Rudolf Jaenisch

Rudolf Jaenisch

Professor of Biology; Member, Whitehead Institute; Member, Institute of Medicine

Rudolf Jaenisch uses pluripotent cells (ES and iPS cells) to study the genetic and epigenetic basis of human diseases such as Parkinson’s, Alzheimer’s, autism and cancer.





Robert Burger



Assistant Phone


MD 1967, University of Munich

Research Summary

We aim to understand the epigenetic regulation of gene expression in mammalian development and disease. Embryonic stem cells are important because they have the potential to generate any cell type in the body and, therefore, have great potential for regenerative medicine. We study the way somatic cells reprogram to an embryonic pluripotent state, and use patient specific pluripotent cells to study complex human diseases.


  • German Society for Biochemistry and Molecular Biology, Otto Warburg Medal, 2014
  • New York Academy, Medicine Medal, 2013
  • Franklin Institute, Benjamin Franklin Medal, 2013
  • National Science Foundation, National Medal of Science, 2011
  • National Science Foundation, National Medal of Science, 2010
  • National Academy of Sciences, Member, 2003

Key Publications

  1. Editing DNA Methylation in the Mammalian Genome. Liu, XS, Wu, H, Ji, X, Stelzer, Y, Wu, X, Czauderna, S, Shu, J, Dadon, D, Young, RA, Jaenisch, R. 2016. Cell 167, 233-247.e17.
    doi: 10.1016/j.cell.2016.08.056PMID: 27662091
  2. Parkinson-associated risk variant in distal enhancer of α-synuclein modulates target gene expression. Soldner, F, Stelzer, Y, Shivalila, CS, Abraham, BJ, Latourelle, JC, Barrasa, MI, Goldmann, J, Myers, RH, Young, RA, Jaenisch, R. 2016. Nature 533, 95-9.
    doi: 10.1038/nature17939PMID: 27096366
  3. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Wang, H, Yang, H, Shivalila, CS, Dawlaty, MM, Cheng, AW, Zhang, F, Jaenisch, R. 2013. Cell 153, 910-8.
    doi: 10.1016/j.cell.2013.04.025PMID: 23643243
  4. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Wernig, M, Meissner, A, Foreman, R, Brambrink, T, Ku, M, Hochedlinger, K, Bernstein, BE, Jaenisch, R. 2007. Nature 448, 318-24.
    doi: 10.1038/nature05944PMID: 17554336
  5. Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Hochedlinger, K, Jaenisch, R. 2002. Nature 415, 1035-8.
    doi: 10.1038/nature718PMID: 11875572

Recent Publications

  1. Rescue of Fragile X Syndrome Neurons by DNA Methylation Editing of the FMR1 Gene. Liu, XS, Wu, H, Krzisch, M, Wu, X, Graef, J, Muffat, J, Hnisz, D, Li, CH, Yuan, B, Xu, C et al.. 2018. Cell 172, 979-992.e6.
    doi: 10.1016/j.cell.2018.01.012PMID: 29456084
  2. Mechanisms of gene regulation in human embryos and pluripotent stem cells. Theunissen, TW, Jaenisch, R. 2017. Development 144, 4496-4509.
    doi: 10.1242/dev.157404PMID: 29254992
  3. YY1 Is a Structural Regulator of Enhancer-Promoter Loops. Weintraub, AS, Li, CH, Zamudio, AV, Sigova, AA, Hannett, NM, Day, DS, Abraham, BJ, Cohen, MA, Nabet, B, Buckley, DL et al.. 2017. Cell 171, 1573-1588.e28.
    doi: 10.1016/j.cell.2017.11.008PMID: 29224777
  4. S-Nitrosylation of PINK1 Attenuates PINK1/Parkin-Dependent Mitophagy in hiPSC-Based Parkinson's Disease Models. Oh, CK, Sultan, A, Platzer, J, Dolatabadi, N, Soldner, F, McClatchy, DB, Diedrich, JK, Yates, JR 3rd, Ambasudhan, R, Nakamura, T et al.. 2017. Cell Rep 21, 2171-2182.
    doi: 10.1016/j.celrep.2017.10.068PMID: 29166608
  5. Dynamics of lineage commitment revealed by single-cell transcriptomics of differentiating embryonic stem cells. Semrau, S, Goldmann, JE, Soumillon, M, Mikkelsen, TS, Jaenisch, R, van Oudenaarden, A. 2017. Nat Commun 8, 1096.
    doi: 10.1038/s41467-017-01076-4PMID: 29061959
  6. Human Embryo Editing: Opportunities and Importance of Transnational Cooperation. Pei, D, Beier, DW, Levy-Lahad, E, Marchant, G, Rossant, J, Izpisua Belmonte, JC, Lovell-Badge, R, Jaenisch, R, Charo, A, Baltimore, D. 2017. Cell Stem Cell 21, 423-426.
    doi: 10.1016/j.stem.2017.09.010PMID: 28985523
  7. MeCP2-regulated miRNAs control early human neurogenesis through differential effects on ERK and AKT signaling. Mellios, N, Feldman, DA, Sheridan, SD, Ip, JPK, Kwok, S, Amoah, SK, Rosen, B, Rodriguez, BA, Crawford, B, Swaminathan, R et al.. 2017. Mol. Psychiatry , .
    doi: 10.1038/mp.2017.86PMID: 28439102
  8. SMARCE1 is required for the invasive progression of in situ cancers. Sokol, ES, Feng, YX, Jin, DX, Tizabi, MD, Miller, DH, Cohen, MA, Sanduja, S, Reinhardt, F, Pandey, J, Superville, DA et al.. 2017. Proc. Natl. Acad. Sci. U.S.A. 114, 4153-4158.
    doi: 10.1073/pnas.1703931114PMID: 28377514
  9. Tet1 in Nucleus Accumbens Opposes Depression- and Anxiety-Like Behaviors. Feng, J, Pena, CJ, Purushothaman, I, Engmann, O, Walker, D, Brown, AN, Issler, O, Doyle, M, Harrigan, E, Mouzon, E et al.. 2017. Neuropsychopharmacology 42, 1657-1669.
    doi: 10.1038/npp.2017.6PMID: 28074830
  10. Induction of Expansion and Folding in Human Cerebral Organoids. Li, Y, Muffat, J, Omer, A, Bosch, I, Lancaster, MA, Sur, M, Gehrke, L, Knoblich, JA, Jaenisch, R. 2017. Cell Stem Cell 20, 385-396.e3.
    doi: 10.1016/j.stem.2016.11.017PMID: 28041895
More Publications






Photo credit: Gretchen Ertl/Whitehead Institute