new organisms. In addition to the nuclear genome, cytoplasmic information is passed though the egg cell to the next generation. We analyze the organization and regulation of germ line specific RNA-protein condensates, and explore mechanisms used by endosymbionts such as mitochondria and the intracellular bacterium, Wolbachia, to propagate through the cytoplasm of the female germ line.

Awards

  • Vanderbilt Prize in Biomedical Science, 2022
  • Gruber Genetics Prize, 2022
  • Thomas Hunt Morgan Medal, Genetics Society of America, 2021
  • Francis Amory Prize in Reproductive Medicine and Reproductive Physiology, American Academy of Arts and Sciences, 2020
  • Vilcek Prize in Biomedical Science, 2020
  • Keith R. Porter Award, American Society for Cell Biology, 2018
  • Inaugural Klaus Sander Prize, German Society for Developmental Biology, 2017
  • European Molecular Biology Organization, Foreign Associate, 2012
  • Conklin Medal of the Society of Developmental Biology, 2011
  • National Academy of Sciences, Foreign Associate, 2005; Member, 2008
  • American Academy of Arts and Sciences, Member, 1998
  • Howard Hughes Medical Institute, Investigator, 1990 and 1997
These muscle cells are guideposts to help regenerative flatworms grow back their eyes
Eva Frederick | Whitehead Institute
June 25, 2020

If anything happens to the eyes of the tiny, freshwater-dwelling planarian Schmidtea mediterranea, they can grow them back within just a few days. How they do this is a scientific conundrum — one that Peter Reddien’s lab at Whitehead Institute has been studying for years.

The lab’s latest project offers some insight: in a paper published in Science June 25, researchers in Reddien’s lab have identified a new type of cell that likely serves as a guidepost to help route axons from the eyes to the brain as the worms complete the difficult task of regrowing their neural circuitry.

Schmidtea mediterranea’s eyes are composed of light-capturing photoreceptor neurons connected to the brain with long, spindly processes called axons. They use their eyes to respond to light to help navigate their environment.

The worms, which are popular models for research into regeneration, can regrow pretty much any part of their body; eyes are an interesting part to study because regenerating the visual system requires the worms rewire their neurons to connect them to the brain.

When neural systems develop in embryos, the first nerve fibers, called pioneer axons, snake their way through tissue to form the circuitry needed to perceive and interpret external stimuli. The axons are helped along their way by specialized cells called guidepost cells. These special cells are positioned at choice points — places where the axon’s path could fork in different directions.

In many organisms, these guidepost cells aren’t a priority anymore once development is finished, and typically are not renewed through adulthood. That’s one reason why, when humans experience brain or nerve damage, the injury is usually permanent.

“This is a fundamental mystery of regeneration that we hadn’t even been thinking about,” says Reddien, the senior author of the paper who is also a professor of biology at Massachusetts Institute of Technology and an investigator with the Howard Hughes Medical Institute. “How can an adult animal regenerate a functional nervous system when the original development of the nervous system typically involves a number of cues that are thought to be transient?”

Then, in 2018, Reddien Lab scientist Lucila Scimone found something surprising in adult planarians: groups of mysterious cells that looked like they might play a role in guiding growing axons. She’d noticed this group of cells because they co-expressed two genes not often seen together and some were conspicuously close to the eyes.

“I was captivated by these cells,” she says. They appeared in very small numbers (a normal worm might have around 5; a large one might have up to 10) in every planarian she examined. They were divided into two distinct groups: some around the flatworms’ eyes, and others spaced out along the path to the brain center. When she traced the path of existing axons leading from the planarians’ eyes to their brain, they coincided with the positions of these cells without exception.

When the researchers characterized the cells, they found that they did not express any of the genes that are hallmarks of photoreceptor neurons; instead, they had markers often found in muscle tissue. “That was very striking, because muscle cells — that’s not what they do in most animals,” Scimone says.

In other organisms, guidepost cells are often neurons or glia. It would be unusual for muscle cells to serve as guideposts; but past work in the Reddien Lab had shown that planarian muscle cells played other special roles, such as secreting the extracellular matrix. The researchers now wondered whether they could add the role of guidepost to the long list of planarian muscle cell functions.

