Sallie (Penny) W. Chisholm

Education

  • PhD, 1974, SUNY Albany

Research Summary

Our goal is to understand the ecology and evolution of ocean microbes and how they influence global biogeochemical cycles. We focus on the cyanobacterium Prochlorococcus, which is the smallest and most abundant microbe in ocean ecosystems — sometimes accounting for half the total photosynthetic biomass. We use this model system to study life across all scales — from the genome to the ecosystem.

Awards

  • Crafoord Prize, 2019
  • Generalitat of Catalonia, Ramon Margalef Prize in Ecology, 2013
  • American Association for the Advancement of Science, Fellow, 2012
  • National Medal of Science, 2011
  • National Academy of Sciences, Alexander Agassiz Medal, 2010
  • National Academy of Sciences, Member, 2003
  • John Simon Guggenheim Memorial Foundation, Guggenheim Fellowship, 1997
  • American Academy of Arts and Sciences, Fellow, 1992
Eliezer Calo

Education

  • PhD, 2011, MIT
  • BS, 2006, Chemistry, University of Puerto Rico-Río Piedras

Research Summary

We focus on the molecular entities controlling and coordinating RNA metabolism — that is, the compendium of processes that involve RNA, including protein synthesis, processing, modifications, export, translation and degradation. Our goal is to understand how different aspects of RNA metabolism are controlled to generate structure and function during development, as well as how mutations in components of the RNA metabolic program lead to congenital disorders and cancer.

Christopher Burge

Education

  • PhD, 1997, Stanford University
  • BS, 1990, Biological Sciences, Stanford University

Research Summary

We aim to understand the code for RNA splicing: how the precise locations of introns and splice sites are identified in primary transcripts and how its specificity changes in different cell types. Toward this end, we are mapping the RNA-binding affinity spectra of dozens of human RNA-binding proteins and integrating this information with in vivo binding and activity data.  We are also studying the functions of 3’ untranslated regions, including their roles in mRNA localization and microRNA regulation. The lab uses a combination of computational and experimental approaches to address these questions.

Awards

  • Schering-Plough Research Institute Award (ASBMB), 2007
  • Overton Prize for Computational Biology (ISCB), 2001
Stephen Bell

Education 

  • PhD, 1990, University of California, Berkeley
  • BS, 1985, Integrated Science Program and Biochemistry, Molecular Biology and Cell Biology, Northwestern University

Research Summary

We focus on the events that occur at the starting points of chromosome duplication. These DNA sequences — called “origins of replication” — are found at multiple sites on each eukaryotic chromosome and direct the assembly of replisomes, which replicate the DNA on both sides of the origin. We study this assembly process to understand how chromosomes are replicated, and how these events are regulated during the cell cycle to ensure genome maintenance.

Awards

  • National Academy of Sciences, Member, 2017
  • National Academy of Sciences Award in Molecular Biology, 2009
  • Howard Hughes Medical Institute, HHMI Investigator, 2000
David Bartel

Education

  • PhD, 1993, Harvard University
  • BA, 1982, Biology, Goshen College

Research Summary

We study microRNAs and other small RNAs that specify the destruction and/or translational repression of mRNAs. We also study mRNAs, focusing on their untranslated regions and poly(A) tails, and how these regions recruit and mediate regulatory phenomena.

Awards

  • National Academy of Sciences, Member, 2011
  • Howard Hughes Medical Institute, HHMI Investigator, 2005
  • National Academy of Sciences Award in Molecular Biology, 2005
  • AAAS Newcomb Cleveland Prize, 2002
David Housman

Education

  • PhD, 1971, Brandeis University
  • BS, 1966, Biology, Brandeis University

Research Summary

We use genetic approaches to identify the molecular basis of human disease pathology. More specifically, we develop strategies to combat three major disease areas: cancer, trinucleotide repeat disorders like Huntington’s disease, and cardiovascular disease.

Awards

  • National Academy of Medicine, Member, 1997
  • National Academy of Sciences, Member, 1994
Leonard P. Guarente

Education

  • PhD, 1978, Harvard University
  • SB, 1974, Biology, MIT

Research Summary

We combine comprehensive bioinformatics analyses with functional analyses of pathways and genes to study aging in humans and mice. We apply these approaches to identify the major pathways and genes involved in the aging of certain brain regions. We are also studying muscular dystrophy and muscle loss with aging. Ultimately, our findings may guide studies in other organs and lead to a systemic understanding of mammalian aging.

