Biologists and mathematicians team up to explore tissue folding

An algorithm developed to study the structure of galaxies helps explain a key feature of embryonic development.

Anne Trafton | MIT News Office
July 25, 2019

As embryos develop, they follow predetermined patterns of tissue folding, so that individuals of the same species end up with nearly identically shaped organs and very similar body shapes.

MIT scientists have now discovered a key feature of embryonic tissue that helps explain how this process is carried out so faithfully each time. In a study of fruit flies, they found that the reproducibility of tissue folding is generated by a network of proteins that connect like a fishing net, creating many alternative pathways that tissues can use to fold the right way.

“What we found is that there’s a lot of redundancy in the network,” says Adam Martin, an MIT associate professor of biology and the senior author of the study. “The cells are interacting and connecting with each other mechanically, but you don’t see individual cells taking on an all-important role. This means that if one cell gets damaged, other cells can still connect to disparate parts of the tissue.”

To uncover these network features, Martin worked with Jörn Dunkel, an MIT associate professor of physical applied mathematics and an author of the paper, to apply an algorithm normally used by astronomers to study the structure of galaxies.

Hannah Yevick, an MIT postdoc, is the lead author of the study, which appears today in Developmental Cell. Graduate student Pearson Miller is also an author of the paper.

A safety net

During embryonic development, tissues change their shape through a process known as morphogenesis. One important way tissues change shape is to fold, which allows flat sheets of embryonic cells to become tubes and other important shapes for organs and other body parts. Previous studies in fruit flies have shown that even when some of these embryonic cells are damaged, sheets can still fold into their correct shapes.

“This is a process that’s fairly reproducible, and so we wanted to know what makes it so robust,” Martin says.

In this study, the researchers focused on the process of gastrulation, during which the embryo is reorganized from a single-layered sphere to a more complex structure with multiple layers. This process, and other morphogenetic processes similar to fruit fly tissue folding, also occur in human embryos. The embryonic cells involved in gastrulation contain in their cytoplasm proteins called myosin and actin, which form cables and connect at junctions between cells to form a network across the tissue. Martin and Yevick had hypothesized that the network of cell connectivity might play a role in the robustness of the tissue folding, but until now, there was no good way to trace the connections of the network.

To achieve that, Martin’s lab joined forces with Dunkel, who studies the physics of soft surfaces and flowing matter — for example, wrinkle formation and patterns of bacterial streaming. For this study, Dunkel had the idea to apply a mathematical procedure that can identify topological features of a three-dimensional structure, analogous to ridges and valleys in a landscape. Astronomers use this algorithm to identify galaxies, and in this case, the researchers used it to trace the actomyosin networks across and between the cells in a sheet of tissue.

“Once you have the network, you can apply standard methods from network analysis — the same kind of analysis that you would apply to streets or other transport networks, or the blood circulation network, or any other form of network,” Dunkel says.

Among other things, this kind of analysis can reveal the structure of the network and how efficiently information flows along it. One important question is how well a network adapts if part of it gets damaged or blocked. The MIT team found that the actomyosin network contains a great deal of redundancy — that is, most of the “nodes” of the network are connected to many other nodes.

This built-in redundancy is analogous to a good public transit system, where if one bus or train line goes down, you can still get to your destination. Because cells can generate mechanical tension along many different pathways, they can fold the right way even if many of the cells in the network are damaged.

“If you and I are holding a single rope, and then we cut it in the middle, it would come apart. But if you have a net, and cut it in some places, it still stays globally connected and can transmit forces, as long as you don’t cut all of it,” Dunkel says.

Folding framework

The researchers also found that the connections between cells preferentially organize themselves to run in the same direction as the furrow that forms in the early stages of folding.

“We think this is setting up a frame around which the tissue will adopt its shape,” Martin says. “If you prevent the directionality of the connections, then what happens is you can still get folding but it will fold along the wrong axis.”

Although this study was done in fruit flies, similar folding occurs in vertebrates (including humans) during the formation of the neural tube, which is the precursor to the brain and spinal cord. Martin now plans to apply the techniques he used in fruit flies to see if the actomyosin network is organized the same way in the neural tube of mice. Defects in the closure of the neural tube can lead to birth defects such as spina bifida.