To test their hypothesis, the researchers designed a series of experiments. “We developed an eye transplantation method where you can take an eye from an animal and transplant it into another animal,” says Reddien Lab postdoc Kutay Deniz Atabay. “When you do this, the axonal projections from that eye will basically, if positioned appropriately, correctly wire themselves into the brain, producing a functional state.”

The researchers also created genetically engineered planarians that had the muscle cells, but no eyes, and then transplanted eyes onto their eyeless heads. Sure enough, the neurons grew as normal, snaking towards the cells and then adjusting their trajectories after encountering them.

Without the cells, it was a different story. When the researchers transplanted eyes to distant parts of planarians’ bodies without a population of these muscle cells, the photoreceptor neurons did not connect to the brain center. Likewise, when they transplanted eyes into planarians that had been modified to not have these muscle cells, their photoreceptor neurons still grew — but they did not wire properly to reach the brain.

These findings combined suggested that the cells were fully independent of the visual system — they did not form because of eyes or photoreceptor neurons, but likely established themselves before the neurons grew — which provided more evidence for the guidepost role.

The guidepost-like activity of these cells then begged the question: how do the cells themselves know where to be? “We found that there’s a pattern of signaling molecules in muscle that is setting where these cells should be,” Reddien says. “If we perturb the global positional information of the system, these cells get placed in the wrong positions, and then axons go to the wrong positions — so we think there’s a positional information framework that places the cells during regeneration, and that allows them to work as guideposts in the correct locations.”

At this point, the researchers don’t know exactly how the cells are able to communicate with growing axons to serve as guideposts. They could be releasing some sort of signaling molecule that attracts the axons, or they could be communicating by using trans-membrane proteins.

“That will be an exciting direction for the future,” Reddien says. “We have now identified the transcriptome for the cells, which means we know all the genes that these cells express. That provides us with an intriguing list of genes that can be probed functionally, to try to see which ones are mediating the functions of these cells.”

This study is a step forward in a body of work that aims to expand the capabilities of regenerative medicine. “Imagine a scenario where someone experiences a spinal cord injury or an eye injury or stroke that leads to the loss of a neural circuit,” says Atabay. “The reason we can’t fully cure these cases today is that we lack fundamental information regarding how these systems can regenerate. Looking at regenerative organisms provides a lot of insights. From this case, we see that regenerating the lost system may not be enough; you may also need to regenerate systems that are properly patterning that system.”

***

Written by Eva Frederick

***

Scimone, M. L. et al. “Muscle and neuronal guidepost-like cells facilitate planarian visual system regeneration.” Science, June 25, 2020.

Discovery of how cancer drugs find their targets could lead to a new toolset for drug development
Whitehead Institute
June 17, 2020

In the watery inside of a cell, complex processes take place in tiny functional compartments called organelles. Energy-producing mitochondria are organelles, as is the frilly golgi apparatus, which helps to transport cellular materials. Both of these compartments are bound by thin membranes.

But in the past few years, research at Whitehead Institute and elsewhere has shown that there are other cellular organelles held together without a membrane. These organelles, called condensates, are tiny droplets which keep certain proteins close together amidst the chaos of the cell, allowing complex functions to take place within. “We know of about 20 types of condensate in the cell so far,” says Isaac Klein, a postdoc in Richard Young’s lab at Whitehead Institute and oncologist at the Dana-Farber Cancer Institute.

Now, in a paper published in Science on June 19, Klein and Ann Boija, another postdoc in Young’s lab, show the mechanism by which small molecules, including cancer drugs, are concentrated in these cellular droplets — a finding that could have implications for the development of new cancer therapeutics. If researchers could tailor a chemical to seek out and concentrate in one kind of droplet in particular, it might have a positive effect on the delivery efficiency of the drug. “We thought, maybe that’s an avenue by which we can improve cancer treatments and discover new ones,” says Klein.

“This [research] is part of a revolutionary new way of looking at the organization within cells,” says Phillip Sharp, a professor at the Massachusetts Institute of Technology’s Koch Institute for Integrative Cancer Research and a co-author on the study. “Cells are not little pools of soup, all mixed together. They are actually highly organized, compartmentalized units, and that organization is important in their function and in their diseases. We’ve just started to understand that, and this new paper is a really important step, using that insight, to understand how to potentially treat diseases differently.”