Awards

  • Miami Winter Symposium, Feodor Lynen Award, 2012
  • University of Toronto, Charles H. Best Lectureship and Award, 2011
  • Dart/NYU Biotechnology, Achievement Award, 2009
  • French Academie des Sciences, Elected, 2009
  • American Academy of Arts and Sciences, Fellow, 2004
Tyler Jacks

Education

  • PhD, 1988, University of California, San Francisco
  • SB, 1983, Biology, Harvard University

Research Summary

Dr. Jacks’ research has focused on developing new methods for the construction and characterization of genetically engineered mouse models or GEMMs of human cancer, and recently has moved into the burgeoning area of tumor immunology to understand the interactions between the immune system and cancer.  His group has produced GEMMs with constitutive and conditional mutations in several tumor suppressor genes, oncogenes, and genes involved in oxidative stress, DNA repair and epigenetic control of gene expression. These GEMMS have been used to examine the mechanism of tumor initiation and progression, to uncover the molecular, genetic and biochemical relationship to the human diseases, as tools to study response and resistance to chemotherapy, and to explore methods in molecular imaging and early detection of cancer.

Awards

  • AACR Princess Takamatsu Memorial Lectureship, 2020
  • Massachusetts Institute of Technology, James R Killian Jr Faculty Achievement Award, 2015
  • Sergio Lombroso Award in Cancer Research, 2015
  • American Academy of Arts and Sciences, Fellow, 2012
  • National Academy of Sciences, Member, 2009
  • Institute of Medicine of the National Academies, Member, 2009
  • Paul Marks Prize for Cancer Research, 2005
  • Howard Hughes Medical Institute, HHMI Investigator, 1994
Gerald R. Fink

Education

  • PhD, 1965, Yale University
  • BA, 1962, Biology, Amherst College

Research Summary

We study the molecules that allow fungi to penetrate tissues and grow in a hostile environment. Using genetics, biochemistry and genomics, we answer questions such as:  What makes Candida albicans such a successful pathogen?  How do fungal pathogens evolve antibiotic resistance? How do they manage to change their genetic composition so rapidly?

The Fink lab is no longer accepting students.

Awards

  • Thomas Hunt Morgan Medal, Genetics Society of America, 2020
  • James R. Killian Jr. Faculty Achievement Award, 2018
  • American Association for the Advancement of Science, Fellow, 2015
  • Gruber International Prize in Genetics, 2010
  • American Philosophical Society, 2003
  • Yeast Genetics and Molecular Biology – Lifetime Achievement Award, 2002
  • George W. Beadle Award, Genetics Society of America, 2001
  • Ellison Medical Foundation, Senior Scholar Award, 2001
  • National Academy of Medicine, 1996
  • Wilbur Lucius Cross Medal, Yale University, 1992
  • Emil Christian Hansen Foundation Award for Microbiology, Denmark, 1986
  • American Academy of Arts and Sciences, Fellow, 1984
  • Yale Science and Engineering Award, 1984
  • National Academy of Sciences, Member, 1981
  • National Academy of Sciences Award in Molecular Biology, 1981
  • John Simon Guggenheim Memorial Foundation, Guggenheim Fellowship, 1974
Catherine Drennan

Education

  • PhD,1995, University of Michigan
  • BS, 1985, Chemistry, Vassar College

Research Summary

We use X-ray crystallography to investigate the structure and function of enzymes that are medically important in environmental remediation. We are particularly interested in metalloprotein biochemistry, and in the role of conformational change in catalysis.

Awards

  • National Academy of Sciences, 2023
  • American Society for Biochemistry and Molecular Biology, Fellow, 2021
  • American Academy of Arts and Sciences, Member, 2020
  • Dorothy Crowfoot Hodgkin Award, Protein Society, 2020
  • Margaret MacVicar Faculty Fellow, 2015-2025
  • Howard Hughes Medical Institute, HHMI Investigator, 2008
  • Howard Hughes Medical Institute, HHMI Professor, 2006