Bruce Walker

Bruce Walker

Professor of the Practice; Core Member, Ragon Institute

Bruce Walker investigates cellular immune responses in chronic human viral infections, with a particular focus on HIV immunology and vaccine development.





Ragon Institute of MGH, MIT and Harvard


Maddie Rimsa



Assistant Phone


  • PhD, 1993, University of Vienna
  • BS, 1989, Biology, University of Vienna

Research Summary

The overarching goal of my laboratory is to define the interplay of immunologic, virologic and host genetic factors that determine control of human viral infections, to guide vaccine development and immunotherapeutic interventions. To address this goal, we focus on HIV infection.


  • ​Bernard Fields Lectureship, 2015
  • NIH Merit Award, 2011, 2004
  • American Academy of Arts and Sciences, 2010
  • National Academy of Medicine, 2009
  • American Association of Physicians, 2000
  • Doris Duke Charitable Foundation Distinguished Clinical Scientist Award, 1999
  • American Society for Clinical Investigation, 1993

Key Publications

  1. Augmentation of HIV-specific T cell function by immediate treatment of hyperacute HIV-1 infection. Ndhlovu, ZM, Kazer, SW, Nkosi, T, Ogunshola, F, Muema, DM, Anmole, G, Swann, SA, Moodley, A, Dong, K, Reddy, T et al.. 2019. Sci Transl Med 11, .
    doi: 10.1126/scitranslmed.aau0528PMID:31118290
  2. Structural topology defines protective CD8+ T cell epitopes in the HIV proteome. Gaiha, GD, Rossin, EJ, Urbach, J, Landeros, C, Collins, DR, Nwonu, C, Muzhingi, I, Anahtar, MN, Waring, OM, Piechocka-Trocha, A et al.. 2019. Science 364, 480-484.
    doi: 10.1126/science.aav5095PMID:31048489
  3. Resistance of HIV-infected macrophages to CD8+ T lymphocyte-mediated killing drives activation of the immune system. Clayton, KL, Collins, DR, Lengieza, J, Ghebremichael, M, Dotiwala, F, Lieberman, J, Walker, BD. 2018. Nat Immunol 19, 475-486.
    doi: 10.1038/s41590-018-0085-3PMID:29670239
  4. A genome-wide CRISPR screen identifies a restricted set of HIV host dependency factors. Park, RJ, Wang, T, Koundakjian, D, Hultquist, JF, Lamothe-Molina, P, Monel, B, Schumann, K, Yu, H, Krupzcak, KM, Garcia-Beltran, W et al.. 2017. Nat Genet 49, 193-203.
    doi: 10.1038/ng.3741PMID:27992415
  5. Antiviral CD8+ T Cells Restricted by Human Leukocyte Antigen Class II Exist during Natural HIV Infection and Exhibit Clonal Expansion. Ranasinghe, S, Lamothe, PA, Soghoian, DZ, Kazer, SW, Cole, MB, Shalek, AK, Yosef, N, Jones, RB, Donaghey, F, Nwonu, C et al.. 2016. Immunity 45, 917-930.
    doi: 10.1016/j.immuni.2016.09.015PMID:27760342
  6. Magnitude and Kinetics of CD8+ T Cell Activation during Hyperacute HIV Infection Impact Viral Set Point. Ndhlovu, ZM, Kamya, P, Mewalal, N, Kløverpris, HN, Nkosi, T, Pretorius, K, Laher, F, Ogunshola, F, Chopera, D, Shekhar, K et al.. 2015. Immunity 43, 591-604.
    doi: 10.1016/j.immuni.2015.08.012PMID:26362266
  7. TCR clonotypes modulate the protective effect of HLA class I molecules in HIV-1 infection. Chen, H, Ndhlovu, ZM, Liu, D, Porter, LC, Fang, JW, Darko, S, Brockman, MA, Miura, T, Brumme, ZL, Schneidewind, A et al.. 2012. Nat Immunol 13, 691-700.
    doi: 10.1038/ni.2342PMID:22683743
  8. The major genetic determinants of HIV-1 control affect HLA class I peptide presentation. International HIV Controllers Study, Pereyra, F, Jia, X, McLaren, PJ, Telenti, A, de Bakker, PI, Walker, BD, Ripke, S, Brumme, CJ, Pulit, SL et al.. 2010. Science 330, 1551-7.
    doi: 10.1126/science.1195271PMID:21051598
  9. CD8+ T-cell responses to different HIV proteins have discordant associations with viral load. Kiepiela, P, Ngumbela, K, Thobakgale, C, Ramduth, D, Honeyborne, I, Moodley, E, Reddy, S, de Pierres, C, Mncube, Z, Mkhwanazi, N et al.. 2007. Nat Med 13, 46-53.
    doi: 10.1038/nm1520PMID:17173051
  10. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Day, CL, Kaufmann, DE, Kiepiela, P, Brown, JA, Moodley, ES, Reddy, S, Mackey, EW, Miller, JD, Leslie, AJ, DePierres, C et al.. 2006. Nature 443, 350-4.
    doi: 10.1038/nature05115PMID:16921384