CONDENSATES AND DRUG DELIVERY

To explore how different properties of condensates inside the cell’s nucleus affected the delivery of cancer drugs, Boija and Klein selected a few example condensates to study. These included splicing speckles, which store cellular materials needed for RNA splicing, nucleoli, where ribosomes are formed, and a new kind of droplet Young’s lab discovered in 2018 called a transcriptional condensate. These new condensates bring together all the different proteins needed to successfully transcribe a gene.

The researchers created their own suite of four different fluorescently-labeled condensates by adding glowing tags to marker proteins specific to each kind of droplet. For example, transcriptional condensates are marked by the droplet-forming protein MED1, splicing speckles by a protein called SRSF2, and nucleoli by FIB1 and NPM1.

Now that they could tell individual droplets apart by their cellular purpose, the team, along with the help of Nathanael Gray, a chemical biologist at Harvard University and the Dana-Farber Cancer Institute, created fluorescent versions of clinically important drugs. The tested drugs included cisplatin and mitoxantrone, two anti-tumor medicines commonly used in chemotherapy. These therapeutics were the perfect test subjects, because they both target proteins that lie within nuclear condensates.

The researchers added the cancer drugs to a mixture containing various droplets (and only droplets, none of the actual drug targets), and found that the drugs sorted themselves into specific condensates. Mitoxantrone concentrated in condensates marked by MED1, FIB1 and NPM1, selectively avoiding the others. Cisplatin, too, showed a particular affinity for droplets held together by MED1.

“The big discovery with these in vitro studies is that a drug can concentrate within transcriptional condensate independent of its target,” Boija says. “We used to think that drugs come to the right place because their targets are there, but in our in vitro system, the target is not there. That’s really informative — it shows the drug is actually being concentrated in a different way than we thought.”

To understand why some drugs were drawn into transcriptional condensates, they screened a panel of chemically-modified dyes and found that the important part of many drugs — the part that led them to concentrate in transcriptional condensates  —  is the molecules’ aromatic ring structure. Aromatic rings are stable, ring-shaped groupings of carbon atoms. The aromatic ring in some drugs are thought to stack with rings in MED1’s amino acids, leading the drug to concentrate in transcriptional condensates.

Being able to tailor a drug to enter a certain condensate is a powerful tool for drug developers. “We found that if we add an aromatic group to a molecule, it becomes concentrated within the transcriptional condensate,” Boija says. “It’s that type of interaction that is important when we design new drugs to enter transcriptional condensates — and maybe we can improve existing drugs by modifying their structure. This will be very exciting to look into.”

WHERE DRUGS CONCENTRATE AFFECTS HOW WELL THEY FIGHT CANCER

In order for this tool to be practically useful in drug development, the researchers had to make sure that concentration in specific droplets would actually impact the drugs’ performance. Boija and Klein decided to test this using cisplatin, which is drawn to transcriptional condensates by MED1 and works to fight cancer by adding clunky platinum molecules to DNA strands. This damages tumor cells’ genetic material. When the researchers administered cisplatin to a mixture of different condensates, both in the test tube and in cells, the drug preferentially altered DNA that lay within transcriptional condensates.

This could explain why cisplatin and other platinum drugs are effective against so many diverse cancers, says Young, who is also a professor of biology at MIT; cancer-causing genes often carry regions of DNA called super enhancers, which are extremely active in transcription, leading to very large transcriptional condensates. “We now think the reason that drugs like cisplatin can work well in patients with diverse cancers is because they’re becoming selectively concentrated at the cancer-causing genes, where these large transcriptional condensates occur,” he said. “The effect is to have the drug home in on the gene that’s causing each cancer to be so deadly.”

A DRUG RESISTANCE MYSTERY, SOLVED

The new insights in condensate behavior also provided some answers to another question in cancer research: why people become immune to the breast cancer drug tamoxifen.Tamoxifen works by attaching itself to estrogen receptors in the cancer cells, preventing them from getting the hormones they need to grow and eventually slowing or stopping the formation of new cancer cells altogether. The drug is one of the most effective treatments for the disease, reducing recurrence rates for ER+ breast cancers by around 50%.