“We would like to understand how it goes wrong,” Martin says. “It’s still not clear whether it’s the sealing up of the tube that’s problematic or whether there are defects in the folding process.”

The research was funded by the National Institute of General Medical Sciences and the James S. McDonnell Foundation.

Pulin Li

Education

  • PhD, 2012, Chemical Biology, Harvard University
  • BS, 2006, Life Sciences, Peking University

Research Summary

We are curious about how circuits of interacting genes in individual cells enable multicellular functions, such as self-organizing into structured tissues. To address this question, we analyze genetic circuits in natural systems, combining quantitative measurements and mathematical modeling. In parallel, we test the sufficiency of the circuits and understand their design principles by multi-scale reconstitution, from genes to circuits to multicellular behavior, using synthetic biology and bioengineering tools. Together, we aim to provide both a quantitative understanding of embryonic development and new ways to engineer tissues.

Awards

  • New Innovator Award, National Institutes of Health Common Fund’s High-Risk, High-Reward Research Program, 2021
  • R.R. Bensley Award in Cell Biology, American Association for Anatomy, 2021
  • Santa Cruz Developmental Biology Young Investigator Award, 2016
  • NIH Pathway to Independence Award K99/R00 (NICHD), 2016
  • American Cancer Society Postdoctoral Fellowship, 2015
A new approach to targeting tumors and tracking their spread

Researchers develop nanosized antibodies that home in on the meshwork of proteins surrounding cancer cells.

Helen Knight | MIT News correspondent
May 6, 2019

The spread of malignant cells from an original tumor to other parts of the body, known as metastasis, is the main cause of cancer deaths worldwide.

Early detection of tumors and metastases could significantly improve cancer survival rates. However, predicting exactly when cancer cells will break away from the original tumor, and where in the body they will form new lesions, is extremely challenging.

There is therefore an urgent need to develop new methods to image, diagnose, and treat tumors, particularly early lesions and metastases.

In a paper published today in the Proceedings of the National Academy of Sciences, researchers at the Koch Institute for Integrative Cancer Research at MIT describe a new approach to targeting tumors and metastases.

Previous attempts to focus on the tumor cells themselves have typically proven unsuccessful, as the tendency of cancerous cells to mutate makes them unreliable targets.

Instead, the researchers decided to target structures surrounding the cells known as the extracellular matrix (ECM), according to Richard Hynes, the Daniel K. Ludwig Professor for Cancer Research at MIT. The research team also included lead author Noor Jailkhani, a postdoc in the Hynes Lab at the Koch Institute for Integrative Cancer Research.

The extracellular matrix, a meshwork of proteins surrounding both normal and cancer cells, is an important part of the microenvironment of tumor cells. By providing signals for their growth and survival, the matrix plays a significant role in tumor growth and progression.

When the researchers studied this microenvironment, they found certain proteins that are abundant in regions surrounding tumors and other disease sites, but absent from healthy tissues.

What’s more, unlike the tumor cells themselves, these ECM proteins do not mutate as the cancer progresses, Hynes says. “Targeting the ECM offers a better way to attack metastases than trying to prevent the tumor cells themselves from spreading in the first place, because they have usually already done that by the time the patient comes into the clinic,” Hynes says.

The researchers began developing a library of immune reagents designed to specifically target these ECM proteins, based on relatively tiny antibodies, or “nanobodies,” derived from alpacas. The idea was that if these nanobodies could be deployed in a cancer patient, they could potentially be imaged to reveal tumor cells’ locations, or even deliver payloads of drugs.

The researchers used nanobodies from alpacas because they are smaller than conventional antibodies. Specifically, unlike the antibodies produced by the immune systems of humans and other animals, which consist of two “heavy protein chains” and two “light chains,” antibodies from camelids such as alpacas contain just two copies of a single heavy chain.

Nanobodies derived from these heavy-chain-only antibodies comprise a single binding domain much smaller than conventional antibodies, Hynes says.

In this way nanobodies are able to penetrate more deeply into human tissue than conventional antibodies, and can be much more quickly cleared from the circulation following treatment.

To develop the nanobodies, the team first immunized alpacas with either a cocktail of ECM proteins, or ECM-enriched preparations from human patient samples of colorectal or breast cancer metastases.

