Yukiko Yamashita

Education

  • PhD, 1999, Kyoto University
  • BS, Biology, 1994, Kyoto University

Research Summary

Two remarkable feats of multicellular organisms are generation of many distinct cell types via asymmetric cell division and transmission of the germline genome to the next generation, essentially in eternity. Studying these processes using the Drosophila male germline as a model system has led us to venture into new areas of study, such as functions of satellite DNA, a ‘genomic junk,’ and how they might be involved in speciation.

Awards

  • Tsuneko and Reiji Okazaki Award, 2016
  • Howard Hughes Medical Institute, Investigator, 2014
  • MacArthur Fellow, 2011
  • Women in Cell Biology Early Career Award, American Society for Cell Biology, 2009
  • Searle Scholar, 2008
Ruth Lehmann

Education

  • Dr. rer. nat., 1985, University of Tübingen
  • MS, 1981, Biology, University of Freiburg

Research Summary

We study germ cells, the only cells in the body naturally able to generate completely new organisms. In addition to the nuclear genome, cytoplasmic information is passed though the egg cell to the next generation. We analyze the organization and regulation of germ line specific RNA-protein condensates, and explore mechanisms used by endosymbionts such as mitochondria and the intracellular bacterium, Wolbachia, to propagate through the cytoplasm of the female germ line.

Awards

  • Vanderbilt Prize in Biomedical Science, 2022
  • Gruber Genetics Prize, 2022
  • Thomas Hunt Morgan Medal, Genetics Society of America, 2021
  • Francis Amory Prize in Reproductive Medicine and Reproductive Physiology, American Academy of Arts and Sciences, 2020
  • Vilcek Prize in Biomedical Science, 2020
  • Keith R. Porter Award, American Society for Cell Biology, 2018
  • Inaugural Klaus Sander Prize, German Society for Developmental Biology, 2017
  • European Molecular Biology Organization, Foreign Associate, 2012
  • Conklin Medal of the Society of Developmental Biology, 2011
  • National Academy of Sciences, Foreign Associate, 2005; Member, 2008
  • American Academy of Arts and Sciences, Member, 1998
  • Howard Hughes Medical Institute, Investigator, 1990 and 1997
Jonathan Weissman

Education

  • PhD, 1993, MIT
  • AB, 1988, Physics, Harvard

Research Summary

We study how cells ensure that proteins fold into their correct shape, as well as the role of protein misfolding in disease and normal physiology. We also build innovative tools for broadly exploring organizational principles of biological systems. These include ribosome profiling, which globally monitors protein translation, CRIPSRi/a for controlling the expression of human genes and rewiring the epigenome, and lineage tracing tools, to record the history of cells.

Awards

  • Ira Herskowitz Award, Genetic Society of America, 2020
  • European Molecular Biology Organization, Member, 2017
  • National Academy of Sciences Award for Scientific Discovery, 2015
  • American Academy of Microbiology, Fellow, 2010
  • National Academy of Sciences, Member, 2009
  • Raymond and Beverly Sackler International Prize in Biophysics, Tel Aviv University, 2008
  • Protein Society Irving Sigal Young Investigator’s Award, 2004
  • Howard Hughes Medical Institute, Assistant Investigator, 2000
  • Searle Scholars Program Fellowship, 1997
  • David and Lucile Packard Fellowship, 1996
Seychelle M. Vos

Education

  • PhD, 2013, University of California, Berkeley
  • BS,  2008,  Genetics,  University of Georgia

Research Summary

We study the interplay of gene expression and genome organization. Our work focuses on understanding how large molecular machineries involved in genome organization and gene transcription regulate each others’ function to ultimately determine cell fate and identity. We employ a broad range of approaches including single-particle cryo-electron microscopy (cryo-EM), X-ray crystallography, biochemistry, and genetics to mechanistically understand how these molecular assemblies regulate each other across molecular scales.

Awards

  • New Innovator Award, National Institutes of Health Common Fund’s High-Risk, High-Reward Research Program, 2021
Bruce Walker

Education

  • PhD, 1993, University of Vienna
  • BS, 1989, Biology, University of Vienna

Research Summary

The overarching goal of my laboratory is to define the interplay of immunologic, virologic and host genetic factors that determine control of human viral infections, to guide vaccine development and immunotherapeutic interventions. To address this goal, we focus on HIV infection.