Unfortunately, many patients quickly develop a resistance to tamoxifen — sometimes as soon as a few months after they start taking it. This happens in a variety of ways — for example, sometimes the cancer cells will mutate to be able to kick the tamoxifen out of the cells, or simply produce fewer estrogen receptors for the drug to bind. One form of resistance was associated with an overproduction of the protein MED1, but scientists didn’t know why.

With their newfound knowledge of how a drug’s activity is affected by where it concentrates, Boija and Klein had a hypothesis: the extra MED1 might increase the size of the droplets, effectively diluting the concentration of tamoxifen and making it more difficult for the drug to bind its targets. When they tested this in the laboratory, the team found that more MED1 did indeed cause larger droplets, leading to lower concentrations of tamoxifen.

A NEW TOOLSET FOR DRUG DESIGNERS

The ability to better understand the behavior of drugs in cancer cells — how they concentrate, and why the cancer could become resistant to them — may provide drug developers with a new arsenal of tools to craft efficient therapeutics. “This study suggests that we should be exploring whether we can design or isolate drugs that are concentrated in a given condensate, and to understand how existing drugs are concentrated in the cell,” says Phil Sharp. “I think this is really important for drug development — and I think [figuring it out] is going to be fun.”

Decoding development

Despite being 2,000 miles apart, two researchers are devising deep learning algorithms to predict embryonic tissue folding.

Raleigh McElvery
May 18, 2020

Since March when MIT’s new COVID-19 policies took effect, the research labs on campus have been vacant, save a skeleton crew of essential workers. Despite being separated from their benches, microscopes, and pipets, biologists have devised creative solutions to continue working remotely. In one lab, a postdoc and an undergraduate are using their time at home to develop a deep learning algorithm to spot hidden clues about embryonic development.

Professor Adam Martin’s lab studies the fruit fly embryo, which consists of a single layer of cells encircling a yolk core about three hours after fertilization. Within the next few minutes, a band of cells on the surface furrows inward, forming a critical fold that helps determine where the cells will go and what roles they will eventually play.

Postdoc Hannah Yevick has spent most of her time in the Martin lab focusing on the protein myosin, which forms a network of connections that links cells together and helps generate the force needed to fold the embryo. With her eye to the microscope, she’s been investigating how this ball of cells compensates for damage and continues to fold correctly despite occasional disruptions to the myosin network. But it remains unclear how cells coordinate to overcome such impediments, and what factors besides myosin aid the process. Yevick began to wonder if there was a way to extract hidden clues from her microscope pictures that would predict which embryos would develop properly and which would not.

Deep learning, a type of machine learning, has become a popular tool to detect and classify visual data. Just like the brain, deep learning algorithms run on sets of interconnecting nodes that can be trained to distinguish features and predict outcomes. (For example, differentiating a cat from a dog, or recognizing a friend in a Facebook picture.) Before an algorithm can complete these tasks on its own, however, researchers must train it using a set of practice images. Some scientists are training algorithms intended for use in clinical settings, from AI-based chatbots to diagnostic assistance that helps predict whether a patient has cancer.

Man in shirt and tie
Prateek Kalakuntla, a third-year Course 20 major and Course 6 minor.

“Deep learning shows great promise in clinical settings,” Yevick says, “and that got me thinking about ways to bring it back into the lab, and dig deeper into fundamental questions about development.”

Although she conducts computational analyses to decipher her microscopy images of fly embryos, Yevick hadn’t considered leveraging deep learning algorithms to predict developmental outcomes until a few months ago. In fact, she’d never tried any machine learning techniques at all. Sitting at home sans microscope during a pandemic seemed like the perfect time to start.

Right before the Martin lab dispersed per MIT’s COVID-19 policies, Yevick gained a collaborator: undergraduate researcher Prateek Kalakuntla, a third-year Course 20 (Biological Engineering) major with a minor in Course 6 (Electrical Engineering and Computer Science). He returned to his home in Dallas, Texas while Yevick remained in Cambridge.

“I was looking for a new project, and this seemed like the perfect one to start from home,” Kalakuntla says. “Our experience of practical machine learning is limited, so we assign ourselves research to do individually, and then check in with each other regularly.”

Despite nearly 2,000 miles separating them, the duo meets via Zoom once or twice a week to discuss their progress. They have been taking online tutorials in deep learning, provided by MIT OpenCourseWare, and gleaning information from scientific papers and colleagues.