They then extracted RNA from the alpacas’ blood cells, amplified the coding sequences of the nanobodies, and generated libraries from which they isolated specific anti-ECM nanobodies.

They demonstrated the effectiveness of the technique using a nanobody that targets a protein fragment called EIIIB, which is prevalent in many tumor ECMs.

When they injected nanobodies attached to radioisotopes into mice with cancer, and scanned the mice using noninvasive PET/CT imaging, a standard technique used clinically, they found that the tumors and metastases were clearly visible. In this way the nanobodies could be used to help image both tumors and metastases.

But the same technique could also be used to deliver therapeutic treatments to the tumor or metastasis, Hynes says. “We can couple almost anything we want to the nanobodies, including drugs, toxins or higher energy isotopes,” he says. “So, imaging is a proof of concept, and it is very useful, but more important is what it leads to, which is the ability to target tumors with therapeutics.”

The ECM also undergoes similar protein changes as a result of other diseases, including cardiovascular, inflammatory, and fibrotic disorders. As a result, the same technique could also be used to treat people with these diseases.

In a recent collaborative paper, also published in Proceedings of the National Academy of Sciences, the researchers demonstrated the effectiveness of the technique by using it to develop nanobody-based chimeric antigen receptor (CAR) T cells, designed to target solid tumors.

CAR T cell therapy has already proven successful in treating cancers of the blood, but it has been less effective in treating solid tumors.

By targeting the ECM of tumor cells, nanobody-based CAR T cells became concentrated in the microenvironment of tumors and successfully reduced their growth.

The ECM has been recognized to play crucial roles in cancer progression, but few diagnostic or therapeutic methods have been developed based on the special characteristics of cancer ECM, says Yibin Kang, a professor of molecular biology at Princeton University, who was not involved in the research.

“The work by Hynes and colleagues has broken new ground in this area and elegantly demonstrates the high sensitivity and specificity of a nanobody targeting a particular isoform of an ECM protein in cancer,” Kang says. “This discovery opens up the possibility for early detection of cancer and metastasis, sensitive monitoring of therapeutic response, and specific delivery of anticancer drugs to tumors.”

This work was supported by a Mazumdar-Shaw International Oncology Fellowship, fellowships for the Ludwig Center for Molecular Oncology Research at MIT, the Howard Hughes Medical Institute and a grant from the Department of Defence Breast Cancer Research Program, and imaged on instrumentation purchased with a gift from John S. ’61 and Cindy Reed.

The researchers are now planning to carry out further work to develop the nanobody technique for treating tumors and metastases.

A supportive role for planarians’ multifaceted muscle
Greta Friar | Whitehead Institute
April 5, 2019

CAMBRIDGE, MA  — Planarians are flatworms best known for their incredible ability to regenerate all their body parts: chop a planarian in two and soon you will have two perfectly formed planarians. As Whitehead Institute Member Peter Reddien, also a professor of biology at Massachusetts Institute of Technology and an investigator with the Howard Hughes Medical Institute, has investigated planarians over the years, he has become increasingly fascinated with the functions of their muscle. Not only do planarians use muscle to move, but Reddien’s research group previously discovered they rely on muscle tissue to provide a full body map with instructions that helps guide stem cells to the right locations during both regeneration and normal turnover of cells. Muscle tissue does this by secreting positional signals that help cells identify where they are — and where they should be.

New research from Reddien and graduate student Lauren Cote shows that muscle serves yet another crucial function in planarians. In a paper published in Nature Communications on April 8, they show that muscle operates as the planarian’s connective tissue, providing basic architectural support for the body. Connective tissue functions in large part by secreting molecules that make up the extracellular matrix (ECM), a network of molecules outside of the body’s cells that provides tissues with, among other things, scaffolding, protection, separation of tissues, and a means of inter-tissue connection and communication. In vertebrates, including humans, connective tissue is a distinct tissue type containing dedicated cells such as fibroblasts that secrete most of the animal’s ECM proteins. Reddien and Cote found no such fibroblast-like cell type in planarians; instead, multipurpose muscle does it all.

