Rudolf Jaenisch

Rudolf Jaenisch

Professor of Biology; Core Member, Whitehead Institute; Member, Institute of Medicine

Rudolf Jaenisch uses pluripotent cells (ES and iPS cells) to study the genetic and epigenetic basis of human diseases such as Parkinson’s, Alzheimer’s, autism and cancer.

617-258-5186

Phone

WI-461B

Office

Whitehead Institute for Biomedical Research

Location

Robert Burger

Assistant

617-258-7137

Assistant Phone

Education

  • MD, 1967, University of Munich

Research Summary

We aim to understand the epigenetic regulation of gene expression in mammalian development and disease. Embryonic stem cells are important because they have the potential to generate any cell type in the body and, therefore, have great potential for regenerative medicine. We study the way somatic cells reprogram to an embryonic pluripotent state, and use patient specific pluripotent cells to study complex human diseases.

Awards

  • German Society for Biochemistry and Molecular Biology, Otto Warburg Medal, 2014
  • New York Academy, Medicine Medal, 2013
  • Franklin Institute, Benjamin Franklin Medal, 2013
  • National Science Foundation, National Medal of Science, 2011
  • National Science Foundation, National Medal of Science, 2010
  • National Academy of Sciences, Member, 2003

Key Publications

  1. Editing DNA Methylation in the Mammalian Genome. Liu, XS, Wu, H, Ji, X, Stelzer, Y, Wu, X, Czauderna, S, Shu, J, Dadon, D, Young, RA, Jaenisch, R et al.. 2016. Cell 167, 233-247.e17.
    doi: 10.1016/j.cell.2016.08.056PMID:27662091
  2. Parkinson-associated risk variant in distal enhancer of α-synuclein modulates target gene expression. Soldner, F, Stelzer, Y, Shivalila, CS, Abraham, BJ, Latourelle, JC, Barrasa, MI, Goldmann, J, Myers, RH, Young, RA, Jaenisch, R et al.. 2016. Nature 533, 95-9.
    doi: 10.1038/nature17939PMID:27096366
  3. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Wang, H, Yang, H, Shivalila, CS, Dawlaty, MM, Cheng, AW, Zhang, F, Jaenisch, R. 2013. Cell 153, 910-8.
    doi: 10.1016/j.cell.2013.04.025PMID:23643243
  4. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Wernig, M, Meissner, A, Foreman, R, Brambrink, T, Ku, M, Hochedlinger, K, Bernstein, BE, Jaenisch, R. 2007. Nature 448, 318-24.
    doi: 10.1038/nature05944PMID:17554336
  5. Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Hochedlinger, K, Jaenisch, R. 2002. Nature 415, 1035-8.
    doi: 10.1038/nature718PMID:11875572

Recent Publications

  1. NAD depletion mediates cytotoxicity in human neurons with autophagy deficiency. Sun, C, Seranova, E, Cohen, MA, Chipara, M, Roberts, J, Astuti, D, Palhegyi, AM, Acharjee, A, Sedlackova, L, Kataura, T et al.. 2023. Cell Rep 42, 112372.
    doi: 10.1016/j.celrep.2023.112372PMID:37086404
  2. LINE1-Mediated Reverse Transcription and Genomic Integration of SARS-CoV-2 mRNA Detected in Virus-Infected but Not in Viral mRNA-Transfected Cells. Zhang, L, Bisht, P, Flamier, A, Barrasa, MI, Friesen, M, Richards, A, Hughes, SH, Jaenisch, R. 2023. Viruses 15, .
    doi: 10.3390/v15030629PMID:36992338
  3. Multiplex epigenome editing of MECP2 to rescue Rett syndrome neurons. Qian, J, Guan, X, Xie, B, Xu, C, Niu, J, Tang, X, Li, CH, Colecraft, HM, Jaenisch, R, Liu, XS et al.. 2023. Sci Transl Med 15, eadd4666.
    doi: 10.1126/scitranslmed.add4666PMID:36652535
  4. Tunable Conductive Hydrogel Scaffolds for Neural Cell Differentiation. Tringides, CM, Boulingre, M, Khalil, A, Lungjangwa, T, Jaenisch, R, Mooney, DJ. 2023. Adv Healthc Mater 12, e2202221.
    doi: 10.1002/adhm.202202221PMID:36495560
  5. The dynamic clustering of insulin receptor underlies its signaling and is disrupted in insulin resistance. Dall'Agnese, A, Platt, JM, Zheng, MM, Friesen, M, Dall'Agnese, G, Blaise, AM, Spinelli, JB, Henninger, JE, Tevonian, EN, Hannett, NM et al.. 2022. Nat Commun 13, 7522.
    doi: 10.1038/s41467-022-35176-7PMID:36473871
  6. Autophagy promotes cell survival by maintaining NAD levels. Kataura, T, Sedlackova, L, Otten, EG, Kumari, R, Shapira, D, Scialo, F, Stefanatos, R, Ishikawa, KI, Kelly, G, Seranova, E et al.. 2022. Dev Cell 57, 2584-2598.e11.
    doi: 10.1016/j.devcel.2022.10.008PMID:36413951
  7. Fragile X Syndrome Patient-Derived Neurons Developing in the Mouse Brain Show FMR1-Dependent Phenotypes. Krzisch, MA, Wu, H, Yuan, B, Whitfield, TW, Liu, XS, Fu, D, Garrett-Engele, CM, Khalil, AS, Lungjangwa, T, Shih, J et al.. 2023. Biol Psychiatry 93, 71-81.
    doi: 10.1016/j.biopsych.2022.08.020PMID:36372569
  8. Mesenchymal and adrenergic cell lineage states in neuroblastoma possess distinct immunogenic phenotypes. Sengupta, S, Das, S, Crespo, AC, Cornel, AM, Patel, AG, Mahadevan, NR, Campisi, M, Ali, AK, Sharma, B, Rowe, JH et al.. 2022. Nat Cancer 3, 1228-1246.
    doi: 10.1038/s43018-022-00427-5PMID:36138189
  9. SARS-CoV-2 infection of human pluripotent stem cell-derived liver organoids reveals potential mechanisms of liver pathology. Richards, A, Friesen, M, Khalil, A, Barrasa, MI, Gehrke, L, Jaenisch, R. 2022. iScience 25, 105146.
    doi: 10.1016/j.isci.2022.105146PMID:36128218
  10. Development of a physiological insulin resistance model in human stem cell-derived adipocytes. Friesen, M, Khalil, AS, Barrasa, MI, Jeppesen, JF, Mooney, DJ, Jaenisch, R. 2022. Sci Adv 8, eabn7298.
    doi: 10.1126/sciadv.abn7298PMID:35714187
  11. The nuclear receptor THRB facilitates differentiation of human PSCs into more mature hepatocytes. Ma, H, de Zwaan, E, Guo, YE, Cejas, P, Thiru, P, van de Bunt, M, Jeppesen, JF, Syamala, S, Dall'Agnese, A, Abraham, BJ et al.. 2022. Cell Stem Cell 29, 795-809.e11.
    doi: 10.1016/j.stem.2022.03.015PMID:35452598
More Publications

Multimedia

 

<

 

 

 

 

Photo credit: Gretchen Ertl/Whitehead Institute