“When you’re learning new things, it’s fun to have someone else to bounce ideas off,” Yevick says. “We’re exploring machine learning and gaining basic skills that will help us shape and address important questions moving forward.”

Two people at computer
Adam Martin and Hannah Yevick examine a video of a folding embryo.

At the moment, they’re practicing by constructing codes pulled from online exercises. Eventually, they aim to create and train their own algorithm and feed it images of embryos, taken just a few minutes into the stage of development where the layer of cells begins to furrow inward. The algorithm will then predict whether or not the embryo will develop correctly over the course of the 15-minute folding process.

Yevick and Kalakuntla intend to collect images from the entire lab, gathering as much data as possible to teach the algorithm to discern successful folds from failed ones. But they hope the algorithm will eventually teach them a thing or two as well — namely, where and when critical proteins are working to influence development.

“We’re feeding the algorithm entire images, but it’s pulling out what it deems to be the most interesting parts,” Kalakuntla says. “These could be specific regions of tissue or time periods that provide hints about the necessary proteins and cell shapes, which we can then analyze further.”

Although they’ll train their algorithm on images of fruit fly embryos, Kalakuntla hopes their model could eventually be applied to other organisms like mice or frogs — and even predict outcomes for data sets lacking images of later developmental stages.

“Machine learning can give us a birds-eye view of how cells coordinate collective movements, and show us ‘signatures’ that we might not have otherwise considered,” Yevick says. “Working remotely is certainly not ideal, but it’s given us the chance to gain new skills like this.”

Stretch and relax
Lucy Jakub
April 13, 2020

Consider the fruit fly, Drosophila melanogaster. Though it’s only a couple of millimeters long, its body is intricately complex. But it began, as most animals do, as an amorphous blastula—a hollow ball of dividing cells. During embryonic development, the structures of the body emerge as cells multiply and change shape, sculpting tissues into the mature forms dictated by the genetic code. One of the first structural changes is gastrulation, during which the blastula becomes multilayered with an ectoderm, mesoderm, and endoderm. In the developing fly, this occurs through a tissue folding mechanism. The first fold is the invagination of the mesoderm, when cells fated to become muscles contract and curl inward, leaving the cells fated to become skin on the exterior.

Biologists have traditionally focused on how cells generate force to understand cell and tissue shape change. But researchers at MIT have found that there’s another important, though often overlooked, player in tissue folding: cell division, or mitosis. By combining live-imaging with genetic mutations of developing Drosophila embryos, they observed that cell constriction and division can act together to promote folding, and that mitosis interferes with the accumulation of motor proteins that allows cells to generate force.

“What the results tell us is that the cell cycle and cell division might need to be tightly regulated relative to other shape changes that are happening in the tissue,” says Adam Martin, the senior author of the study published on March 13 in Molecular Biology of the Cell. “They present a new paradigm for thinking about how tissue shape might be regulated during development, and provide insight into what might cause birth defects in humans.” Clint Ko PhD ’20, a former graduate student in the Martin lab, was lead author of the study.

In 2000, three different labs identified a genetic mutation that caused premature cell division in developing Drosophila embryos. They found that the gene tribbles, named for the fuzzy, rapidly-reproducing animals in Star Trek, regulates cell division in the mesoderm of the fly, ensuring that cells only divide at the appropriate time. When that gene is deleted, cell division occurs before the mesoderm can properly internalize. What was notable about this mutant was that the blastula never folded, and remained a ball of cells instead of an envelope of tissue with an inside and an outside. This observation led researchers to believe that cell cycle regulation somehow regulates tissue folding. But, at the time, there was no live-imaging technology to visualize how cells changed in the developing embryo.

By using a fluorescent protein to visualize chromosome condensation, which marks the start of mitosis and the cell’s preparation for division, the researchers were able to use live-cell imaging to see how premature division might be interfering with cell constriction. When a cell prepares to divide, it expands and becomes rounded, before elongating—shape changes that exert force on neighboring cells. But something else was going on, too.Specifically, researchers in the Martin lab wanted to see what was happening to networks of the motor protein myosin, which allows cells to contract, in the tribbles mutant. Myosin is the same protein that allows our muscle tissue to contract when we flex. To facilitate tissue folding in the developing fly, myosin is concentrated at the top of the cells in the mesoderm, where they form the surface of the blastula. As this myosin constricts, the outer surface of the tissue shrinks and contracts inward.