The researchers began to suspect that planarian muscle might function as connective tissue when they discovered that the gene encoding a major type of ECM molecule, fibrous protein collagen, was expressed only in muscle. The researchers then catalogued the total collection of proteins found in the planarian’s ECM, called the matrisome, and tracked where the genes that code for those proteins were expressed. They identified nineteen collagen genes, and all nineteen were highly specific to muscle. The vast majority of other ECM genes followed suit.

To further test muscle’s role as connective tissue, the researchers silenced the gene hemicentin-1, which produces another ECM molecule expressed specifically in muscle. They found that when the gene was not expressed, the planarian’s inner tissues did not remain properly separated from its outer skin. In other words, a muscle-specific gene is necessary in the planarians they studied for the core connective tissue task of keeping tissues discrete.

Although it might seem unusual that planarians would use muscle tissue for both ECM secretion and body pattern maintenance, Reddien and Cote say the combination makes a certain sense.

“To establish a map of the body, muscle secretes positional signals, and in its role as connective tissue it is simultaneously creating the extracellular environment the signals travel through,” Reddien says.

Cote agrees: “Producing the body’s physical architectural support and its biochemical architectural blueprint seem to go hand in hand.”

One possibility raised by this synchronicity is that a link between connective tissue and harboring positional information exists broadly across animal species. Studies elsewhere have found some positional role or positional memory in connective tissues in several species, including axolotls, vertebrates capable of limb regeneration. Based on these observations, Reddien says, it would be interesting to consider the positional role that connective tissue cells, like fibroblasts, might play in humans and might have in instructing regeneration broadly.

 

Written by Greta Friar

 

***

Peter Reddien’s primary affiliation is with Whitehead Institute for Biomedical Research, where his laboratory is located and all his research is conducted. He is also a Howard Hughes Medical Institute Investigator and a professor of biology at Massachusetts Institute of Technology. The authors also acknowledge the Eleanor Schwartz Charitable Foundation for support.

***

Full citation:

“Muscle functions as a connective tissue and source of extracellular matrix in planarians”

Nature Communications, online April 8, 2019. DOI: 10.1038/s41467-019-09539-6

Lauren E. Cote, Eric Simental, and Peter W. Reddien.

Biologists find a way to boost intestinal stem cell populations

Study suggests that stimulating stem cells may protect the gastrointestinal tract from age-related disease.

Anne Trafton | MIT News Office
March 28, 2019

Cells that line the intestinal tract are replaced every few days, a high rate of turnover that relies on a healthy population of intestinal stem cells. MIT and University of Tokyo biologists have now found that aging takes a toll on intestinal stem cells and may contribute to increased susceptibility to disorders of the gastrointestinal tract.

The researchers also showed that they could reverse this effect in aged mice by treating them with a compound that helps boost the population of intestinal stem cells. The findings suggest that this compound, which appears to stimulate a pathway that involves longevity-linked proteins known as sirtuins, could help protect the gut from age-related damage, the researchers say.

“One of the issues with aging is organ dysfunction, accompanied by a decline in the activity of the stem cells that nurture and replenish that organ, so this is a potentially very useful intervention point to either slow or reverse aging,” says Leonard Guarente, the Novartis Professor of Biology at MIT.

Guarente and Toshimasa Yamauchi, a professor at the University of Tokyo, are the senior authors of the study, which appears online in the journal Aging Cell on March 28. The lead author of the paper is Masaki Igarashi, a former MIT postdoc who is now at the University of Tokyo.

Population growth

Guarente’s lab has long studied the link between aging and sirtuins, a class of proteins found in nearly all animals. Sirtuins, which have been shown to protect against the effects of aging, can also be stimulated by calorie restriction.

In a paper published in 2016, Guarente and Igarashi found that in mice, low-calorie diets activate sirtuins in intestinal stem cells, helping the cells to proliferate. In their new study, they set out to investigate whether aging contributes to a decline in stem cell populations, and whether that decline could be reversed.

By comparing young (aged 3 to 5 months) and older (aged 2 years) mice, the researchers found that intestinal stem cell populations do decline with age. Furthermore, when these stem cells are removed from the mice and grown in a culture dish, they are less able to generate intestinal organoids, which mimic the structure of the intestinal lining, compared to stem cells from younger mice. The researchers also found reduced sirtuin levels in stem cells from the older mice.

