Brandon (Brady) Weissbourd

Brandon (Brady) Weissbourd

Assistant Professor of Biology

Brady Weissbourd uses jellyfish to ask questions at the interface of nervous system evolution, development, regeneration, and function.

Education

  • Graduate: PhD, 2016, Stanford University
  • Undergraduate: BA, 2009, Human Evolutionary Biology, Harvard University

Research Summary

We use the tiny, transparent jellyfish, Clytia hemisphaerica, to ask questions at the interface of nervous system evolution, development, regeneration, and function. Our foundation is in systems neuroscience, where we use genetic and optical techniques to examine how behavior arises from the activity of networks of neurons. Building from this work, we investigate how the Clytia nervous system is so robust, both to the constant integration of newborn neurons and following large-scale injury. We then use Clytia’s dramatic evolutionary distance to ask if there are principles of neuroscience and to make inferences about the origins of nervous systems. The Weissbourd lab will open in early 2023.

Awards

  • Pathway to Independence Award (K99/R00), National Institute of Neurological Disorders and Stroke, 2020
  • Life Sciences Research Foundation Fellow, 2017

Key Publications

  1. Whole-animal multiplexed single-cell RNA-seq reveals transcriptional shifts across Clytia medusa cell types. Chari, T, Weissbourd, B, Gehring, J, Ferraioli, A, Leclère, L, Herl, M, Gao, F, Chevalier, S, Copley, RR, Houliston, E et al.. 2021. Sci Adv 7, eabh1683.
    doi: 10.1126/sciadv.abh1683PMID:34826233
  2. A genetically tractable jellyfish model for systems and evolutionary neuroscience. Weissbourd, B, Momose, T, Nair, A, Kennedy, A, Hunt, B, Anderson, DJ. 2021. Cell 184, 5854-5868.e20.
    doi: 10.1016/j.cell.2021.10.021PMID:34822783

Recent Publications

  1. Whole-animal multiplexed single-cell RNA-seq reveals transcriptional shifts across Clytia medusa cell types. Chari, T, Weissbourd, B, Gehring, J, Ferraioli, A, Leclère, L, Herl, M, Gao, F, Chevalier, S, Copley, RR, Houliston, E et al.. 2021. Sci Adv 7, eabh1683.
    doi: 10.1126/sciadv.abh1683PMID:34826233
  2. A genetically tractable jellyfish model for systems and evolutionary neuroscience. Weissbourd, B, Momose, T, Nair, A, Kennedy, A, Hunt, B, Anderson, DJ. 2021. Cell 184, 5854-5868.e20.
    doi: 10.1016/j.cell.2021.10.021PMID:34822783
  3. An improved whole life cycle culture protocol for the hydrozoan genetic model Clytia hemisphaerica. Lechable, M, Jan, A, Duchene, A, Uveira, J, Weissbourd, B, Gissat, L, Collet, S, Gilletta, L, Chevalier, S, Leclère, L et al.. 2020. Biol Open 9, .
    doi: 10.1242/bio.051268PMID:32994186
  4. Connectional architecture of a mouse hypothalamic circuit node controlling social behavior. Lo, L, Yao, S, Kim, DW, Cetin, A, Harris, J, Zeng, H, Anderson, DJ, Weissbourd, B. 2019. Proc Natl Acad Sci U S A 116, 7503-7512.
    doi: 10.1073/pnas.1817503116PMID:30898882
  5. Anatomically Defined and Functionally Distinct Dorsal Raphe Serotonin Sub-systems. Ren, J, Friedmann, D, Xiong, J, Liu, CD, Ferguson, BR, Weerakkody, T, DeLoach, KE, Ran, C, Pun, A, Sun, Y et al.. 2018. Cell 175, 472-487.e20.
    doi: 10.1016/j.cell.2018.07.043PMID:30146164
  6. Basal forebrain circuit for sleep-wake control. Xu, M, Chung, S, Zhang, S, Zhong, P, Ma, C, Chang, WC, Weissbourd, B, Sakai, N, Luo, L, Nishino, S et al.. 2015. Nat Neurosci 18, 1641-7.
    doi: 10.1038/nn.4143PMID:26457552
  7. Viral-genetic tracing of the input-output organization of a central noradrenaline circuit. Schwarz, LA, Miyamichi, K, Gao, XJ, Beier, KT, Weissbourd, B, DeLoach, KE, Ren, J, Ibanes, S, Malenka, RC, Kremer, EJ et al.. 2015. Nature 524, 88-92.
    doi: 10.1038/nature14600PMID:26131933
  8. Presynaptic partners of dorsal raphe serotonergic and GABAergic neurons. Weissbourd, B, Ren, J, DeLoach, KE, Guenthner, CJ, Miyamichi, K, Luo, L. 2014. Neuron 83, 645-62.
    doi: 10.1016/j.neuron.2014.06.024PMID:25102560
  9. Dissecting local circuits: parvalbumin interneurons underlie broad feedback control of olfactory bulb output. Miyamichi, K, Shlomai-Fuchs, Y, Shu, M, Weissbourd, BC, Luo, L, Mizrahi, A. 2013. Neuron 80, 1232-45.
    doi: 10.1016/j.neuron.2013.08.027PMID:24239125
  10. High-resolution analysis of parent-of-origin allelic expression in the mouse brain. Gregg, C, Zhang, J, Weissbourd, B, Luo, S, Schroth, GP, Haig, D, Dulac, C. 2010. Science 329, 643-8.
    doi: 10.1126/science.1190830PMID:20616232
Read More
Photo credit: Elizabeth Rose