“We noticed that when the cells are dividing, the apical myosin networks that are present disappear,” says Ko. Cells that had already begun to contract relaxed when they entered mitosis, indicating that it’s a loss of contractility in the tribbles mutant that prevents folding. The researchers suspect that this reversal occurs because mitosis disrupts signaling from the gene RhoA, which regulates contractility and cell shape changes during development. An undergraduate researcher in the lab, Prateek Kalakuntla, showed that regulation of RhoA changes at the start of mitosis.

“Initially we were just curious about the tribbles mutant,” says Ko. “But then we started exploring other ways of looking at how cell divisions affect myosin accumulation in cells.” They utilized a mutation in which the gene fog, which is located upstream of myosin activation on the genome, was overexpressed. (Fog is short for “folded gastrulation.”) Cells in the Drosophila ectoderm don’t normally contract, but with ectopic fog overexpression, those cells activated myosin, too. With live-cell imaging, the researchers observed furrows develop across the ectoderm.

“It was a bit unexpected to see these tissues folding when they shouldn’t be folding,” says Ko. Specifically, the folds occurred along the boundaries of mitotic domains, regions of spatiotemporally patterned cell divisions that occur in coordinated pulses. “That led to this sort of novel idea that cell divisions—particularly when they’re in this pattern where they’re interspersed between contractile cells—can actually promote tissue folding.”

Understanding the genetic basis for tissue folding, and how our genes control the development of specific bodily features, can help determine how birth defects arise during development. “If cell cycle control is misregulated during development, it could actually alter the shape of that tissue,” says Martin. The study paves the way for further research into how exactly the location of myosin in the cell is regulated, and how it is affected at the molecular level by cell division.

“We observed that when these cells enter mitosis, the localization of myosin activators changes. But we don’t really know how it changes,” says Ko. “That would be a pretty interesting research problem, especially considering that it’s such an integral part of force generation in cells.” Kalakuntla has begun investigating what controls these regulators, which will be an avenue of future research for the lab.

Top image: Myosin networks, in green, contract cell membranes in the mesoderm of a developing Drosophila embryo. Credit: Martin lab.

Citation:
“Apical Constriction Reversal upon Mitotic Entry Underlies Different Morphogenetic Outcomes of Cell Division”
Molecular Biology of the Cell, online March 4, 2020, DOI: 10.1091/mbc.E19-12-0673
Clint S. Ko, Prateek Kalakuntla, and Adam C. Martin

Chimeras offer a new way to study childhood cancer in mice
Eva Frederick | Whitehead Institute
March 5, 2020

In a new paper published March 5 in the journal Cell Stem Cell, researchers in Whitehead Institute Member Rudolf Jaenisch’s lab introduce a new way to model human neuroblastoma tumors in mice using chimeras — in this case, mice that have been modified to have human cells in parts of their nervous systems. “This may serve as a unique model that you can use to study the dynamic of immune cells within human tumors,” says Malkiel Cohen, a postdoc in Jaenisch’s lab and the first author of the paper.

Neuroblastoma is a rare and unpredictable form of childhood cancer that affects around 800 young children in the US each year. Neuroblastoma tumors often occur in parts of the sympathetic nervous system, which includes the nerves that run parallel to the spinal cord and the adrenal medulla, part of the glands that produce hormones such as adrenaline. Neuroblastoma is notoriously hard to study primarily because of its disparate behavior: the tumors often shrink spontaneously in infants, while in toddlers they are highly aggressive and often fatal. “The seeds for the cancer are sown during fetal life,” says Rani George, MD, PhD, an associate professor of pediatrics at Harvard Medical School and a neuroblastoma researcher and physician at Dana-Farber Cancer Institute and Boston Children’s Hospital, and a co-senior author on the paper. “For obvious reasons, you can’t really study the development of these tumors in humans.”

