Sarah Sterling

Sarah Sterling

Director of the Cryo-EM Facility

Sarah Sterling oversees the Cryo-EM Facility located in MIT.nano, providing training and support for cryoEM and cryoET projects.

617-258-6578

Phone

12-0174

Office

Sarah earned PhDs in Chemical Engineering and Biomedical Sciences from the University of Maine, Orono, where she investigated cushioned-supported phospholipid bilayers with fluorescence microscopy and vibrational spectroscopy as related to non-classical protein secretion from cells. She went on to complete her postdoctoral studies at UC Berkeley in the labs of Eva Nogales and Jeremy Thorner, focusing on septin interaction with phospholipid monolayers using TEM and cryoEM. After honing her core facility management skills at Harvard Medical School, Sarah is now the director of the Cryo-EM Facility at MIT.nano. She and her team are training users on the cryoEM and cryoET workflows and maintaining instrumentation for academic and commercial users to access.

Key Publications

Recent Publications

  1. Antibodies expand the scope of angiotensin receptor pharmacology. Skiba, MA, Sterling, SM, Rawson, S, Zhang, S, Xu, H, Jiang, H, Nemeth, GR, Gilman, MSA, Hurley, JD, Shen, P et al.. 2024. Nat Chem Biol , .
    doi: 10.1038/s41589-024-01620-6PMID:38744986
  2. Antibodies Expand the Scope of Angiotensin Receptor Pharmacology. Skiba, MA, Sterling, SM, Rawson, S, Gilman, MSA, Xu, H, Nemeth, GR, Hurley, JD, Shen, P, Staus, DP, Kim, J et al.. 2023. bioRxiv , .
    doi: 10.1101/2023.08.23.554128PMID:37662341
  3. Practices for running a research-oriented shared cryo-EM facility. Walsh, RM Jr, Mayer, ML, Sun, CH, Rawson, S, Nair, R, Sterling, SM, Li, Z. 2022. Front Mol Biosci 9, 960940.
    doi: 10.3389/fmolb.2022.960940PMID:36188224
  4. Structural basis for enhanced infectivity and immune evasion of SARS-CoV-2 variants. Cai, Y, Zhang, J, Xiao, T, Lavine, CL, Rawson, S, Peng, H, Zhu, H, Anand, K, Tong, P, Gautam, A et al.. 2021. Science 373, 642-648.
    doi: 10.1126/science.abi9745PMID:34168070
  5. Structural basis for enhanced infectivity and immune evasion of SARS-CoV-2 variants. Cai, Y, Zhang, J, Xiao, T, Lavine, CL, Rawson, S, Peng, H, Zhu, H, Anand, K, Tong, P, Gautam, A et al.. 2021. bioRxiv , .
    doi: 10.1101/2021.04.13.439709PMID:33880477
  6. Structural impact on SARS-CoV-2 spike protein by D614G substitution. Zhang, J, Cai, Y, Xiao, T, Lu, J, Peng, H, Sterling, SM, Walsh, RM Jr, Rits-Volloch, S, Zhu, H, Woosley, AN et al.. 2021. Science 372, 525-530.
    doi: 10.1126/science.abf2303PMID:33727252
  7. Structural impact on SARS-CoV-2 spike protein by D614G substitution. Zhang, J, Cai, Y, Xiao, T, Lu, J, Peng, H, Sterling, SM, Walsh, RM, Rits-Volloch, S, Sliz, P, Chen, B et al.. 2020. bioRxiv , .
    doi: 10.1101/2020.10.13.337980PMID:33083806
  8. Distinct conformational states of SARS-CoV-2 spike protein. Cai, Y, Zhang, J, Xiao, T, Peng, H, Sterling, SM, Walsh, RM Jr, Rawson, S, Rits-Volloch, S, Chen, B. 2020. Science 369, 1586-1592.
    doi: 10.1126/science.abd4251PMID:32694201
  9. Distinct conformational states of SARS-CoV-2 spike protein. Cai, Y, Zhang, J, Xiao, T, Peng, H, Sterling, SM, Walsh, RM, Rawson, S, Rits-Volloch, S, Chen, B. 2020. bioRxiv , .
    doi: 10.1101/2020.05.16.099317PMID:32511405
  10. Effects of Bni5 Binding on Septin Filament Organization. Booth, EA, Sterling, SM, Dovala, D, Nogales, E, Thorner, J. 2016. J Mol Biol 428, 4962-4980.
    doi: 10.1016/j.jmb.2016.10.024PMID:27806918
Read More