Education
- Graduate: PhD, 2017, University of Washington
- Undergraduate: BS, 2010, Micro/Molecular Biology, Portland State University
Research Summary
Sergey Ovchinnikov uses phylogenetic inference, protein structure prediction/determination, protein design, deep learning, energy-based models, and differentiable programming to tackle evolutionary questions at environmental, organismal, genomic, structural, and molecular scales, with the aim of developing a unified model of protein evolution.
Recent Publications
- Accurate de novo design of high-affinity protein binding macrocycles using deep learning. Rettie, SA, Juergens, D, Adebomi, V, Bueso, YF, Zhao, Q, Leveille, AN, Liu, A, Bera, AK, Wilms, JA, Üffing, A et al.. 2024. bioRxiv , .
doi: 10.1101/2024.11.18.622547PMID:39605685 - Protein language models learn evolutionary statistics of interacting sequence motifs. Zhang, Z, Wayment-Steele, HK, Brixi, G, Wang, H, Kern, D, Ovchinnikov, S. 2024. Proc Natl Acad Sci U S A 121, e2406285121.
doi: 10.1073/pnas.2406285121PMID:39467119 - Scalable protein design using optimization in a relaxed sequence space. Frank, C, Khoshouei, A, Fuβ, L, Schiwietz, D, Putz, D, Weber, L, Zhao, Z, Hattori, M, Feng, S, de Stigter, Y et al.. 2024. Science 386, 439-445.
doi: 10.1126/science.adq1741PMID:39446959 - Easy and accurate protein structure prediction using ColabFold. Kim, G, Lee, S, Levy Karin, E, Kim, H, Moriwaki, Y, Ovchinnikov, S, Steinegger, M, Mirdita, M. 2024. Nat Protoc , .
doi: 10.1038/s41596-024-01060-5PMID:39402428 - Computational design of soluble and functional membrane protein analogues. Goverde, CA, Pacesa, M, Goldbach, N, Dornfeld, LJ, Balbi, PEM, Georgeon, S, Rosset, S, Kapoor, S, Choudhury, J, Dauparas, J et al.. 2024. Nature 631, 449-458.
doi: 10.1038/s41586-024-07601-yPMID:38898281 - Validation of de novo designed water-soluble and transmembrane β-barrels by in silico folding and melting. Hermosilla, AM, Berner, C, Ovchinnikov, S, Vorobieva, AA. 2024. Protein Sci 33, e5033.
doi: 10.1002/pro.5033PMID:38864690 - Genomic language model predicts protein co-regulation and function. Hwang, Y, Cornman, AL, Kellogg, EH, Ovchinnikov, S, Girguis, PR. 2024. Nat Commun 15, 2880.
doi: 10.1038/s41467-024-46947-9PMID:38570504 - Computational design of soluble functional analogues of integral membrane proteins. Goverde, CA, Pacesa, M, Goldbach, N, Dornfeld, LJ, Balbi, PEM, Georgeon, S, Rosset, S, Kapoor, S, Choudhury, J, Dauparas, J et al.. 2024. bioRxiv , .
doi: 10.1101/2023.05.09.540044PMID:38496615 - An atlas of protein homo-oligomerization across domains of life. Schweke, H, Pacesa, M, Levin, T, Goverde, CA, Kumar, P, Duhoo, Y, Dornfeld, LJ, Dubreuil, B, Georgeon, S, Ovchinnikov, S et al.. 2024. Cell 187, 999-1010.e15.
doi: 10.1016/j.cell.2024.01.022PMID:38325366 - Predicting multiple conformations via sequence clustering and AlphaFold2. Wayment-Steele, HK, Ojoawo, A, Otten, R, Apitz, JM, Pitsawong, W, Hömberger, M, Ovchinnikov, S, Colwell, L, Kern, D. 2024. Nature 625, 832-839.
doi: 10.1038/s41586-023-06832-9PMID:37956700