Until now, researchers didn’t have many realistic ways to study these tumors in animal models, either. They could create transgenic mice with cancer-causing genes, but the resulting tumors were mouse tumors, not human ones, and had some key differences. Another method involved taking human tumor cells and implanting them in a mouse — a process called xenotransplantation — but that only worked in mice with compromised immune systems, and didn’t allow researchers to study how the tumors formed in the first place or how they interacted with a fully functioning immune system. “This is where we think the new model is a perfect fit,” said Stefani Spranger, PhD, an assistant professor of Biology at the Massachusetts Institute of Technology (MIT) and the Koch Institute for Integrative Cancer Research at MIT and a co-senior author on the paper.

Human-mouse chimeras have been used in the past to study Alzheimer’s disease and brain development. Jaenisch, who is also a professor of biology at MIT, and his lab had been working for years to create chimeric mice with human cells in the neural crest — the group of developing cells that go on to form parts of the sympathetic nervous system — and published their findings in 2016. “In this study, we hoped to use these mice with human neural crest cells to study how neuroblastoma tumors form and respond to immune system attacks,” Jaenisch says.

To create these chimeric mice, Cohen and coauthors at MIT’s Koch Institute and the Dana-Farber Cancer Institute first engineered human pluripotent stem cells to express two genes known to be abnormal in neuroblastoma, MYCN and mutated ALK, and modified them so they became neural crest cells, from which human neuroblastomas are derived. The genes could be turned on and off with the addition of doxycycline, an antibiotic. They also inserted the gene for eGFP, a brightly glowing fluorescent protein originally isolated from jellyfish. This would allow the team to tell whether the cells were spreading correctly through the bodies of the mice, and would cause any tumors originating from these human cells to be luminous under fluorescent light.

The researchers injected mouse embryos with these cells, and watched over the course of embryonic development as the cells proliferated and human tissues crept into the developing peripheral nervous systems of the tiny mice. To activate the two cancer-causing genes, researchers spiked the pregnant mice’ water with doxycycline, and over the next few days in utero — and in the weeks and months after the pups were born — the researchers inspected the chimeras to see whether tumors would appear.

Over the course of the next 15 months, 14% of the mice developed tumors — 29 mice out of 198 total. The tumors mostly appeared in the space behind the abdominal cavity close to the nerves along the spinal cord, although one mouse developed a tumor in its adrenal gland. Both locations are common places for human children to develop neuroblastoma. The researchers took samples of the tumors and found that they contained the glowing protein eGFP, which confirmed that they were of human origin.

When the team examined the growth patterns of the cancerous cells, they found that the tumors were remarkably similar to human neuroblastomas: they contained cell markers typical of human tumors, and some grew in characteristic rosette shapes — features that did not often appear in tumors implanted in immunocompromised mice through xenotransplantation.

Having successfully induced neuroblastoma tumors in the chimeric mice, the researchers took the opportunity to examine the communication between immune cells and tumors — and specifically, how the tumors evaded destruction by anti-cancer immune cells called T cells. One factor that makes human neuroblastomas and many other cancers dangerous is their sophisticated strategy for avoiding being destroyed by T cells. “The cancer tricks the immune system,” Cohen says.  By activating chemical signals that exhaust the T cells, the tumors effectively weaken their attack. The tumors in the chimeric mice, Cohen found, use a similar method to human neuroblastomas to evade immune responses.

Cohen and others plan to test the new system’s potential for modeling other cancers such as melanoma, and to use it to investigate potential treatments for neuroblastoma patients. “The obvious next step is to study how treatment of these tumors will allow these chimeric mice to be cured,” he says. “This is a model that will allow us to approach not only how to get rid of the tumor, but also to fix the immune system and recover those exhausted T cells, allowing them to fight back and deplete the tumor.”

This research was funded by the National Institutes of Health, as well as grants from the Emerald Foundation, the LEO Foundation, the Melanoma Research Foundation, and the St. Baldrick’s Foundation.

Citation: Cohen, M., et al. Formation of Human Neuroblastoma in Mouse-Human Neural Crest Chimeras. Cell Stem Cell. March 5, 2020. DOI: https://doi.org/10.1016/j.stem.2020.02.001

***

Written by Eva Frederick

***

Researchers discover an RNA-related function for a DNA repair enzyme
Raleigh McElvery
February 26, 2020

After decades of speculation, researchers have demonstrated that a classical DNA repair enzyme also binds to RNA, affecting blood cell development.

