Education
- Graduate: PhD, 2017, University of Washington
- Undergraduate: BS, 2010, Micro/Molecular Biology, Portland State University
Research Summary
Sergey Ovchinnikov uses phylogenetic inference, protein structure prediction/determination, protein design, deep learning, energy-based models, and differentiable programming to tackle evolutionary questions at environmental, organismal, genomic, structural, and molecular scales, with the aim of developing a unified model of protein evolution.
Recent Publications
- Ferromagnetism in LaCoO3: relationship between the crystal structure, morphology and magnetic properties. Orlov, YS, Dudnikov, VA, Vereshchagin, SN, Ustyuzhanin, YN, Nikolaev, SV, Zharkov, SM, Volochaev, MN, Zeer, GM, Gavrilkin, SY, Tsvetkov, AY et al.. 2025. Dalton Trans , .
doi: 10.1039/d4dt03135kPMID:39937131 - BindCraft: one-shot design of functional protein binders. Pacesa, M, Nickel, L, Schellhaas, C, Schmidt, J, Pyatova, E, Kissling, L, Barendse, P, Choudhury, J, Kapoor, S, Alcaraz-Serna, A et al.. 2024. bioRxiv , .
doi: 10.1101/2024.09.30.615802PMID:39677777 - Predicting absolute protein folding stability using generative models. Cagiada, M, Ovchinnikov, S, Lindorff-Larsen, K. 2025. Protein Sci 34, e5233.
doi: 10.1002/pro.5233PMID:39673466 - Accurate de novo design of high-affinity protein binding macrocycles using deep learning. Rettie, SA, Juergens, D, Adebomi, V, Bueso, YF, Zhao, Q, Leveille, AN, Liu, A, Bera, AK, Wilms, JA, Üffing, A et al.. 2024. bioRxiv , .
doi: 10.1101/2024.11.18.622547PMID:39605685 - Protein language models learn evolutionary statistics of interacting sequence motifs. Zhang, Z, Wayment-Steele, HK, Brixi, G, Wang, H, Kern, D, Ovchinnikov, S. 2024. Proc Natl Acad Sci U S A 121, e2406285121.
doi: 10.1073/pnas.2406285121PMID:39467119 - Scalable protein design using optimization in a relaxed sequence space. Frank, C, Khoshouei, A, Fuβ, L, Schiwietz, D, Putz, D, Weber, L, Zhao, Z, Hattori, M, Feng, S, de Stigter, Y et al.. 2024. Science 386, 439-445.
doi: 10.1126/science.adq1741PMID:39446959 - Easy and accurate protein structure prediction using ColabFold. Kim, G, Lee, S, Levy Karin, E, Kim, H, Moriwaki, Y, Ovchinnikov, S, Steinegger, M, Mirdita, M. 2024. Nat Protoc , .
doi: 10.1038/s41596-024-01060-5PMID:39402428 - Computational design of soluble and functional membrane protein analogues. Goverde, CA, Pacesa, M, Goldbach, N, Dornfeld, LJ, Balbi, PEM, Georgeon, S, Rosset, S, Kapoor, S, Choudhury, J, Dauparas, J et al.. 2024. Nature 631, 449-458.
doi: 10.1038/s41586-024-07601-yPMID:38898281 - Validation of de novo designed water-soluble and transmembrane β-barrels by in silico folding and melting. Hermosilla, AM, Berner, C, Ovchinnikov, S, Vorobieva, AA. 2024. Protein Sci 33, e5033.
doi: 10.1002/pro.5033PMID:38864690 - Genomic language model predicts protein co-regulation and function. Hwang, Y, Cornman, AL, Kellogg, EH, Ovchinnikov, S, Girguis, PR. 2024. Nat Commun 15, 2880.
doi: 10.1038/s41467-024-46947-9PMID:38570504