Jonathan Weissman

Jonathan Weissman

Professor of Biology; Core Member, Whitehead Institute; Investigator, Howard Hughes Medical Institute

Jonathan Weissman investigates how proteins fold into their correct shape and how misfolding impacts disease and normal physiology, while building innovative tools for exploring the organizational principles of biological systems.

617-324-1483

Phone

WI-661B

Office

Whitehead Institute for Biomedical Research

Location

Maria Gould

Assistant

Education

  • PhD, 1993, MIT
  • AB, 1988, Physics, Harvard

Research Summary

We study how cells ensure that proteins fold into their correct shape, as well as the role of protein misfolding in disease and normal physiology. We also build innovative tools for broadly exploring organizational principles of biological systems. These include ribosome profiling, which globally monitors protein translation, CRIPSRi/a for controlling the expression of human genes and rewiring the epigenome, and lineage tracing tools, to record the history of cells.

Awards

  • Ira Herskowitz Award, Genetic Society of America, 2020
  • European Molecular Biology Organization, Member, 2017
  • National Academy of Sciences Award for Scientific Discovery, 2015
  • American Academy of Microbiology, Fellow, 2010
  • National Academy of Sciences, Member, 2009
  • Raymond and Beverly Sackler International Prize in Biophysics, Tel Aviv University, 2008
  • Protein Society Irving Sigal Young Investigator’s Award, 2004
  • Howard Hughes Medical Institute, Assistant Investigator, 2000
  • Searle Scholars Program Fellowship, 1997
  • David and Lucile Packard Fellowship, 1996

Recent Publications

  1. Triaging of α-helical proteins to the mitochondrial outer membrane by distinct chaperone machinery based on substrate topology. Muthukumar, G, Stevens, TA, Inglis, AJ, Esantsi, TK, Saunders, RA, Schulte, F, Voorhees, RM, Guna, A, Weissman, JS. 2024. Mol Cell 84, 1101-1119.e9.
    doi: 10.1016/j.molcel.2024.01.028PMID:38428433
  2. Triaging of α-helical proteins to the mitochondrial outer membrane by distinct chaperone machinery based on substrate topology. Muthukumar, G, Stevens, TA, Inglis, AJ, Esantsi, TK, Saunders, RA, Schulte, F, Voorhees, RM, Guna, A, Weissman, JS. 2023. bioRxiv , .
    doi: 10.1101/2023.08.16.553624PMID:37645817
  3. Ras-mutant cancers are sensitive to small molecule inhibition of V-type ATPases in mice. Tolani, B, Celli, A, Yao, Y, Tan, YZ, Fetter, R, Liem, CR, de Smith, AJ, Vasanthakumar, T, Bisignano, P, Cotton, AD et al.. 2022. Nat Biotechnol 40, 1834-1844.
    doi: 10.1038/s41587-022-01386-zPMID:35879364
  4. Mapping information-rich genotype-phenotype landscapes with genome-scale Perturb-seq. Replogle, JM, Saunders, RA, Pogson, AN, Hussmann, JA, Lenail, A, Guna, A, Mascibroda, L, Wagner, EJ, Adelman, K, Lithwick-Yanai, G et al.. 2022. Cell 185, 2559-2575.e28.
    doi: 10.1016/j.cell.2022.05.013PMID:35688146
  5. Lineage tracing reveals the phylodynamics, plasticity, and paths of tumor evolution. Yang, D, Jones, MG, Naranjo, S, Rideout, WM 3rd, Min, KHJ, Ho, R, Wu, W, Replogle, JM, Page, JL, Quinn, JJ et al.. 2022. Cell 185, 1905-1923.e25.
    doi: 10.1016/j.cell.2022.04.015PMID:35523183
  6. Mapping transcriptomic vector fields of single cells. Qiu, X, Zhang, Y, Martin-Rufino, JD, Weng, C, Hosseinzadeh, S, Yang, D, Pogson, AN, Hein, MY, Hoi Joseph Min, K, Wang, L et al.. 2022. Cell 185, 690-711.e45.
    doi: 10.1016/j.cell.2021.12.045PMID:35108499
  7. Functional single-cell genomics of human cytomegalovirus infection. Hein, MY, Weissman, JS. 2022. Nat Biotechnol 40, 391-401.
    doi: 10.1038/s41587-021-01059-3PMID:34697476
  8. CRISPR-based functional genomics in human dendritic cells. Jost, M, Jacobson, AN, Hussmann, JA, Cirolia, G, Fischbach, MA, Weissman, JS. 2021. Elife 10, .
    doi: 10.7554/eLife.65856PMID:33904395
  9. Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Nuñez, JK, Chen, J, Pommier, GC, Cogan, JZ, Replogle, JM, Adriaens, C, Ramadoss, GN, Shi, Q, Hung, KL, Samelson, AJ et al.. 2021. Cell 184, 2503-2519.e17.
    doi: 10.1016/j.cell.2021.03.025PMID:33838111
  10. Single-cell lineages reveal the rates, routes, and drivers of metastasis in cancer xenografts. Quinn, JJ, Jones, MG, Okimoto, RA, Nanjo, S, Chan, MM, Yosef, N, Bivona, TG, Weissman, JS. 2021. Science 371, .
    doi: 10.1126/science.abc1944PMID:33479121
Photo credit: Courtesy of Whitehead Institute