Catherine Drennan

Catherine Drennan

Professor of Biology and Chemistry; Investigator and Professor, Howard Hughes Medical Institute

Catherine Drennan takes “snapshots” of metalloenzymes using crystallography and/or cryo-electron microscopy.





Building 68 - Koch Biology Building


Gabrielle Nader



Assistant Phone


  • PhD,1995, University of Michigan
  • BS, 1985, Chemistry, Vassar College

Research Summary

We use X-ray crystallography to investigate the structure and function of enzymes that are medically important in environmental remediation. We are particularly interested in metalloprotein biochemistry, and in the role of conformational change in catalysis.


  • American Society for Biochemistry and Molecular Biology, Fellow, 2021
  • American Academy of Arts and Sciences, Member, 2020
  • Dorothy Crowfoot Hodgkin Award, Protein Society, 2020
  • Margaret MacVicar Faculty Fellow, 2015-2025
  • Howard Hughes Medical Institute, HHMI Investigator, 2008
  • Howard Hughes Medical Institute, HHMI Professor, 2006

Recent Publications

  1. Radical Transport Facilitated by a Proton Transfer Network at the Subunit Interface of Ribonucleotide Reductase. Cui, C, Song, DY, Drennan, CL, Stubbe, J, Nocera, DG. 2023. J Am Chem Soc 145, 5145-5154.
    doi: 10.1021/jacs.2c11483PMID:36812162
  2. Structure of metallochaperone in complex with the cobalamin-binding domain of its target mutase provides insight into cofactor delivery. Vaccaro, FA, Born, DA, Drennan, CL. 2023. Proc Natl Acad Sci U S A 120, e2214085120.
    doi: 10.1073/pnas.2214085120PMID:36787360
  3. Starting a new chapter on class Ia ribonucleotide reductases. Levitz, TS, Drennan, CL. 2022. Curr Opin Struct Biol 77, 102489.
    doi: 10.1016/
  4. Structural Insights into Microbial One-Carbon Metabolic Enzymes Ni-Fe-S-Dependent Carbon Monoxide Dehydrogenases and Acetyl-CoA Synthases. Biester, A, Marcano-Delgado, AN, Drennan, CL. 2022. Biochemistry 61, 2797-2805.
    doi: 10.1021/acs.biochem.2c00425PMID:36137563
  5. A haem-sequestering plant peptide promotes iron uptake in symbiotic bacteria. Sankari, S, Babu, VMP, Bian, K, Alhhazmi, A, Andorfer, MC, Avalos, DM, Smith, TA, Yoon, K, Drennan, CL, Yaffe, MB et al.. 2022. Nat Microbiol 7, 1453-1465.
    doi: 10.1038/s41564-022-01192-yPMID:35953657
  6. Approaches to Using the Chameleon: Robust, Automated, Fast-Plunge cryoEM Specimen Preparation. Levitz, TS, Weckener, M, Fong, I, Naismith, JH, Drennan, CL, Brignole, EJ, Clare, DK, Darrow, MC. 2022. Front Mol Biosci 9, 903148.
    doi: 10.3389/fmolb.2022.903148PMID:35813832
  7. Cobalamin-Dependent Radical S-Adenosylmethionine Enzymes: Capitalizing on Old Motifs for New Functions. Bridwell-Rabb, J, Li, B, Drennan, CL. 2022. ACS Bio Med Chem Au 2, 173-186.
    doi: 10.1021/acsbiomedchemau.1c00051PMID:35726326
  8. A rapid and sensitive assay for quantifying the activity of both aerobic and anaerobic ribonucleotide reductases acting upon any or all substrates. Levitz, TS, Andree, GA, Jonnalagadda, R, Dawson, CD, Bjork, RE, Drennan, CL. 2022. PLoS One 17, e0269572.
    doi: 10.1371/journal.pone.0269572PMID:35675376
  9. The role of nucleoside triphosphate hydrolase metallochaperones in making metalloenzymes. Vaccaro, FA, Drennan, CL. 2022. Metallomics 14, .
    doi: 10.1093/mtomcs/mfac030PMID:35485745
  10. The Atypical Cobalamin-Dependent S-Adenosyl-l-Methionine Nonradical Methylase TsrM and Its Radical Counterparts. Ulrich, EC, Drennan, CL. 2022. J Am Chem Soc 144, 5673-5684.
    doi: 10.1021/jacs.1c12064PMID:35344653
More Publications