Bruce Walker

Bruce Walker

Professor of the Practice; Core Member, Ragon Institute

Bruce Walker investigates cellular immune responses in chronic human viral infections, with a particular focus on HIV immunology and vaccine development.





Maddie Rimsa



Assistant Phone


  • PhD, 1993, University of Vienna
  • BS, 1989, Biology, University of Vienna

Research Summary

The overarching goal of my laboratory is to define the interplay of immunologic, virologic and host genetic factors that determine control of human viral infections, to guide vaccine development and immunotherapeutic interventions. To address this goal, we focus on HIV infection.


  • ​Bernard Fields Lectureship, 2015
  • NIH Merit Award, 2011, 2004
  • American Academy of Arts and Sciences, 2010
  • National Academy of Medicine, 2009
  • American Association of Physicians, 2000
  • Doris Duke Charitable Foundation Distinguished Clinical Scientist Award, 1999
  • American Society for Clinical Investigation, 1993

Key Publications

  1. Augmentation of HIV-specific T cell function by immediate treatment of hyperacute HIV-1 infection. Ndhlovu, ZM, Kazer, SW, Nkosi, T, Ogunshola, F, Muema, DM, Anmole, G, Swann, SA, Moodley, A, Dong, K, Reddy, T et al.. 2019. Sci Transl Med 11, .
    doi: 10.1126/scitranslmed.aau0528PMID:31118290
  2. Structural topology defines protective CD8+ T cell epitopes in the HIV proteome. Gaiha, GD, Rossin, EJ, Urbach, J, Landeros, C, Collins, DR, Nwonu, C, Muzhingi, I, Anahtar, MN, Waring, OM, Piechocka-Trocha, A et al.. 2019. Science 364, 480-484.
    doi: 10.1126/science.aav5095PMID:31048489
  3. Resistance of HIV-infected macrophages to CD8+ T lymphocyte-mediated killing drives activation of the immune system. Clayton, KL, Collins, DR, Lengieza, J, Ghebremichael, M, Dotiwala, F, Lieberman, J, Walker, BD. 2018. Nat Immunol 19, 475-486.
    doi: 10.1038/s41590-018-0085-3PMID:29670239
  4. A genome-wide CRISPR screen identifies a restricted set of HIV host dependency factors. Park, RJ, Wang, T, Koundakjian, D, Hultquist, JF, Lamothe-Molina, P, Monel, B, Schumann, K, Yu, H, Krupzcak, KM, Garcia-Beltran, W et al.. 2017. Nat Genet 49, 193-203.
    doi: 10.1038/ng.3741PMID:27992415
  5. Antiviral CD8+ T Cells Restricted by Human Leukocyte Antigen Class II Exist during Natural HIV Infection and Exhibit Clonal Expansion. Ranasinghe, S, Lamothe, PA, Soghoian, DZ, Kazer, SW, Cole, MB, Shalek, AK, Yosef, N, Jones, RB, Donaghey, F, Nwonu, C et al.. 2016. Immunity 45, 917-930.
    doi: 10.1016/j.immuni.2016.09.015PMID:27760342
  6. Magnitude and Kinetics of CD8+ T Cell Activation during Hyperacute HIV Infection Impact Viral Set Point. Ndhlovu, ZM, Kamya, P, Mewalal, N, Kløverpris, HN, Nkosi, T, Pretorius, K, Laher, F, Ogunshola, F, Chopera, D, Shekhar, K et al.. 2015. Immunity 43, 591-604.
    doi: 10.1016/j.immuni.2015.08.012PMID:26362266
  7. TCR clonotypes modulate the protective effect of HLA class I molecules in HIV-1 infection. Chen, H, Ndhlovu, ZM, Liu, D, Porter, LC, Fang, JW, Darko, S, Brockman, MA, Miura, T, Brumme, ZL, Schneidewind, A et al.. 2012. Nat Immunol 13, 691-700.
    doi: 10.1038/ni.2342PMID:22683743
  8. The major genetic determinants of HIV-1 control affect HLA class I peptide presentation. International HIV Controllers Study, Pereyra, F, Jia, X, McLaren, PJ, Telenti, A, de Bakker, PI, Walker, BD, Ripke, S, Brumme, CJ, Pulit, SL et al.. 2010. Science 330, 1551-7.
    doi: 10.1126/science.1195271PMID:21051598
  9. CD8+ T-cell responses to different HIV proteins have discordant associations with viral load. Kiepiela, P, Ngumbela, K, Thobakgale, C, Ramduth, D, Honeyborne, I, Moodley, E, Reddy, S, de Pierres, C, Mncube, Z, Mkhwanazi, N et al.. 2007. Nat Med 13, 46-53.
    doi: 10.1038/nm1520PMID:17173051
  10. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Day, CL, Kaufmann, DE, Kiepiela, P, Brown, JA, Moodley, ES, Reddy, S, Mackey, EW, Miller, JD, Leslie, AJ, DePierres, C et al.. 2006. Nature 443, 350-4.
    doi: 10.1038/nature05115PMID:16921384