The DNA-dependent protein kinase, otherwise known as DNA-PK, is one of the most important enzymes that binds DNA and repairs double-stranded breaks. This mode of repair is essential for generating receptors that help the immune system fight off intruders. But DNA-PK doesn’t just bind DNA; it also binds RNA. Although researchers have known this for decades, they didn’t fully understand what kinds of RNAs DNA-PK bound in mammalian cells, or the physiological consequences of this binding.

In a new study published on February 26 in Nature, researchers from MIT and Columbia University have uncovered a mechanism whereby DNA-PK binds to the RNA involved in ribosome assembly. Ribosomes — the cell’s protein synthesis machinery — ensure that stem cells give rise to enough red blood cells. The researchers found that mutating DNA-PK prevents the ribosomes from being built properly, which prevents blood cells from doing their job and leads to blood disorders.

“This is the first biochemical evidence of DNA-PK assembly and activation by RNA inside cells,” says Eliezer Calo, a co-senior author and assistant professor in MIT’s Department of Biology. “We’re still trying to determine the mechanisms that regulate protein synthesis in stem cells, and this study reveals one of them.”

Co-senior author, Shan Zha from Columbia University, had previously studied DNA-PK’s role in DNA repair by generating a mouse model that carried enzymatically-dead versions of DNA-PK. While using this model to investigate tumorigenesis, Zha’s lab found these mutant mice developed a form of blood cancer known as myeloid disease. At the same time, another research group showed that mutations in DNA-PK also led to anemia, which occurs when the body does not have enough healthy red blood cells

Neither myeloid disease nor anemia could be easily explained by DNA repair defects alone. However, the two blood disorders did share some similarities to diseases caused by ribosome defects. Because DNA-PK resides in the same organelle where ribosomes are made, the Zha and Calo labs began to wonder whether DNA-PK could bind to the RNA there and control ribosome biogenesis.

In this new study, the Zha lab found that DNA-PK mutations impaired protein translation in red blood cell progenitors, which might contribute to anemia. In parallel, the Calo lab was investigating ribosomal RNA processing and was surprised to find that DNA-PK seemed to be implicated in ribosome assembly. The Calo lab then mapped all the RNAs in cells that bind DNA-PK. The enzyme unexpectedly attached to U3, a small RNA that helps assemble one of the subunits comprising the ribosome. Once it binds U3, DNA-PK can transfer a phosphate group to several specific sites on one of its own subunits. If DNA-PK is defective and cannot transfer the phosphate group, protein synthesis in blood stem cells is impaired, eventually causing anemia.

DNA-PK is essential for cellular viability in nearly all human cell lines, including cancer cell lines, while many other proteins involved in same DNA repair pathway are dispensable. Several studies, including one published by the Zha lab, showed that DNA-PK protein levels are 50-fold higher in common human cell lines than in rodent cell lines. The researchers do not yet know why the enzyme is so critical, but they suspect it might have to do with its ability to bind RNA. “We are interested in exploring whether this new role for DNA-PK could provide clues to this puzzle,” Zha says.

Calo says their findings could also have important implications for cancer treatment, because DNA-PK has emerged as a promising target for cancer therapy. Drugs that inhibit DNA-PK could prevent cancer cells from repairing their DNA and replicating successfully, but he warns these same remedies could also impact stem cell function. The next step is to explore DNA-PK’s other RNA binding targets and the related molecular pathways.

“We’ve demonstrated that DNA-PK has an entirely separate role that has nothing to do with DNA repair,” Calo says. “In the future, we’re excited to learn what additional RNA-related duties it may have beyond stem cell maintenance.”

Top Image: Ribosomes are assembled in the nucleoli (shown here in human cells).

Citation:
“DNA-PKcs has KU-dependent function in rRNA processing and haematopoiesis”
Nature, online February 26, 2020, DOI: 10.1038/s41586-020-2041-2
Zhengping Shao, Ryan A. Flynn, Jennifer L. Crowe, Yimeng Zhu, Jialiang Liang, Wenxia Jiang, Fardin Aryan, Patrick Aoude, Carolyn R. Bertozzi, Verna M. Estes, Brian J. Lee, Govind Bhagat, Shan Zha, and Eliezer Calo