Christopher Burge

Christopher Burge

CSB Program Director; Professor of Biology; Extramural Member of KIICR; Associate Member of the Broad Institute

Christopher Burge applies a combination of experimental and computational approaches to understand the regulatory codes underlying pre-mRNA splicing and other types of post-transcriptional gene regulation.

617-258-5997

Phone

68-271

Office

Sarah Wylie

Assistant

617-253-9395

Assistant Phone

Education

  • PhD, 1997, Stanford University
  • BS, 1990, Biological Sciences, Stanford University

Research Summary

We aim to understand the code for RNA splicing: how the precise locations of introns and splice sites are identified in primary transcripts and how its specificity changes in different cell types. Toward this end, we are mapping the RNA-binding affinity spectra of dozens of human RNA-binding proteins and integrating this information with in vivo binding and activity data.  We are also studying the functions of 3’ untranslated regions, including their roles in mRNA localization and microRNA regulation. The lab uses a combination of computational and experimental approaches to address these questions.

Awards

  • Schering-Plough Research Institute Award (ASBMB), 2007
  • Overton Prize for Computational Biology (ISCB), 2001

Subjects Taught

Christopher Burge has taught classes in:
  • Modern Biostatistics
  • Topics in Computational and Systems Biology
  • Quantitative and Computational Biology
  • Foundations of Computational and Systems Biology
  • Experimental Molecular Biology: Biotechnology II
For a complete list of subjects taught by the department, visit the Course 7 catalog.

Key Publications

  1. A large-scale binding and functional map of human RNA-binding proteins. Van Nostrand, EL, Freese, P, Pratt, GA, Wang, X, Wei, X, Xiao, R, Blue, SM, Chen, JY, Cody, NAL, Dominguez, D et al.. 2020. Nature 583, 711-719.
    doi: 10.1038/s41586-020-2077-3PMID:32728246
  2. Exon-Mediated Activation of Transcription Starts. Fiszbein, A, Krick, KS, Begg, BE, Burge, CB. 2019. Cell 179, 1551-1565.e17.
    doi: 10.1016/j.cell.2019.11.002PMID:31787377
  3. Sequence, Structure, and Context Preferences of Human RNA Binding Proteins. Dominguez, D, Freese, P, Alexis, MS, Su, A, Hochman, M, Palden, T, Bazile, C, Lambert, NJ, Van Nostrand, EL, Pratt, GA et al.. 2018. Mol Cell 70, 854-867.e9.
    doi: 10.1016/j.molcel.2018.05.001PMID:29883606
  4. Distal Alternative Last Exons Localize mRNAs to Neural Projections. Taliaferro, JM, Vidaki, M, Oliveira, R, Olson, S, Zhan, L, Saxena, T, Wang, ET, Graveley, BR, Gertler, FB, Swanson, MS et al.. 2016. Mol Cell 61, 821-33.
    doi: 10.1016/j.molcel.2016.01.020PMID:26907613
  5. Evolutionary dynamics of gene and isoform regulation in Mammalian tissues. Merkin, J, Russell, C, Chen, P, Burge, CB. 2012. Science 338, 1593-9.
    doi: 10.1126/science.1228186PMID:23258891

Recent Publications

  1. Author Correction: A large-scale binding and functional map of human RNA-binding proteins. Van Nostrand, EL, Freese, P, Pratt, GA, Wang, X, Wei, X, Xiao, R, Blue, SM, Chen, JY, Cody, NAL, Dominguez, D et al.. 2021. Nature 589, E5.
    doi: 10.1038/s41586-020-03067-wPMID:33402748
  2. Concentration-dependent splicing is enabled by Rbfox motifs of intermediate affinity. Begg, BE, Jens, M, Wang, PY, Minor, CM, Burge, CB. 2020. Nat Struct Mol Biol 27, 901-912.
    doi: 10.1038/s41594-020-0475-8PMID:32807990
  3. Expanded encyclopaedias of DNA elements in the human and mouse genomes. ENCODE Project Consortium, Moore, JE, Purcaro, MJ, Pratt, HE, Epstein, CB, Shoresh, N, Adrian, J, Kawli, T, Davis, CA, Dobin, A et al.. 2020. Nature 583, 699-710.
    doi: 10.1038/s41586-020-2493-4PMID:32728249
  4. A large-scale binding and functional map of human RNA-binding proteins. Van Nostrand, EL, Freese, P, Pratt, GA, Wang, X, Wei, X, Xiao, R, Blue, SM, Chen, JY, Cody, NAL, Dominguez, D et al.. 2020. Nature 583, 711-719.
    doi: 10.1038/s41586-020-2077-3PMID:32728246
  5. Exon-Mediated Activation of Transcription Starts. Fiszbein, A, Krick, KS, Begg, BE, Burge, CB. 2019. Cell 179, 1551-1565.e17.
    doi: 10.1016/j.cell.2019.11.002PMID:31787377
  6. Cotargeting among microRNAs in the brain. Cherone, JM, Jorgji, V, Burge, CB. 2019. Genome Res 29, 1791-1804.
    doi: 10.1101/gr.249201.119PMID:31649056
  7. Acquisition of a hybrid E/M state is essential for tumorigenicity of basal breast cancer cells. Kröger, C, Afeyan, A, Mraz, J, Eaton, EN, Reinhardt, F, Khodor, YL, Thiru, P, Bierie, B, Ye, X, Burge, CB et al.. 2019. Proc Natl Acad Sci U S A 116, 7353-7362.
    doi: 10.1073/pnas.1812876116PMID:30910979
  8. Acidification of Tumor at Stromal Boundaries Drives Transcriptome Alterations Associated with Aggressive Phenotypes. Rohani, N, Hao, L, Alexis, MS, Joughin, BA, Krismer, K, Moufarrej, MN, Soltis, AR, Lauffenburger, DA, Yaffe, MB, Burge, CB et al.. 2019. Cancer Res 79, 1952-1966.
    doi: 10.1158/0008-5472.CAN-18-1604PMID:30755444
  9. Widespread Accumulation of Ribosome-Associated Isolated 3' UTRs in Neuronal Cell Populations of the Aging Brain. Sudmant, PH, Lee, H, Dominguez, D, Heiman, M, Burge, CB. 2018. Cell Rep 25, 2447-2456.e4.
    doi: 10.1016/j.celrep.2018.10.094PMID:30485811
  10. Numerous recursive sites contribute to accuracy of splicing in long introns in flies. Pai, AA, Paggi, JM, Yan, P, Adelman, K, Burge, CB. 2018. PLoS Genet 14, e1007588.
    doi: 10.1371/journal.pgen.1007588PMID:30148878
More Publications

Multimedia