Edward Scolnick

Education

  • MD, 1965, Harvard  Medical School

Research Summary

After retiring as President at Merck Research Laboratories, Edward Scolnick founded the Stanley Center in 2007, two-and-a-half years after moving to the Broad Institute. His goal is to enhance our understanding of serious mental illnesses like bipolar disorder and schizophrenia. Given that our genetic code greatly influences our risk for developing such diseases, he works to unravel the genome and provide insight into underlying biochemical abnormalities.

Douglas Lauffenburger

Education

  • PhD, 1979, University of Minnesota
  • BS, 1975, Chemical Engineering, University of Illinois, Urbana-Champaign

Research Summary

The Lauffenburger laboratory emphasizes integration of experimental and mathematical/computational analysis approaches, toward development and validation of predictive models for physiologically-relevant behavior in terms of underlying molecular and molecular network properties. Our work has been recognized as providing contributions fostering the interface of bioengineering, quantitative cell biology, and systems biology. Our main focus has been on fundamental aspects of cell dysregulation, complemented by translational efforts in identifying and testing new therapeutic ideas. Applications addressed have chiefly resided in various types of cancer (including breast, colon, lung, and pancreatic cancers along with leukemias and lymphomas), inflammatory pathologies (such as endometriosis, Crohn’s disease, colitis, rheumatoid arthritis, and Alzheimer’s disease), and the immune system (mainly for vaccines against pathogens such as HIV, malaria, and tuberculosis). We have increasingly emphasized complex tissue contexts, including mouse models, human subjects, and tissue-engineered micro-physiological systems platforms in association with outstanding collaborators. From our laboratory have come more than 100 doctoral and postdoctoral trainees. Many hold faculty positions at academic institutions in the USA, Canada, and Europe; others have gone on to research positions in biotechnology and pharmaceutical companies; and others yet have moved into policy and government agency careers.

Awards

  • Bernard M. Gordon Prize for Innovation in Engineering and Technology Education, National Academy of Engineering, 2021
  • American Association for the Advancement of Science, Member, 2019
  • American Academy of Arts and Sciences, Fellow, 2001
  • John Simon Guggenheim Memorial Foundation, Guggenheim Fellowship, 1989
Frank Solomon

Education

  • PhD, 1970, Brandeis University
  • SB, 1964, History, Harvard University
Matthew Vander Heiden

Education

  • PhD, 2000, University of Chicago; MD, 2002, University of Chicago
  • SB, 1994, Biological Chemistry, University of Chicago

Research Summary

We study the biochemical pathways cells use and how they are regulated to meet the metabolic requirements of cells in different physiological situations. We focus on the role of metabolism in cancer, particularly how metabolic pathways support cell proliferation. We aim to translate our understanding of cancer cell metabolism into novel cancer therapies.

Awards

  • National Academy of Medicine, 2024
  • Howard Hughes Medical Institute Faculty Scholar, 2016
  • SU2C Innovative Research Grant Recipient, 2016
Richard O. Hynes

Education

  • PhD, 1971, MIT
  • MA, 1970, Biochemistry, Cambridge University
  • BA, 1966, Biochemistry, Cambridge University

Research Summary

We study the mechanisms underlying the spread of tumor cells throughout the body, known as metastasis. We are particularly interested in the role of the extracellular matrix — a fibrillar meshwork of proteins that surrounds both normal and tumor cells, which plays many important roles in tumor progression. We also investigate changes in the metastatic cells themselves and in the contributions of normal cells, both in terms of metastasis and other bodily functions.

Awards

  • Paget-Ewing Award, Metastasis Research Society, 2018
  • Inaugural American Society for Cell Biology (ASCB) Fellow, 2016
  • American Association for Cancer Research (AACR) Academy, Fellow, 2014
  • Distinguished Investigator Award, International Society for Matrix Biology, 2012
  • Earl Benditt Award, North American Vascular Biology Organization, 2010
  • Robert and Claire Pasarow Medical Research Award – Cardiovascular, 2008
  • E.B. Wilson Medal, American Society for Cell Biology, 2007
  • President, American Society for Cell Biology, 2000
  • Gairdner Foundation International Award, 1997
  • National Academy of Sciences, Member, 1996
  • National Academy of Medicine, Member, 1995
  • Royal Society of London, Fellow, 1989
  • Howard Hughes Medical Institute, HHMI Investigator, 1988
  • American Association for the Advancement of Science, Fellow, 1987
  • American Academy of Arts and Sciences, Fellow, 1987
  • John Simon Guggenheim Memorial Foundation, Guggenheim Fellowship, 1982

Media Inquiries

For media inquiries, please email rhynes-admin@mit.edu.

