Rudolf Jaenisch

Rudolf Jaenisch

Professor of Biology; Member, Whitehead Institute; Member, Institute of Medicine

Rudolf Jaenisch uses pluripotent cells (ES and iPS cells) to study the genetic and epigenetic basis of human diseases such as Parkinson’s, Alzheimer’s, autism and cancer.

617-258-5186

Phone

WI-461B

Office

Robert Burger

Assistant

617-258-7137

Assistant Phone

Education

  • MD, 1967, University of Munich

Research Summary

We aim to understand the epigenetic regulation of gene expression in mammalian development and disease. Embryonic stem cells are important because they have the potential to generate any cell type in the body and, therefore, have great potential for regenerative medicine. We study the way somatic cells reprogram to an embryonic pluripotent state, and use patient specific pluripotent cells to study complex human diseases.

Awards

  • German Society for Biochemistry and Molecular Biology, Otto Warburg Medal, 2014
  • New York Academy, Medicine Medal, 2013
  • Franklin Institute, Benjamin Franklin Medal, 2013
  • National Science Foundation, National Medal of Science, 2011
  • National Science Foundation, National Medal of Science, 2010
  • National Academy of Sciences, Member, 2003

Key Publications

  1. Editing DNA Methylation in the Mammalian Genome. Liu, XS, Wu, H, Ji, X, Stelzer, Y, Wu, X, Czauderna, S, Shu, J, Dadon, D, Young, RA, Jaenisch, R et al.. 2016. Cell 167, 233-247.e17.
    doi: 10.1016/j.cell.2016.08.056PMID:27662091
  2. Parkinson-associated risk variant in distal enhancer of α-synuclein modulates target gene expression. Soldner, F, Stelzer, Y, Shivalila, CS, Abraham, BJ, Latourelle, JC, Barrasa, MI, Goldmann, J, Myers, RH, Young, RA, Jaenisch, R et al.. 2016. Nature 533, 95-9.
    doi: 10.1038/nature17939PMID:27096366
  3. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Wang, H, Yang, H, Shivalila, CS, Dawlaty, MM, Cheng, AW, Zhang, F, Jaenisch, R. 2013. Cell 153, 910-8.
    doi: 10.1016/j.cell.2013.04.025PMID:23643243
  4. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Wernig, M, Meissner, A, Foreman, R, Brambrink, T, Ku, M, Hochedlinger, K, Bernstein, BE, Jaenisch, R. 2007. Nature 448, 318-24.
    doi: 10.1038/nature05944PMID:17554336
  5. Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Hochedlinger, K, Jaenisch, R. 2002. Nature 415, 1035-8.
    doi: 10.1038/nature718PMID:11875572

Recent Publications

  1. Whole chromosome loss and genomic instability in mouse embryos after CRISPR-Cas9 genome editing. Papathanasiou, S, Markoulaki, S, Blaine, LJ, Leibowitz, ML, Zhang, CZ, Jaenisch, R, Pellman, D. 2021. Nat Commun 12, 5855.
    doi: 10.1038/s41467-021-26097-yPMID:34615869
  2. OCT4 cooperates with distinct ATP-dependent chromatin remodelers in naïve and primed pluripotent states in human. Huang, X, Park, KM, Gontarz, P, Zhang, B, Pan, J, McKenzie, Z, Fischer, LA, Dong, C, Dietmann, S, Xing, X et al.. 2021. Nat Commun 12, 5123.
    doi: 10.1038/s41467-021-25107-3PMID:34446700
  3. Response to Parry et al.: Strong evidence for genomic integration of SARS-CoV-2 sequences and expression in patient tissues. Zhang, L, Richards, A, Barrasa, MI, Hughes, SH, Young, RA, Jaenisch, R. 2021. Proc Natl Acad Sci U S A 118, .
    doi: 10.1073/pnas.2109497118PMID:34344760
  4. Probing the signaling requirements for naive human pluripotency by high-throughput chemical screening. Khan, SA, Park, KM, Fischer, LA, Dong, C, Lungjangwa, T, Jimenez, M, Casalena, D, Chew, B, Dietmann, S, Auld, DS et al.. 2021. Cell Rep 35, 109233.
    doi: 10.1016/j.celrep.2021.109233PMID:34133938
  5. Reverse-transcribed SARS-CoV-2 RNA can integrate into the genome of cultured human cells and can be expressed in patient-derived tissues. Zhang, L, Richards, A, Barrasa, MI, Hughes, SH, Young, RA, Jaenisch, R. 2021. Proc Natl Acad Sci U S A 118, .
    doi: 10.1073/pnas.2105968118PMID:33958444
  6. The role of GABAergic signalling in neurodevelopmental disorders. Tang, X, Jaenisch, R, Sur, M. 2021. Nat Rev Neurosci 22, 290-307.
    doi: 10.1038/s41583-021-00443-xPMID:33772226
  7. Human physiomimetic model integrating microphysiological systems of the gut, liver, and brain for studies of neurodegenerative diseases. Trapecar, M, Wogram, E, Svoboda, D, Communal, C, Omer, A, Lungjangwa, T, Sphabmixay, P, Velazquez, J, Schneider, K, Wright, CW et al.. 2021. Sci Adv 7, .
    doi: 10.1126/sciadv.abd1707PMID:33514545
  8. Telomerase expression marks transitional growth-associated skeletal progenitor/stem cells. Carlone, DL, Riba-Wolman, RD, Deary, LT, Tovaglieri, A, Jiang, L, Ambruzs, DM, Mead, BE, Shah, MS, Lengner, CJ, Jaenisch, R et al.. 2021. Stem Cells 39, 296-305.
    doi: 10.1002/stem.3318PMID:33438789
  9. In situ genome sequencing resolves DNA sequence and structure in intact biological samples. Payne, AC, Chiang, ZD, Reginato, PL, Mangiameli, SM, Murray, EM, Yao, CC, Markoulaki, S, Earl, AS, Labade, AS, Jaenisch, R et al.. 2021. Science 371, .
    doi: 10.1126/science.aay3446PMID:33384301
  10. Human T Cells Expressing a CD19 CAR-T Receptor Provide Insights into Mechanisms of Human CD19-Positive β Cell Destruction. Ma, H, Jeppesen, JF, Jaenisch, R. 2020. Cell Rep Med 1, 100097.
    doi: 10.1016/j.xcrm.2020.100097PMID:33205073
  11. Engineered tissues and strategies to overcome challenges in drug development. Khalil, AS, Jaenisch, R, Mooney, DJ. 2020. Adv Drug Deliv Rev 158, 116-139.
    doi: 10.1016/j.addr.2020.09.012PMID:32987094
More Publications

Multimedia

 

<

 

 

 

 

Photo credit: Gretchen Ertl/Whitehead Institute