Robert A. Weinberg

Robert A. Weinberg

Daniel K. Ludwig Professor for Cancer Research; Member, Whitehead Institute

Robert A. Weinberg studies how cancer spreads, what gives cancer stem-cells their unique qualities, and the molecular players involved in the formation of cancer stem cells and metastases.





Christine Hickey



Assistant Phone


  • PhD, 1969, MIT
  • SB, 1964, Biology, MIT

Research Summary

We investigate three broad questions related to the origin and spread of cancer. First, how do cancer cells within a primary tumor acquire the ability to invade and metastasize? Second, how are the stem-cell state and the epithelial-mesenchymal transition interrelated? Third, how are the regulators of the epithelial-mesenchymal transition able to activate this profound change in cell phenotype?


  • Japan Prize, Japan Prize Foundation, 2021
  • Salk Institute Medal for Research Excellence, 2016
  • Breakthrough Prize in Life Sciences, 2013
  • Wolf Foundation Prize, 2004
  • Institute of Medicine, Member, 2000
  • Keio Medical Science Foundation Prize, 1997
  • National Science Foundation, National Medal of Science, 1997
  • Harvey Prize, 1994
  • American Academy of Arts and Sciences, Fellow, 1987
  • Sloan Prize, GM Cancer Research Foundation, 1987
  • National Academy of Sciences, Member, 1985
  • Robert Koch Foundation Prize, 1983

Key Publications

  1. The epithelial-mesenchymal transition generates cells with properties of stem cells. Mani, SA, Guo, W, Liao, MJ, Eaton, EN, Ayyanan, A, Zhou, AY, Brooks, M, Reinhard, F, Zhang, CC, Shipitsin, M et al.. 2008. Cell 133, 704-15.
    doi: 10.1016/j.cell.2008.03.027PMID:18485877
  2. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Yang, J, Mani, SA, Donaher, JL, Ramaswamy, S, Itzykson, RA, Come, C, Savagner, P, Gitelman, I, Richardson, A, Weinberg, RA et al.. 2004. Cell 117, 927-39.
    doi: 10.1016/j.cell.2004.06.006PMID:15210113
  3. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Friend, SH, Bernards, R, Rogelj, S, Weinberg, RA, Rapaport, JM, Albert, DM, Dryja, TP. Nature 323, 643-6.
    doi: 10.1038/323643a0PMID:2877398
  4. Mechanism of activation of a human oncogene. Tabin, CJ, Bradley, SM, Bargmann, CI, Weinberg, RA, Papageorge, AG, Scolnick, EM, Dhar, R, Lowy, DR, Chang, EH. 1982. Nature 300, 143-9.
    doi: 10.1038/300143a0PMID:6290897
  5. Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts. Shih, C, Padhy, LC, Murray, M, Weinberg, RA. 1981. Nature 290, 261-4.
    doi: 10.1038/290261a0PMID:7207618

Recent Publications

  1. Measuring kinetics and metastatic propensity of CTCs by blood exchange between mice. Hamza, B, Miller, AB, Meier, L, Stockslager, M, Ng, SR, King, EM, Lin, L, DeGouveia, KL, Mulugeta, N, Calistri, NL et al.. 2021. Nat Commun 12, 5680.
    doi: 10.1038/s41467-021-25917-5PMID:34584084
  2. Linking EMT programmes to normal and neoplastic epithelial stem cells. Lambert, AW, Weinberg, RA. 2021. Nat Rev Cancer 21, 325-338.
    doi: 10.1038/s41568-021-00332-6PMID:33547455
  3. Direct and Indirect Regulators of Epithelial-Mesenchymal Transition-Mediated Immunosuppression in Breast Carcinomas. Dongre, A, Rashidian, M, Eaton, EN, Reinhardt, F, Thiru, P, Zagorulya, M, Nepal, S, Banaz, T, Martner, A, Spranger, S et al.. 2021. Cancer Discov 11, 1286-1305.
    doi: 10.1158/2159-8290.CD-20-0603PMID:33328216
  4. Genetically Defined Syngeneic Mouse Models of Ovarian Cancer as Tools for the Discovery of Combination Immunotherapy. Iyer, S, Zhang, S, Yucel, S, Horn, H, Smith, SG, Reinhardt, F, Hoefsmit, E, Assatova, B, Casado, J, Meinsohn, MC et al.. 2021. Cancer Discov 11, 384-407.
    doi: 10.1158/2159-8290.CD-20-0818PMID:33158843
  5. Genetically Defined, Syngeneic Organoid Platform for Developing Combination Therapies for Ovarian Cancer. Zhang, S, Iyer, S, Ran, H, Dolgalev, I, Gu, S, Wei, W, Foster, CJR, Loomis, CA, Olvera, N, Dao, F et al.. 2021. Cancer Discov 11, 362-383.
    doi: 10.1158/2159-8290.CD-20-0455PMID:33158842
  6. Emerging Mechanisms by which EMT Programs Control Stemness. Wilson, MM, Weinberg, RA, Lees, JA, Guen, VJ. 2020. Trends Cancer 6, 775-780.
    doi: 10.1016/j.trecan.2020.03.011PMID:32312682
  7. Guidelines and definitions for research on epithelial-mesenchymal transition. Yang, J, Antin, P, Berx, G, Blanpain, C, Brabletz, T, Bronner, M, Campbell, K, Cano, A, Casanova, J, Christofori, G et al.. 2020. Nat Rev Mol Cell Biol 21, 341-352.
    doi: 10.1038/s41580-020-0237-9PMID:32300252
  8. Syndecan-Mediated Ligation of ECM Proteins Triggers Proliferative Arrest of Disseminated Tumor Cells. Shibue, T, Reinhardt, F, Weinberg, RA. 2019. Cancer Res 79, 5944-5957.
    doi: 10.1158/0008-5472.CAN-19-1165PMID:31481497
  9. Immuno-PET identifies the myeloid compartment as a key contributor to the outcome of the antitumor response under PD-1 blockade. Rashidian, M, LaFleur, MW, Verschoor, VL, Dongre, A, Zhang, Y, Nguyen, TH, Kolifrath, S, Aref, AR, Lau, CJ, Paweletz, CP et al.. 2019. Proc Natl Acad Sci U S A 116, 16971-16980.
    doi: 10.1073/pnas.1905005116PMID:31375632
  10. EMT and Cancer: More Than Meets the Eye. Derynck, R, Weinberg, RA. 2019. Dev Cell 49, 313-316.
    doi: 10.1016/j.devcel.2019.04.026PMID:31063750
More Publications










Photo credit: Gretchen Ertl/Whitehead Institute