Once the effects of aging were established, the researchers wanted to see if they could reverse the effects using a compound called nicotinamide riboside (NR). This compound is a precursor to NAD, a coenzyme that activates the sirtuin SIRT1. They found that after six weeks of drinking water spiked with NR, the older mice had normal levels of intestinal stem cells, and these cells were able to generate organoids as well as stem cells from younger mice could.

To determine if this stem cell boost actually has any health benefits, the researchers gave the older, NR-treated mice a compound that normally induces colitis. They found that NR protected the mice from the inflammation and tissue damage usually produced by this compound in older animals.

“That has real implications for health because just having more stem cells is all well and good, but it might not equate to anything in the real world,” Guarente says. “Knowing that the guts are actually more stress-resistant if they’re NR- supplemented is pretty interesting.”

Protective effects

Guarente says he believes that NR is likely acting through a pathway that his lab previously identified, in which boosting NAD turns on not only SIRT1 but another gene called mTORC1, which stimulates protein synthesis in cells and helps them to proliferate.

“What we would hypothesize is that the NAD replenishment in old mice is driving this pathway of growth that’s working through SIRT1 and TOR to reverse the decline that has occurred with aging,” he says.

The findings suggest that NAD might have a protective effect against diseases of the gut, such as colitis, in older people, he says. Guarente and his colleagues have previously found that NAD precursors can also stimulate the growth of blood vessels and muscles and boost endurance in aged mice, and a 2016 study from researchers in Switzerland found that boosting NAD can help replenish muscle stem cell populations in aged mice.

In 2014, Guarente started a company called Elysium Health, which sells a dietary supplement containing NR combined with another natural compound called pterostilbene, which is an activator of SIRT1.

The research was funded, in part, by the National Institutes of Health and the Glenn Foundation for Medical Research.

Life unfolding

Graduate student Marlis Denk-Lobnig investigates the biological forces that shape developing tissue to dictate form and function.

Raleigh McElvery
March 22, 2019

A few hours after fertilization, the fruit fly embryo is just a hollow sphere, slightly oblong in shape, until a band of cells on its surface furrows inward to form a new layer. This folding process takes only 15 minutes, but it’s critical for determining where the cells will go and what roles they will eventually play. In humans, errors in tissue folding can result in diseases like spina bifida, where the spine never fully closes.

Fourth-year graduate student Marlis Denk-Lobnig watches this gastrulation process occurring in fly embryos in real time, tagging molecules with fluorescent proteins to probe the forces that eventually shape a fully-formed organism. Every day, she gets to witness new life unfold — literally.

Denk-Lobnig spends most of her time with her eye to a microscope or generating genetic crosses in the “fly room” where she keeps her stocks — rows of tubes containing light brown insect food that emits an unmistakable odor, despite being corked with cotton swabs. Inside each neatly labeled container, scores of tiny flies mill around as they lay eggs and feast.

Given that her mother trained in chemistry and her father in physics, “it didn’t take much creativity to get into science early on.” Denk-Lobnig enjoyed physics throughout high school, but also maintained a keen interest in biology, which became more pronounced after she was diagnosed with an autoimmune disease affecting her thyroid and adrenal glands.

“In some ways, the question of how your own body works is the most tangible question to ask,” she says. “It’s fascinating to connect everyday experiences with mechanisms, and studying biology and medicine seemed like a powerful way to have a direct impact on life.”

She majored in molecular medicine at Georg August University in Göttingen, Germany, located several hours from her childhood home in Heidelberg. Inspired by a summer internship with MIT Biology alum and Rockefeller professor Cori Bargmann PhD ’87, Denk-Lobnig centered her undergraduate thesis on the role glial cells play in disease.

She graduated after only three years, the typical duration in Germany, and spent the next several months traveling and applying to graduate schools. She also visited Nepal, where she taught visual and performing arts — and a bit of gymnastics — at a local boarding school.

When she began at MIT in 2015, Denk-Lobnig took the opportunity to blend her expertise in biology with a renewed enthusiasm for physics. Although she is a full-fledged member of the Department of Biology, she is simultaneously enrolled in the interdepartmental Biophysics Certificate Program.

