Rudolf Jaenisch

Rudolf Jaenisch

Professor of Biology; Member, Whitehead Institute; Member, Institute of Medicine

Rudolf Jaenisch uses pluripotent cells (ES and iPS cells) to study the genetic and epigenetic basis of human diseases such as Parkinson’s, Alzheimer’s, autism and cancer.





Robert Burger



Assistant Phone


  • MD, 1967, University of Munich

Research Summary

We aim to understand the epigenetic regulation of gene expression in mammalian development and disease. Embryonic stem cells are important because they have the potential to generate any cell type in the body and, therefore, have great potential for regenerative medicine. We study the way somatic cells reprogram to an embryonic pluripotent state, and use patient specific pluripotent cells to study complex human diseases.


  • German Society for Biochemistry and Molecular Biology, Otto Warburg Medal, 2014
  • New York Academy, Medicine Medal, 2013
  • Franklin Institute, Benjamin Franklin Medal, 2013
  • National Science Foundation, National Medal of Science, 2011
  • National Science Foundation, National Medal of Science, 2010
  • National Academy of Sciences, Member, 2003

Key Publications

  1. Editing DNA Methylation in the Mammalian Genome. Liu, XS, Wu, H, Ji, X, Stelzer, Y, Wu, X, Czauderna, S, Shu, J, Dadon, D, Young, RA, Jaenisch, R et al.. 2016. Cell 167, 233-247.e17.
    doi: 10.1016/j.cell.2016.08.056PMID:27662091
  2. Parkinson-associated risk variant in distal enhancer of α-synuclein modulates target gene expression. Soldner, F, Stelzer, Y, Shivalila, CS, Abraham, BJ, Latourelle, JC, Barrasa, MI, Goldmann, J, Myers, RH, Young, RA, Jaenisch, R et al.. 2016. Nature 533, 95-9.
    doi: 10.1038/nature17939PMID:27096366
  3. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Wang, H, Yang, H, Shivalila, CS, Dawlaty, MM, Cheng, AW, Zhang, F, Jaenisch, R. 2013. Cell 153, 910-8.
    doi: 10.1016/j.cell.2013.04.025PMID:23643243
  4. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Wernig, M, Meissner, A, Foreman, R, Brambrink, T, Ku, M, Hochedlinger, K, Bernstein, BE, Jaenisch, R. 2007. Nature 448, 318-24.
    doi: 10.1038/nature05944PMID:17554336
  5. Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Hochedlinger, K, Jaenisch, R. 2002. Nature 415, 1035-8.
    doi: 10.1038/nature718PMID:11875572

Recent Publications

  1. Human iPSC-derived microglia assume a primary microglia-like state after transplantation into the neonatal mouse brain. Svoboda, DS, Barrasa, MI, Shu, J, Rietjens, R, Zhang, S, Mitalipova, M, Berube, P, Fu, D, Shultz, LD, Bell, GW et al.. 2019. Proc. Natl. Acad. Sci. U.S.A. 116, 25293-25303.
    doi: 10.1073/pnas.1913541116PMID:31772018
  2. Dynamic Enhancer DNA Methylation as Basis for Transcriptional and Cellular Heterogeneity of ESCs. Song, Y, van den Berg, PR, Markoulaki, S, Soldner, F, Dall'Agnese, A, Henninger, JE, Drotar, J, Rosenau, N, Cohen, MA, Young, RA et al.. 2019. Mol. Cell 75, 905-920.e6.
    doi: 10.1016/j.molcel.2019.06.045PMID:31422875
  3. Pharmacological enhancement of KCC2 gene expression exerts therapeutic effects on human Rett syndrome neurons and Mecp2 mutant mice. Tang, X, Drotar, J, Li, K, Clairmont, CD, Brumm, AS, Sullins, AJ, Wu, H, Liu, XS, Wang, J, Gray, NS et al.. 2019. Sci Transl Med 11, .
    doi: 10.1126/scitranslmed.aau0164PMID:31366578
  4. Whsc1 links pluripotency exit with mesendoderm specification. Tian, TV, Di Stefano, B, Stik, G, Vila-Casadesús, M, Sardina, JL, Vidal, E, Dasti, A, Segura-Morales, C, De Andrés-Aguayo, L, Gómez, A et al.. 2019. Nat. Cell Biol. 21, 824-834.
    doi: 10.1038/s41556-019-0342-1PMID:31235934
  5. Genome-wide CRISPR screen for Zika virus resistance in human neural cells. Li, Y, Muffat, J, Omer Javed, A, Keys, HR, Lungjangwa, T, Bosch, I, Khan, M, Virgilio, MC, Gehrke, L, Sabatini, DM et al.. 2019. Proc. Natl. Acad. Sci. U.S.A. 116, 9527-9532.
    doi: 10.1073/pnas.1900867116PMID:31019072
  6. Optimal-Transport Analysis of Single-Cell Gene Expression Identifies Developmental Trajectories in Reprogramming. Schiebinger, G, Shu, J, Tabaka, M, Cleary, B, Subramanian, V, Solomon, A, Gould, J, Liu, S, Lin, S, Berube, P et al.. 2019. Cell 176, 928-943.e22.
    doi: 10.1016/j.cell.2019.01.006PMID:30712874
  7. JIP2 haploinsufficiency contributes to neurodevelopmental abnormalities in human pluripotent stem cell-derived neural progenitors and cortical neurons. Roessler, R, Goldmann, J, Shivalila, C, Jaenisch, R. 2018. Life Sci Alliance 1, e201800094.
    doi: 10.26508/lsa.201800094PMID:30456368
  8. Stem Cells, Genome Editing, and the Path to Translational Medicine. Soldner, F, Jaenisch, R. 2018. Cell 175, 615-632.
    doi: 10.1016/j.cell.2018.09.010PMID:30340033
  9. Human induced pluripotent stem cell-derived glial cells and neural progenitors display divergent responses to Zika and dengue infections. Muffat, J, Li, Y, Omer, A, Durbin, A, Bosch, I, Bakiasi, G, Richards, E, Meyer, A, Gehrke, L, Jaenisch, R et al.. 2018. Proc. Natl. Acad. Sci. U.S.A. 115, 7117-7122.
    doi: 10.1073/pnas.1719266115PMID:29915057
More Publications






Photo credit: Gretchen Ertl/Whitehead Institute