Recent Publications

  1. A naturally arising broad and potent CD4-binding site antibody with low somatic mutation. Barnes, CO, Schoofs, T, Gnanapragasam, PNP, Golijanin, J, Huey-Tubman, KE, Gruell, H, Schommers, P, Suh-Toma, N, Lee, YE, Cetrulo Lorenzi, JC et al.. 2022. Sci Adv 8, eabp8155.
    doi: 10.1126/sciadv.abp8155PMID:35960796
  2. CD8 lymphocytes mitigate HIV-1 persistence in lymph node follicular helper T cells during hyperacute-treated infection. Baiyegunhi, OO, Mann, J, Khaba, T, Nkosi, T, Mbatha, A, Ogunshola, F, Chasara, C, Ismail, N, Ngubane, T, Jajbhay, I et al.. 2022. Nat Commun 13, 4041.
    doi: 10.1038/s41467-022-31692-8PMID:35831418
  3. Prolonged viral suppression with anti-HIV-1 antibody therapy. Gaebler, C, Nogueira, L, Stoffel, E, Oliveira, TY, Breton, G, Millard, KG, Turroja, M, Butler, A, Ramos, V, Seaman, MS et al.. 2022. Nature 606, 368-374.
    doi: 10.1038/s41586-022-04597-1PMID:35418681
  4. Temporal changes in T cell subsets and expansion of cytotoxic CD4+ T cells in the lungs in severe COVID-19. Kaneko, N, Boucau, J, Kuo, HH, Perugino, C, Mahajan, VS, Farmer, JR, Liu, H, Diefenbach, TJ, Piechocka-Trocha, A, Lefteri, K et al.. 2022. Clin Immunol 237, 108991.
    doi: 10.1016/j.clim.2022.108991PMID:35364330
  5. T cell reactivity to the SARS-CoV-2 Omicron variant is preserved in most but not all individuals. Naranbhai, V, Nathan, A, Kaseke, C, Berrios, C, Khatri, A, Choi, S, Getz, MA, Tano-Menka, R, Ofoman, O, Gayton, A et al.. 2022. Cell 185, 1259.
    doi: 10.1016/j.cell.2022.03.022PMID:35364034
  6. Innate lymphoid cells and COVID-19 severity in SARS-CoV-2 infection. Silverstein, NJ, Wang, Y, Manickas-Hill, Z, Carbone, C, Dauphin, A, Boribong, BP, Loiselle, M, Davis, J, Leonard, MM, Kuri-Cervantes, L et al.. 2022. Elife 11, .
    doi: 10.7554/eLife.74681PMID:35275061
  7. Epitope convergence of broadly HIV-1 neutralizing IgA and IgG antibody lineages in a viremic controller. Lorin, V, Fernández, I, Masse-Ranson, G, Bouvin-Pley, M, Molinos-Albert, LM, Planchais, C, Hieu, T, Péhau-Arnaudet, G, Hrebík, D, Girelli-Zubani, G et al.. 2022. J Exp Med 219, .
    doi: 10.1084/jem.20212045PMID:35230385
  8. T cell reactivity to the SARS-CoV-2 Omicron variant is preserved in most but not all individuals. Naranbhai, V, Nathan, A, Kaseke, C, Berrios, C, Khatri, A, Choi, S, Getz, MA, Tano-Menka, R, Ofoman, O, Gayton, A et al.. 2022. Cell 185, 1041-1051.e6.
    doi: 10.1016/j.cell.2022.01.029PMID:35202566
  9. A Leucine Zipper Dimerization Strategy to Generate Soluble T Cell Receptors Using the Escherichia coli Expression System. Zhang, A, Piechocka-Trocha, A, Li, X, Walker, BD. 2022. Cells 11, .
    doi: 10.3390/cells11030312PMID:35159122
  10. T cell reactivity to the SARS-CoV-2 Omicron variant is preserved in most but not all prior infected and vaccinated individuals. Naranbhai, V, Nathan, A, Kaseke, C, Berrios, C, Khatri, A, Choi, S, Getz, MA, Tano-Menka, R, Ofoman, O, Gayton, A et al.. 2022. medRxiv , .
    doi: 10.1101/2022.01.04.21268586PMID:35018386
More Publications






Photo credit: Howard Hughes Medical Institute