“Not many people know that MIT has a thriving biophysics community,” she says. “It’s a mix of mechanical engineers, chemists, biologists, and physicists. There are specific course requirements, and we go on retreats and participate in seminars to share our research and discuss collaborations.”

As a member of Adam Martin’s lab, Denk-Lobnig studies the cellular forces that shape tissue form and function. Martin is also affiliated with the certificate program, and was one of the faculty members who initially interviewed Denk-Lobnig for the graduate program.

“Biophysics is all about finding elegant explanations for everyday phenomena, and I really enjoy thinking about physical principles and how they apply to biological problems,” Denk-Lobnig says. “The methods we use in the Martin lab are also incredibly visual. You can literally see a fruit fly embryo fold, and watch as a sheet of cells furrows inside the embryo to form a second layer, which is important for development. It’s both informative and aesthetically pleasing.”

Denk-Lobnig began by focusing on a single molecule called Cumberland-GAP (C-GAP), which regulates one of the many proteins in charge of tissue folding: myosin. Myosin is responsible for muscle contraction, among other duties. With its characteristic forked shape — two “heads” protruding from string-like “tail” domain — myosin can appear to walk along the cell’s scaffolding, sometimes transporting cargo. Denk-Lobnig, though, is most interested in myosin’s ability to pull on developing tissue and create a fold.

Right before graduating, one of Denk-Lobnig’s former labmates noticed that depleting C-GAP seemed to alter the concentration (or “gradient”) of myosin across the tissue. Since this finding pertained to the very regulator she was studying, it piqued Denk-Lobnig’s interest. She wanted to know how molecules like C-GAP might influence myosin and impact folding, and her scope widened from the molecular level to include the entire tissue.

It’s unlikely, she says, that myosin is pulling with equal force across the tissue — “that wouldn’t constrict the sheet of cells very efficiently.” Instead, there’s probably more myosin in middle and less towards the edges, which contracts the cells in the middle of the sheet to a greater degree and creates the curvature that forms the crease of the fold. In the fruit fly, gastrulation occurs just three hours after the eggs are laid. Because the folding happens at the surface of the embryo, there’s no need for dissection to witness the entire event through a microscope.

Denk-Lobnig has begun exploring other regulators besides C-GAP to analyze their effects on the myosin gradient and cell curvature. She was one of the first members of the lab to introduce CRISPR-Cas9 into their testing protocol, and is currently the only one experimenting with optogenetic techniques. She also regularly participates in the lab book club, which features classics like The Bell Jar and One Hundred Years of Solitude.

Outside of lab, Denk-Lobnig serves as the president of MIT’s women’s club gymnastics team, volunteers to help run weekly Gymnastics Special Olympics events, and sings in a graduate student choir. She is also a member of the department’s peer support program, bioREFs.

Long-term, she plans to stay in academia and delve further into physics-based methods, like modeling and coding. If she could find a project that’s just as visual as her current work in the Martin lab, “that would definitely be a plus.”

Posted 3.21.19
Pumping up red blood cell production
Greta Friar | Whitehead Institute
February 28, 2019

Cambridge, MA — Red blood cells are the most plentiful cell type in our blood and play a vital role transporting oxygen around our body and waste carbon dioxide to the lungs. Injuries that cause significant blood loss prod the body to secrete a one-two punch of signals – stress steroids and erythropoietin (EPO) – that stimulates red blood cell production in the bone marrow. These signals help immature cells along the path to becoming mature red blood cells. In a healthy individual, as much as half of their blood volume can be replenished within a week. Despite its importance, scientists are still working to unravel many aspects of red blood cell production. In a paper published online February 28 in the journal Developmental Cell, Whitehead Institute researchers describe work that refines our understanding of how stress steroids, in particular glucocorticoids, increase red blood cell production and how early red blood cell progenitors progress to the next stage of maturation toward mature red blood cells.

