Brandon (Brady) Weissbourd

Brandon (Brady) Weissbourd

Assistant Professor of Biology; Doherty Professorship in Ocean Utilization; Investigator, The Picower Institute for Learning and Memory

Brady Weissbourd uses jellyfish to study nervous system evolution, development, regeneration, and function.

68-430

Office

Building 68 - Koch Biology Building

Location

Keith Murray

Assistant

617-253-6741

Assistant Phone

Education

  • Graduate: PhD, 2016, Stanford University
  • Undergraduate: BA, 2009, Human Evolutionary Biology, Harvard University

Research Summary

We use the tiny, transparent jellyfish, Clytia hemisphaerica, to ask questions at the interface of nervous system evolution, development, regeneration, and function. Our foundation is in systems neuroscience, where we use genetic and optical techniques to examine how behavior arises from the activity of networks of neurons. Building from this work, we investigate how the Clytia nervous system is so robust, both to the constant integration of newborn neurons and following large-scale injury. Lastly, we use Clytia’s evolutionary position to study principles of nervous system evolution and make inferences about the ultimate origins of nervous systems.

Awards

  • Searle Scholar Award, 2024
  • Klingenstein-Simons Fellowship Award in Neuroscience, 2023
  • Pathway to Independence Award (K99/R00), National Institute of Neurological Disorders and Stroke, 2020
  • Life Sciences Research Foundation Fellow, 2017

Key Publications

  1. Whole-animal multiplexed single-cell RNA-seq reveals transcriptional shifts across Clytia medusa cell types. Chari, T, Weissbourd, B, Gehring, J, Ferraioli, A, Leclère, L, Herl, M, Gao, F, Chevalier, S, Copley, RR, Houliston, E et al.. 2021. Sci Adv 7, eabh1683.
    doi: 10.1126/sciadv.abh1683PMID:34826233
  2. A genetically tractable jellyfish model for systems and evolutionary neuroscience. Weissbourd, B, Momose, T, Nair, A, Kennedy, A, Hunt, B, Anderson, DJ. 2021. Cell 184, 5854-5868.e20.
    doi: 10.1016/j.cell.2021.10.021PMID:34822783

Recent Publications

  1. Dynamics of neural activity in early nervous system evolution. Kennedy, A, Weissbourd, B. 2024. Curr Opin Behav Sci 59, .
    doi: 10.1016/j.cobeha.2024.101437PMID:39758090
  2. Jellyfish for the study of nervous system evolution and function. Cunningham, K, Anderson, DJ, Weissbourd, B. 2024. Curr Opin Neurobiol 88, 102903.
    doi: 10.1016/j.conb.2024.102903PMID:39167996
  3. Self-Supervised Keypoint Discovery in Behavioral Videos. Sun, JJ, Ryou, S, Goldshmid, RH, Weissbourd, B, Dabiri, JO, Anderson, DJ, Kennedy, A, Yue, Y, Perona, P. 2022. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit 2022, 2161-2170.
    doi: 10.1109/cvpr52688.2022.00221PMID:36628357
  4. Whole-animal multiplexed single-cell RNA-seq reveals transcriptional shifts across Clytia medusa cell types. Chari, T, Weissbourd, B, Gehring, J, Ferraioli, A, Leclère, L, Herl, M, Gao, F, Chevalier, S, Copley, RR, Houliston, E et al.. 2021. Sci Adv 7, eabh1683.
    doi: 10.1126/sciadv.abh1683PMID:34826233
  5. A genetically tractable jellyfish model for systems and evolutionary neuroscience. Weissbourd, B, Momose, T, Nair, A, Kennedy, A, Hunt, B, Anderson, DJ. 2021. Cell 184, 5854-5868.e20.
    doi: 10.1016/j.cell.2021.10.021PMID:34822783
  6. An improved whole life cycle culture protocol for the hydrozoan genetic model Clytia hemisphaerica. Lechable, M, Jan, A, Duchene, A, Uveira, J, Weissbourd, B, Gissat, L, Collet, S, Gilletta, L, Chevalier, S, Leclère, L et al.. 2020. Biol Open 9, .
    doi: 10.1242/bio.051268PMID:32994186
  7. Connectional architecture of a mouse hypothalamic circuit node controlling social behavior. Lo, L, Yao, S, Kim, DW, Cetin, A, Harris, J, Zeng, H, Anderson, DJ, Weissbourd, B. 2019. Proc Natl Acad Sci U S A 116, 7503-7512.
    doi: 10.1073/pnas.1817503116PMID:30898882
  8. Anatomically Defined and Functionally Distinct Dorsal Raphe Serotonin Sub-systems. Ren, J, Friedmann, D, Xiong, J, Liu, CD, Ferguson, BR, Weerakkody, T, DeLoach, KE, Ran, C, Pun, A, Sun, Y et al.. 2018. Cell 175, 472-487.e20.
    doi: 10.1016/j.cell.2018.07.043PMID:30146164
  9. Basal forebrain circuit for sleep-wake control. Xu, M, Chung, S, Zhang, S, Zhong, P, Ma, C, Chang, WC, Weissbourd, B, Sakai, N, Luo, L, Nishino, S et al.. 2015. Nat Neurosci 18, 1641-7.
    doi: 10.1038/nn.4143PMID:26457552
  10. Viral-genetic tracing of the input-output organization of a central noradrenaline circuit. Schwarz, LA, Miyamichi, K, Gao, XJ, Beier, KT, Weissbourd, B, DeLoach, KE, Ren, J, Ibanes, S, Malenka, RC, Kremer, EJ et al.. 2015. Nature 524, 88-92.
    doi: 10.1038/nature14600PMID:26131933
Read More
Photo credit: Lillian Eden