Robert A. Weinberg

Robert A. Weinberg

Daniel K. Ludwig Professor for Cancer Research; Core Member, Whitehead Institute

Robert A. Weinberg studies how cancer spreads, what gives cancer stem-cells their unique qualities, and the molecular players involved in the formation of cancer stem cells and metastases.

617-258-5159

Phone

WI-301

Office

Sumiko Williams

Assistant

617-258-5195

Assistant Phone

Education

  • PhD, 1969, MIT
  • SB, 1964, Biology, MIT

Research Summary

We investigate three broad questions related to the origin and spread of cancer. First, how do cancer cells within a primary tumor acquire the ability to invade and metastasize? Second, how are the stem-cell state and the epithelial-mesenchymal transition interrelated? Third, how are the regulators of the epithelial-mesenchymal transition able to activate this profound change in cell phenotype?

Awards

  • Japan Prize, Japan Prize Foundation, 2021
  • Salk Institute Medal for Research Excellence, 2016
  • Breakthrough Prize in Life Sciences, 2013
  • Wolf Foundation Prize, 2004
  • Institute of Medicine, Member, 2000
  • Keio Medical Science Foundation Prize, 1997
  • National Science Foundation, National Medal of Science, 1997
  • Harvey Prize, 1994
  • American Academy of Arts and Sciences, Fellow, 1987
  • Sloan Prize, GM Cancer Research Foundation, 1987
  • National Academy of Sciences, Member, 1985
  • Robert Koch Foundation Prize, 1983

Key Publications

  1. The epithelial-mesenchymal transition generates cells with properties of stem cells. Mani, SA, Guo, W, Liao, MJ, Eaton, EN, Ayyanan, A, Zhou, AY, Brooks, M, Reinhard, F, Zhang, CC, Shipitsin, M et al.. 2008. Cell 133, 704-15.
    doi: 10.1016/j.cell.2008.03.027PMID:18485877
  2. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Yang, J, Mani, SA, Donaher, JL, Ramaswamy, S, Itzykson, RA, Come, C, Savagner, P, Gitelman, I, Richardson, A, Weinberg, RA et al.. 2004. Cell 117, 927-39.
    doi: 10.1016/j.cell.2004.06.006PMID:15210113
  3. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Friend, SH, Bernards, R, Rogelj, S, Weinberg, RA, Rapaport, JM, Albert, DM, Dryja, TP. Nature 323, 643-6.
    doi: 10.1038/323643a0PMID:2877398
  4. Mechanism of activation of a human oncogene. Tabin, CJ, Bradley, SM, Bargmann, CI, Weinberg, RA, Papageorge, AG, Scolnick, EM, Dhar, R, Lowy, DR, Chang, EH. 1982. Nature 300, 143-9.
    doi: 10.1038/300143a0PMID:6290897
  5. Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts. Shih, C, Padhy, LC, Murray, M, Weinberg, RA. 1981. Nature 290, 261-4.
    doi: 10.1038/290261a0PMID:7207618

Recent Publications

  1. Genome-wide CRISPR screen identifies PRC2 and KMT2D-COMPASS as regulators of distinct EMT trajectories that contribute differentially to metastasis. Zhang, Y, Donaher, JL, Das, S, Li, X, Reinhardt, F, Krall, JA, Lambert, AW, Thiru, P, Keys, HR, Khan, M et al.. 2022. Nat Cell Biol 24, 554-564.
    doi: 10.1038/s41556-022-00877-0PMID:35411083
  2. An EMT-primary cilium-GLIS2 signaling axis regulates mammogenesis and claudin-low breast tumorigenesis. Wilson, MM, Callens, C, Le Gallo, M, Mironov, S, Ding, Q, Salamagnon, A, Chavarria, TE, Viel, R, Peasah, AD, Bhutkar, A et al.. 2021. Sci Adv 7, eabf6063.
    doi: 10.1126/sciadv.abf6063PMID:34705506
  3. Leveraging immunochemotherapy for treating pancreatic cancer. Dongre, A, Weinberg, RA. 2021. Cell Res 31, 1228-1229.
    doi: 10.1038/s41422-021-00574-xPMID:34667266
  4. Author Correction: Guidelines and definitions for research on epithelial-mesenchymal transition. Yang, J, Antin, P, Berx, G, Blanpain, C, Brabletz, T, Bronner, M, Campbell, K, Cano, A, Casanova, J, Christofori, G et al.. 2021. Nat Rev Mol Cell Biol 22, 834.
    doi: 10.1038/s41580-021-00428-9PMID:34654908
  5. Measuring kinetics and metastatic propensity of CTCs by blood exchange between mice. Hamza, B, Miller, AB, Meier, L, Stockslager, M, Ng, SR, King, EM, Lin, L, DeGouveia, KL, Mulugeta, N, Calistri, NL et al.. 2021. Nat Commun 12, 5680.
    doi: 10.1038/s41467-021-25917-5PMID:34584084
  6. Linking EMT programmes to normal and neoplastic epithelial stem cells. Lambert, AW, Weinberg, RA. 2021. Nat Rev Cancer 21, 325-338.
    doi: 10.1038/s41568-021-00332-6PMID:33547455
  7. Direct and Indirect Regulators of Epithelial-Mesenchymal Transition-Mediated Immunosuppression in Breast Carcinomas. Dongre, A, Rashidian, M, Eaton, EN, Reinhardt, F, Thiru, P, Zagorulya, M, Nepal, S, Banaz, T, Martner, A, Spranger, S et al.. 2021. Cancer Discov 11, 1286-1305.
    doi: 10.1158/2159-8290.CD-20-0603PMID:33328216
  8. Genetically Defined Syngeneic Mouse Models of Ovarian Cancer as Tools for the Discovery of Combination Immunotherapy. Iyer, S, Zhang, S, Yucel, S, Horn, H, Smith, SG, Reinhardt, F, Hoefsmit, E, Assatova, B, Casado, J, Meinsohn, MC et al.. 2021. Cancer Discov 11, 384-407.
    doi: 10.1158/2159-8290.CD-20-0818PMID:33158843
  9. Genetically Defined, Syngeneic Organoid Platform for Developing Combination Therapies for Ovarian Cancer. Zhang, S, Iyer, S, Ran, H, Dolgalev, I, Gu, S, Wei, W, Foster, CJR, Loomis, CA, Olvera, N, Dao, F et al.. 2021. Cancer Discov 11, 362-383.
    doi: 10.1158/2159-8290.CD-20-0455PMID:33158842
  10. Emerging Mechanisms by which EMT Programs Control Stemness. Wilson, MM, Weinberg, RA, Lees, JA, Guen, VJ. 2020. Trends Cancer 6, 775-780.
    doi: 10.1016/j.trecan.2020.03.011PMID:32312682
More Publications

Multimedia

 

 

 

 

 

 

 

 

Photo credit: Gretchen Ertl/Whitehead Institute