These findings are especially important for patients with certain types of anemia that do not respond to clinical use of EPO to stimulate the final stages of red cell formation, such as Diamond-Blackfan anemia (DBA). In this rare genetic disorder usually diagnosed in infants and toddlers, the bone marrow does not produce enough of early red blood cell progenitors, called burst forming unit-erythroids (BFU-Es), that respond to glucocorticoids. In both healthy people and DBA patients, these BFU-Es divide several times and mature before developing into colony forming unit-erythroids (CFU-Es) that that, stimulated by EPO, repeatedly divide and produce immature red blood cells that are released from the bone marrow into the blood. But the lack of BFU-Es in DBA patients means that the glucocorticoid signal has a limited target, and the cascade of cell divisions that should result in plentiful red blood cells is contracted and instead produces an insufficient amount.

One of the standard treatments for DBA is boosting red blood cell production with high doses of synthetic glucocorticoids, such as prednisone or prednisolone. But the mechanisms behind these drugs and their normal counterparts are not well understood. By deciphering the mechanisms by which glucocorticoids stimulate red cell formation, scientists may be able identify other ways to stoke CFU-E production – and ultimately red blood cell production – without synthetic glucocorticoids and the harsh side effects that their long-term use can cause, such as poor growth in children, brittle bones, muscle weakness, diabetes, and eye problems.

For more than two decades, Whitehead Institute Founding Member Harvey Lodish, has investigated glucocorticoids’ effects on red blood cell production. In his lab’s most recent paper, co-first authors and postdocs Hojun Li and Anirudh Natarajan, describe their research, which helps decipher how BFU-Es progress through their maturation process.

For more than 30 years, scientists have thought that glucocorticoids bestowed BFU-Es with a stem cell-like ability to divide until an unknown switch flipped and the cells matured to the CFU-E stage. By looking at gene expression in individual BFU-Es from normal mice, Li and Natarajan determined that the developmental progression from BFU-E to CFU-E is instead a smooth continuum. They also found that in mice glucocorticoids exert the greatest effect on the BFU-Es at the beginning of the developmental continuum by slowing their developmental progression without affecting their cell division rate. In other words glucocorticoids are able to effectively compensate for a decreased number of BFU-Es by allowing those that do exist, while still immature, to divide more times, producing in mice up to 14 times more CFU-Es than BFU-Es lacking exposure to glucocorticoids.

Li and Natarajan’s work reveals previously unknown aspects of the mechanism by which glucocorticoids stimulate red blood cell production. With this better understanding, scientists are one step closer toward pinpointing more targeted approaches to treat certain anemias such as DBA.

This work was supported by the National Institutes of Health (NIH grants DK06834813 and HL032262-25) and the American Society of Hematology and was performed with the assistance of Whitehead Institute’s Fluorescence Activated Cell Scanning (FACS) Facility and Genome Technology Core facility. Styliani Markoulaki, head of the Whitehead Genetically Engineered Models Center, and M. Inmaculada Barrasa of Bioinformatics and Research Computing (BaRC) are also co-authors of the paper.

 

Written by Nicole Giese Rura

***

Harvey Lodish’s primary affiliation is with Whitehead Institute for Biomedical Research, where his laboratory is located and all his research is conducted. He is also a professor of biology and a professor of biological engineering at Massachusetts Institute of Technology (MIT). Lodish serves as a paid consultant and owns equity in Rubius, a biotech company that seeks to exploit the use of modified red blood cells for therapeutic applications.

***

Citation:

“Rate of Progression through a Continuum of Transit-Amplifying Progenitor Cell States Regulates Blood Cell Production”

Developmental Cell, online February 28, 2019, https://doi.org/10.1016/j.devcel.2019.01.026

Hojun Li*, Anirudh Natarajan*, Jideofor Ezike, M. Inmaculada Barrasa, Yenthanh Le, Zoë A. Feder, Huan Yang, Clement Ma, Styliani Markoulaki, and Harvey F. Lodish.

*These authors contributed equally

Biologist Adam Martin studies the mechanics of tissue folding

The dynamic process is critical to embryonic development and other cellular phenomena.

Anne Trafton | MIT News Office
February 1, 2019

Embryonic development is tightly regulated by genes that control how body parts form. One of the key responsibilities of these genes is to make sure that tissues fold into the correct shapes, forming structures that will become the spine, brain, and other body parts.

During the 1970s and ’80s, the field of embryonic development focused mainly on identifying the genes that control this process. More recently, many biologists have shifted toward investigating the physics behind the tissue movements that occur during development, and how those movements affect the shape of tissues, says Adam Martin, an MIT associate professor of biology.