Laurie A. Boyer

Education

  • PhD, 2001, University of Massachusetts Medical School
  • BS, 1990, Biomedical Science, Framingham State University

Research Summary

We investigate how complex circuits of genes are regulated to produce robust developmental outcomes particularly during heart development. A main focus is to determine how DNA is packaged into chromatin, and how ATP-dependent chromatin remodelers modify this packaging to control lineage commitment. We are now applying these principles to develop methods to stimulate repair of damaged cardiac tissue (e.g., regeneration). Our ability to combine genomic, genetic, biochemical, and cell biological approaches both in vitro and in vivo as well as ongoing efforts to use tissue engineering to model the 3D architecture of the heart will ultimately allow us to gain a systems level and quantitative understanding of the regulatory circuits that promote normal heart development and how faulty regulation can lead to disease.

Learn More

Awards

  • Medicine by Design Distinguished Lecture, 2017
  • Cardiovascular Rising Star Distinguished Lecture, 2017
  • American Heart Association Innovative Research Award, 2013
  • Irvin and Helen Sizer Career Development Award, 2012
  • Smith Family Award for Excellence in Biomedical Science, 2009
  • Massachusetts Life Sciences Center New Investigator Award, 2008
  • Pew Scholars Award in the Biomedical Sciences, 2008
  • Honorary Doctorate, Framingham State College, 2007
  • The Scientific American World’s 50 Top Leaders in Research, Business or Policy, 2006
Robert A. Weinberg

Education

  • PhD, 1969, MIT
  • SB, 1964, Biology, MIT

Research Summary

We investigate three broad questions related to the origin and spread of cancer. First, how do cancer cells within a primary tumor acquire the ability to invade and metastasize? Second, how are the stem-cell state and the epithelial-mesenchymal transition interrelated? Third, how are the regulators of the epithelial-mesenchymal transition able to activate this profound change in cell phenotype?

Awards

  • Japan Prize, Japan Prize Foundation, 2021
  • Salk Institute Medal for Research Excellence, 2016
  • Breakthrough Prize in Life Sciences, 2013
  • Wolf Foundation Prize, 2004
  • Institute of Medicine, Member, 2000
  • Keio Medical Science Foundation Prize, 1997
  • National Science Foundation, National Medal of Science, 1997
  • Harvey Prize, 1994
  • American Academy of Arts and Sciences, Fellow, 1987
  • Sloan Prize, GM Cancer Research Foundation, 1987
  • National Academy of Sciences, Member, 1985
  • Robert Koch Foundation Prize, 1983
Michael B. Yaffe

Education

  • PhD, 1987, Case Western Reserve University; MD, 1989, Case Western Reserve University
  • BS, 1981, Chemistry with Concentration in Solid-State and Polymer Physics, Cornell University

Research Summary

Our goal is to understand how signaling pathways are integrated at the molecular and systems levels to control cellular responses. We have two main focuses: First, we study signaling pathways and networks that control cell cycle progression and DNA damage responses in cancer and cancer therapy. Second, we examine the cross-talk between inflammation, cytokine signaling and cancer. Much of our work focuses on how modular protein domains and kinases work together to build molecular signaling circuits, and how this information can be used to design synergistic drug combinations for the personalized treatment of human disease.

Awards

  • MacVicar Faculty Fellow, 2021
  • Fellow, Association of American Physicians, 2021
  • Teaching with Digital Technology Award, 2018
Amy E. Keating

Education

  • PhD, 1998, University of California, Los Angeles
  • SB, 1992, Physics, Harvard University

Research Summary

Our goal is to understand, at a high level of detail, how the interaction properties of proteins are encoded in their sequences and structures. We investigate protein-protein interactions by integrating data from high throughput assays, structural modeling, and bioinformatics with biochemical and biophysical experiments. Much of our work focuses on α-helical coiled-coil proteins, Bcl-2 apoptosis-regulating proteins, and protein domains that bind to short linear motifs.

Monty Krieger

Education

  • PhD, 1976, California Institute of Technology
  • BS, 1971, Chemistry, Tulane University

Research Summary

We use genetic, biochemical, physiologic, chemical, cellular and molecular biological methods to study cell surface receptor structure and function. We focus on lipoprotein receptors — in particular, the High Density Lipoprotein (HDL) receptor called Scavenger Receptor, Class B, Type I (SR-BI). Our analyses have provided insight into basic biological processes, contributed to our understanding of atherosclerosis and coronary heart disease (CHD) and have uncovered an unexpected connection between cholesterol and mammalian female infertility.

No longer accepting new students.

Awards 

  • Tulane University School of Science and Engineering Outstanding Alumnus Award, 2010
  • National Academy of Sciences, Member, 2009
  • Outstanding Achievement Award for Contributions to Atherosclerosis Research, International Atherosclerosis Society, 2009
  • Margaret MacVicar Faculty Fellow, 1993-2003