Recent Publications

  1. T cell responses to SARS-CoV-2 infection and vaccination are elevated in B cell deficiency and reduce risk of severe COVID-19. Zonozi, R, Walters, LC, Shulkin, A, Naranbhai, V, Nithagon, P, Sauvage, G, Kaeske, C, Cosgrove, K, Nathan, A, Tano-Menka, R et al.. 2023. Sci Transl Med 15, eadh4529.
    doi: 10.1126/scitranslmed.adh4529PMID:38019932
  2. The apparent quantum yield matrix (AQY-M) of CDOM photobleaching in estuarine, coastal, and oceanic surface waters. Zhu, X, Weiser, MW, Harringmeyer, JP, Kaiser, K, Walker, BD, Bélanger, S, Anderson, CH, Fichot, CG. 2023. Sci Total Environ 912, 168670.
    doi: 10.1016/j.scitotenv.2023.168670PMID:37996032
  3. Author Correction: Africa-specific human genetic variation near CHD1L associates with HIV-1 load. McLaren, PJ, Porreca, I, Iaconis, G, Mok, HP, Mukhopadhyay, S, Karakoc, E, Cristinelli, S, Pomilla, C, Bartha, I, Thorball, CW et al.. 2023. Nature 621, E42.
    doi: 10.1038/s41586-023-06591-7PMID:37670157
  4. Africa-specific human genetic variation near CHD1L associates with HIV-1 load. McLaren, PJ, Porreca, I, Iaconis, G, Mok, HP, Mukhopadhyay, S, Karakoc, E, Cristinelli, S, Pomilla, C, Bartha, I, Thorball, CW et al.. 2023. Nature 620, 1025-1030.
    doi: 10.1038/s41586-023-06370-4PMID:37532928
  5. Extrafollicular IgD-CD27-CXCR5-CD11c- DN3 B cells infiltrate inflamed tissues in autoimmune fibrosis and in severe COVID-19. Allard-Chamard, H, Kaneko, N, Bertocchi, A, Sun, N, Boucau, J, Kuo, HH, Farmer, JR, Perugino, C, Mahajan, VS, Murphy, SJH et al.. 2023. Cell Rep 42, 112630.
    doi: 10.1016/j.celrep.2023.112630PMID:37300833
  6. Molecular basis of differential HLA class I-restricted T cell recognition of a highly networked HIV peptide. Li, X, Singh, NK, Collins, DR, Ng, R, Zhang, A, Lamothe-Molina, PA, Shahinian, P, Xu, S, Tan, K, Piechocka-Trocha, A et al.. 2023. Nat Commun 14, 2929.
    doi: 10.1038/s41467-023-38573-8PMID:37217466
  7. Cytolytic CD8+ T cells infiltrate germinal centers to limit ongoing HIV replication in spontaneous controller lymph nodes. Collins, DR, Hitschfel, J, Urbach, JM, Mylvaganam, GH, Ly, NL, Arshad, U, Racenet, ZJ, Yanez, AG, Diefenbach, TJ, Walker, BD et al.. 2023. Sci Immunol 8, eade5872.
    doi: 10.1126/sciimmunol.ade5872PMID:37205767
  8. Slow progression of pediatric HIV associates with early CD8+ T cell PD-1 expression and a stem-like phenotype. Vieira, V, Lim, N, Singh, A, Leitman, E, Dsouza, R, Adland, E, Muenchhoff, M, Roider, J, Marin Lopez, M, Carabelli, J et al.. 2023. JCI Insight 8, .
    doi: 10.1172/jci.insight.156049PMID:36602861
  9. Phenotypic signatures of immune selection in HIV-1 reservoir cells. Sun, W, Gao, C, Hartana, CA, Osborn, MR, Einkauf, KB, Lian, X, Bone, B, Bonheur, N, Chun, TW, Rosenberg, ES et al.. 2023. Nature 614, 309-317.
    doi: 10.1038/s41586-022-05538-8PMID:36599977
  10. An Efficient Approach to Large-Scale Ab Initio Conformational Energy Profiles of Small Molecules. Wang, Y, Walker, BD, Liu, C, Ren, P. 2022. Molecules 27, .
    doi: 10.3390/molecules27238567PMID:36500658
More Publications






Photo credit: Howard Hughes Medical Institute