Martin, who recently earned tenure, has made key discoveries in how tissue folding is controlled by the movement of cells’ internal scaffolding, known as the cytoskeleton. Such discoveries can not only shed light on how tissues form, including how birth defects such as spina bifida occur, but may also help guide scientists who are working on engineering artificial human tissues.

“We’d like to understand the molecular mechanisms that tune how forces are generated by cells in a tissue, such that the tissue then gets into a proper shape,” Martin says. “It’s important that we understand fundamental mechanisms that are in play when tissues are getting sculpted in development, so that we can then harness that knowledge to engineer tissues outside of the body.”

Cellular forces

Martin grew up in Rochester, New York, where both of his parents were teachers. As a biology major at nearby Cornell University, he became interested in genetics and development. He went on to graduate school at the University of California at Berkeley, thinking he would study the genes that control embryonic development.

However, while in his PhD program, Martin became interested in a different phenomenon — the role of the cytoskeleton in a process called endocytosis. Cells use endocytosis to absorb many different kinds of molecules, such as hormones or growth factors.

“I was interested in what generates the force to promote this internalization,” Martin says.

He discovered that the force is generated by the assembly of arrays of actin filaments. These filaments tug on a section of the cell membrane, pulling it inward so that the membrane encloses the molecule being absorbed. He also found that myosin, a protein that can act as a motor and controls muscle contractions, helps to control the assembly of actin filaments.

After finishing his PhD, Martin hoped to find a way to combine his study of cytoskeleton mechanics with his interest in developmental biology. As a postdoc at Princeton University, he started to study the phenomenon of tissue folding in fruit fly embryonic development, which is now one of the main research areas of his lab at MIT. Tissue folding is a ubiquitous shape change in tissues to convert a planar sheet of cells into a three-dimensional structure, such as a tube.

In developing fruit fly embryos, tissue folding invaginates cells that will form internal structures in the fly. This folding process is similar to tissue folding events in vertebrates, such as neural tube formation. The neural tube, which is the precursor to the vertebrate spinal cord and brain, begins as a sheet of cells that must fold over and “zip” itself up along a seam to form a tube. Problems with this process can lead to spina bifida, a birth defect that results from an incomplete closing of the backbone.

When Martin began working in this area, scientists had already discovered many of the transcription factors (proteins that turn on networks of specific genes) that control the folding of the neural tube. However, little was known about the mechanics of this folding.

“We didn’t know what types of forces those transcription factors generate, or what the mechanisms were that generated the force,” he says.

He discovered that the accumulation of myosin helps cells lined up in a row to become bottle-shaped, causing the top layer of the tissue to pucker inward and create a fold in the tissue. More recently, he found that myosin is turned on and off in these cells in a dynamic way, by a protein called RhoA.

“What we found is there’s essentially an oscillator running in the cells, and you get a cycle of this signaling protein, RhoA, that’s being switched on and off in a cyclical manner,” Martin says. “When you don’t have the dynamics, the tissue still tries to contract, but it falls apart.”

He also found that the dynamics of this myosin activity can be disrupted by depleting genes that have been linked to spina bifida.

Breaking free

Another important cellular process that relies on tissue folding is the epithelial-mesenchymal transition (EMT). This occurs during embryonic development when cells gain the ability to break free and move to a new location. It is also believed to occur when cancer cells metastasize from tumors to seed new tumors in other parts of the body.

During embryonic development, cells lined up in a row need to orient themselves so that when they divide, both daughter cells remain in the row. Martin has shown that when the mechanism that enables the cells to align correctly is disrupted, one of the daughter cells will be squeezed out of the tissue.

“This has been proposed as one way you can get an epithelial-to-mesenchymal transition, where you have cells dissociate from native tissue,” Martin says.  He now plans to further study what happens to the cells that get squeezed out during the EMT.

In addition to these projects, he is also collaborating with Jörn Dunkel, an MIT associate professor of mathematics, to map the network connections between the myosin proteins that control tissue folding during development. “That project really highlights the benefits of getting people from diverse backgrounds to analyze a problem,” Martin says.