Awards

  • ​Bernard Fields Lectureship, 2015
  • NIH Merit Award, 2011, 2004
  • American Academy of Arts and Sciences, 2010
  • National Academy of Medicine, 2009
  • American Association of Physicians, 2000
  • Doris Duke Charitable Foundation Distinguished Clinical Scientist Award, 1999
  • American Society for Clinical Investigation, 1993
Pulin Li

Education

  • PhD, 2012, Chemical Biology, Harvard University
  • BS, 2006, Life Sciences, Peking University

Research Summary

We are curious about how circuits of interacting genes in individual cells enable multicellular functions, such as self-organizing into structured tissues. To address this question, we analyze genetic circuits in natural systems, combining quantitative measurements and mathematical modeling. In parallel, we test the sufficiency of the circuits and understand their design principles by multi-scale reconstitution, from genes to circuits to multicellular behavior, using synthetic biology and bioengineering tools. Together, we aim to provide both a quantitative understanding of embryonic development and new ways to engineer tissues.

Awards

  • New Innovator Award, National Institutes of Health Common Fund’s High-Risk, High-Reward Research Program, 2021
  • R.R. Bensley Award in Cell Biology, American Association for Anatomy, 2021
  • Santa Cruz Developmental Biology Young Investigator Award, 2016
  • NIH Pathway to Independence Award K99/R00 (NICHD), 2016
  • American Cancer Society Postdoctoral Fellowship, 2015
Ankur Jain

Education

  • PhD, 2013, University of Illinois, Urbana-Champaign
  • BTech, 2007,  Biotechnology and Biochemical Engineering, Indian Institute of Technology Kharagpur

Research Summary

We study how biomolecules in a cell self-organize. In particular, we are interested in understanding how membrane-free cellular compartments such as RNA granules form and function. Our lab develops new biochemical and biophysical techniques to investigate these compartments and to understand their dysfunction in human disease.

Awards

  • Young Alumni Achiever’s Award, Indian Institute of Technology Kharagpur, 2019
  • NIH K99/R00 Pathway to Independence Award, 2017
  • Pew Scholar in the Biomedical Sciences, 2022
William Quinn

Education

  • PhD 1971, Princeton University
  • BA, 1966, Biology, Harvard University

Research Summary

Fruit flies can learn. They can identify a specific chemical odor that they have experienced with electric shock and avoid it. Moreover, they can remember to avoid it for several days. Before closing his lab, the Quinn lab investigated the molecular mechanisms underlying learning acquisition and memory storage by inducing and selecting single-gene mutations that affect learning or memory, and by engineering transgenic fly strains that disrupt these processes.

William Quinn is no longer accepting students.

Mary-Lou Pardue

Education

  • PhD 1970, Yale University
  • BS, 1950, Biology, College of William and Mary

Research Summary

Before closing her lab, Mary Lou Pardue studied the ends of chromosomes — complex, dynamic nucleoprotein structures formed on long arrays of repeated DNA sequences, known as telomeres. She analyzed Drosophila telomeres, and discovered that they are maintained by special transposable elements called retrotransposons. The Drosophila telomeric retrotransposons are unusual transposable elements, and provide a link between telomeres and transposable elements that raises interesting questions about the evolution of both eukaryotic chromosomes and transposable elements.

Mary-Lou Pardue is no longer accepting students.

Awards

  • American Academy of Arts and Sciences, Fellow, 1985
  • National Academy of Sciences, Member, 1983
Leona Samson

Education

  • PhD, University College London
  • BS, 1974, Biochemistry, Aberdeen University, Scotland

Research Summary

Before closing her lab, Leona Samson studied alkylating agents, which are toxic chemicals used in chemotherapy that can damage DNA. To do so, she probed the large number of responsive genes that protect cells against alkylation toxicity. She also dissected the molecular mechanisms by which alkylating agents signal these very important downstream events.

Leona Samson is no longer accepting students.

Awards

  • American Academy of Arts and Sciences, Fellow, 2021
  • Radcliffe Fellow, 2013-2014
  • American Association for the Advancement of Science, Fellow, 2007
  • National Academy of Medicine, Member, 2003
  • American Cancer Society Research Professor, 2001-2011