Rudolf Jaenisch

Rudolf Jaenisch

Professor of Biology; Core Member, Whitehead Institute; Member, Institute of Medicine

Rudolf Jaenisch uses pluripotent cells (ES and iPS cells) to study the genetic and epigenetic basis of human diseases such as Parkinson’s, Alzheimer’s, autism and cancer.





Robert Burger



Assistant Phone


  • MD, 1967, University of Munich

Research Summary

We aim to understand the epigenetic regulation of gene expression in mammalian development and disease. Embryonic stem cells are important because they have the potential to generate any cell type in the body and, therefore, have great potential for regenerative medicine. We study the way somatic cells reprogram to an embryonic pluripotent state, and use patient specific pluripotent cells to study complex human diseases.


  • German Society for Biochemistry and Molecular Biology, Otto Warburg Medal, 2014
  • New York Academy, Medicine Medal, 2013
  • Franklin Institute, Benjamin Franklin Medal, 2013
  • National Science Foundation, National Medal of Science, 2011
  • National Science Foundation, National Medal of Science, 2010
  • National Academy of Sciences, Member, 2003

Key Publications

  1. Editing DNA Methylation in the Mammalian Genome. Liu, XS, Wu, H, Ji, X, Stelzer, Y, Wu, X, Czauderna, S, Shu, J, Dadon, D, Young, RA, Jaenisch, R et al.. 2016. Cell 167, 233-247.e17.
    doi: 10.1016/j.cell.2016.08.056PMID:27662091
  2. Parkinson-associated risk variant in distal enhancer of α-synuclein modulates target gene expression. Soldner, F, Stelzer, Y, Shivalila, CS, Abraham, BJ, Latourelle, JC, Barrasa, MI, Goldmann, J, Myers, RH, Young, RA, Jaenisch, R et al.. 2016. Nature 533, 95-9.
    doi: 10.1038/nature17939PMID:27096366
  3. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Wang, H, Yang, H, Shivalila, CS, Dawlaty, MM, Cheng, AW, Zhang, F, Jaenisch, R. 2013. Cell 153, 910-8.
    doi: 10.1016/j.cell.2013.04.025PMID:23643243
  4. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Wernig, M, Meissner, A, Foreman, R, Brambrink, T, Ku, M, Hochedlinger, K, Bernstein, BE, Jaenisch, R. 2007. Nature 448, 318-24.
    doi: 10.1038/nature05944PMID:17554336
  5. Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Hochedlinger, K, Jaenisch, R. 2002. Nature 415, 1035-8.
    doi: 10.1038/nature718PMID:11875572

Recent Publications

  1. Mesenchymal and adrenergic cell lineage states in neuroblastoma possess distinct immunogenic phenotypes. Sengupta, S, Das, S, Crespo, AC, Cornel, AM, Patel, AG, Mahadevan, NR, Campisi, M, Ali, AK, Sharma, B, Rowe, JH et al.. 2022. Nat Cancer , .
    doi: 10.1038/s43018-022-00427-5PMID:36138189
  2. SARS-CoV-2 infection of human pluripotent stem cell-derived liver organoids reveals potential mechanisms of liver pathology. Richards, A, Friesen, M, Khalil, A, Barrasa, MI, Gehrke, L, Jaenisch, R. 2022. iScience , 105146.
    doi: 10.1016/j.isci.2022.105146PMID:36128218
  3. Development of a physiological insulin resistance model in human stem cell-derived adipocytes. Friesen, M, Khalil, AS, Barrasa, MI, Jeppesen, JF, Mooney, DJ, Jaenisch, R. 2022. Sci Adv 8, eabn7298.
    doi: 10.1126/sciadv.abn7298PMID:35714187
  4. The nuclear receptor THRB facilitates differentiation of human PSCs into more mature hepatocytes. Ma, H, de Zwaan, E, Guo, YE, Cejas, P, Thiru, P, van de Bunt, M, Jeppesen, JF, Syamala, S, Dall'Agnese, A, Abraham, BJ et al.. 2022. Cell Stem Cell 29, 795-809.e11.
    doi: 10.1016/j.stem.2022.03.015PMID:35452598
  5. Air-liquid interface culture promotes maturation and allows environmental exposure of pluripotent stem cell-derived alveolar epithelium. Abo, KM, Sainz de Aja, J, Lindstrom-Vautrin, J, Alysandratos, KD, Richards, A, Garcia-de-Alba, C, Huang, J, Hix, OT, Werder, RB, Bullitt, E et al.. 2022. JCI Insight 7, .
    doi: 10.1172/jci.insight.155589PMID:35315362
  6. Beatrice Mintz, a giant in mammalian development. Jaenisch, R. 2022. Proc Natl Acad Sci U S A 119, e2201631119.
    doi: 10.1073/pnas.2201631119PMID:35286191
  7. 16pdel lipid changes in iPSC-derived neurons and function of FAM57B in lipid metabolism and synaptogenesis. Tomasello, DL, Kim, JL, Khodour, Y, McCammon, JM, Mitalipova, M, Jaenisch, R, Futerman, AH, Sive, H. 2022. iScience 25, 103551.
    doi: 10.1016/j.isci.2021.103551PMID:34984324
  8. Reply to Briggs et al.: Genomic integration and expression of SARS-CoV-2 sequences can explain prolonged or recurrent viral RNA detection. Zhang, L, Richards, A, Barrasa, MI, Hughes, SH, Young, RA, Jaenisch, R. 2021. Proc Natl Acad Sci U S A 118, .
    doi: 10.1073/pnas.2114995118PMID:34702742
  9. Whole chromosome loss and genomic instability in mouse embryos after CRISPR-Cas9 genome editing. Papathanasiou, S, Markoulaki, S, Blaine, LJ, Leibowitz, ML, Zhang, CZ, Jaenisch, R, Pellman, D. 2021. Nat Commun 12, 5855.
    doi: 10.1038/s41467-021-26097-yPMID:34615869
  10. OCT4 cooperates with distinct ATP-dependent chromatin remodelers in naïve and primed pluripotent states in human. Huang, X, Park, KM, Gontarz, P, Zhang, B, Pan, J, McKenzie, Z, Fischer, LA, Dong, C, Dietmann, S, Xing, X et al.. 2021. Nat Commun 12, 5123.
    doi: 10.1038/s41467-021-25107-3PMID:34446700
  11. Response to Parry et al.: Strong evidence for genomic integration of SARS-CoV-2 sequences and expression in patient tissues. Zhang, L, Richards, A, Barrasa, MI, Hughes, SH, Young, RA, Jaenisch, R. 2021. Proc Natl Acad Sci U S A 118, .
    doi: 10.1073/pnas.2109497118PMID:34344760
More Publications








Photo credit: Gretchen Ertl/Whitehead Institute