Sara Prescott

Education

  • PhD, 2016, Stanford University School of Medicine
  • BA, 2008, Molecular Biology, Princeton University

Research Summary

Our bodies are tuned to detect and respond to cues from the outside world and from within through exquisite collaborations between cells. For example, the cells lining our airways communicate with sensory neurons in response to chemical and mechanical signals, and evoke key reflexes such as coughing. This cellular collaboration protects our airways from damage and stabilizes breathing, but can become dysregulated in disease. Despite their vital importance to human health, fundamental questions about how sensory transduction is accomplished at these sites remain unsolved. We use the mammalian airways as a model system to investigate how physiological insults are detected, encoded, and addressed at essential barrier tissues — with the ultimate goal of providing new ways to treat autonomic dysfunction.

Awards

  • Warren Alpert Distinguished Scholars Award, 2021
  • Life Sciences Research Foundation Fellowship, 2018
Alison E. Ringel

Education

  • PhD, 2015, Johns Hopkins University School of Medicine
  • BA, 2009, Molecular Biology & Biochemistry/Physics, Wesleyan University

Research Summary

We investigate crosstalk between CD8+ T cells and their environment at a molecular level, by dissecting the biological and metabolic programs engaged under conditions of stress. Using an array of approaches to model and perturb the local microenvironment, our research aims to reveal both the adaptive molecular changes as well as intrinsic vulnerabilities in T cells that arise within the tumor niche. Our goal is to understand how disease states remodel the fundamental mechanisms that regulate immune cell function and contribute to pathogenesis.

Awards

  • Forbeck Scholar, 2021
Harikesh S. Wong

Education

  • PhD, 2016, University of Toronto
  • BSc, 2010, Biochemistry, McMaster University

Research Summary

The immune system mounts destructive responses to protect the host from threats, including pathogens and tumors. However, a trade-off emerges: if immune responses cause too much damage, they can compromise host tissue function. Conversely, if they fail to generate sufficient damage, the host may succumb to a given threat. How is the optimal balance achieved? The Wong lab investigates how cells communicate with one another and their surrounding tissue environment to accurately control the magnitude of immune responses, both in time and space. To this end, we combine the tools of immunology with interdisciplinary methods—including high-resolution fluorescence microscopy, computational approaches, and gene manipulations—to resolve, model, and perturb the control of immune responses in intact tissues. Ultimately, we aim to understand how subtle shifts in control can lead to widely divergent host outcomes, including the successful elimination of threats, tolerance, autoimmunity, chronic infection, and cancer.

Yadira Soto-Feliciano

Education

  • PhD, 2016, MIT
  • BS, 2008, Chemistry, University of Puerto Rico-Mayagüez 

Research Summary

We study chromatin — the complex of DNA and proteins that make up our chromosomes. We aim to understand how post-translational modifications to these building-blocks, as well as the factors that regulate these events, play essential roles in maintaining the integrity of cells, tissues, and ultimately entire organisms. We implement a combination of functional genomics, biochemical, genetic, and epigenomic approaches to study how chromatin and epigenetic factors decode the chemical language of chromatin, and how these are dysregulated in diseases such as cancer.

Awards

  • AACR Gertrude B. Elion Cancer Research Award, 2023
  • V Foundation Award, 2022
  • NIH MOSAIC K99/R00 Postdoctoral Career Transition Award, 2021
  • Eddie Méndez Scholar Award, Fred Hutchinson Cancer Research Center, 2020
  • Damon Runyon-Sohn Pediatric Cancer Fellowship, Damon Runyon Cancer Research Foundation, 2017
Siniša Hrvatin

Education

  • PhD, 2013, Harvard University
  • A.B., 2007, Biochemical Sciences, Harvard University

Research Summary

To survive extreme environments, many animals have evolved the ability to profoundly decrease metabolic rate and body temperature and enter states of dormancy, such as torpor and hibernation. Our laboratory studies the mysteries of how animals and their cells initiate, regulate, and survive these adaptations. Specifically, we focus on investigating: 1) how the brain regulates torpor and hibernation, 2) how cells adapt to these states, and 3) whether inducing these states can slow down tissue damage, disease progression, and even aging. Our long-term goal is to explore potential applications of inducing similar states of “suspended animation” in humans.

Awards

  • Warren Alpert Distinguished Scholar, Warren Albert Foundation, 2019
  • NIH Director’s New Innovator Award, 2022
  • Searle Scholar, 2023
  • Pew Scholar, 2023
  • McKnight Scholar, 2024
Francisco J. Sánchez-Rivera

Education

  • PhD, 2016, Biology, MIT
  • BS, 2008, Microbiology, University of Puerto Rico at Mayagüez

Research Summary

The overarching goal of the Sánchez-Rivera laboratory is to elucidate the cellular and molecular mechanisms by which genetic variation shapes normal physiology and disease, particularly in the context of cancer. To do so, we develop and apply genome engineering technologies, genetically-engineered mouse models (GEMMs), and single cell lineage tracing and omics approaches to obtain comprehensive biological pictures of disease evolution at single cell resolution. By doing so, we hope to produce actionable discoveries that could pave the way for better therapeutic strategies to treat cancer and other diseases.

Awards

  • V Foundation Award, 2022
  • Hanna H. Gray Fellowship, Howard Hughes Medical Institute, 2018-2026
  • GMTEC Postdoctoral Researcher Innovation Grant, Memorial Sloan Kettering Cancer Center, 2020-2022
  • 100 inspiring Hispanic/Latinx scientists in America, Cell Mentor/Cell Press, 2020
Hernandez Moura Silva

Education

  • PhD, 2011, University of São Paulo Heart Institute
  • MSc, Molecular Biology, 2008, University of Brasilia
  • BS, 2005, Biology, University of Brasilia

Research Summary

By utilizing an innovative and intersectional approach, our lab main goal is to reveal fundamental immune-related pathways that modulate organ and tissue physiology. Our work will help to develop new strategies to tune these molecular pathways in health and disease, leading to the development of much-needed therapeutic approaches for human diseases.

Awards

  • CAPES Thesis Award – Brazil, 2012
Kristin Knouse

Education

  • PhD, 2017, MIT; MD, 2018, Harvard Medical School
  • Undergraduate: BS, 2010, Biology, Duke University

Research Summary

We aim to understand how tissues sense and respond to damage with the goal of developing novel treatments for diverse human diseases. We focus on the mammalian liver, which has the unique ability to completely regenerate itself, in order to identify the molecular requirements for effective organ repair. To this end, we innovate genetic, molecular, and cellular tools that allow us to investigate and modulate organ injury and regeneration directly within living organisms.

Awards

  • NIH Director’s Early Independence Award, 2018
  • Henry Asbury Christian Award, 2018
Olivia Corradin

Education

  • PhD, 2015, Case Western Reserve University
  • BS, 2010, Biochemistry, Marquette University

Research Summary

Our lab studies genetic and epigenetic variation that contributes to human disease by disrupting gene expression programs. We utilize biological insights into the mechanisms of gene regulation in order to determine the impact of disease-associated variants on cellular function. We aim to identify actionable insights into disease pathogenesis by studying the confluence of genetic and epigenetic risk factors of human diseases, including multiple sclerosis and opioid use disorder.

Awards

  • NIH Director’s Pioneer Award Program Avenir Award, 2017
Lindsay Case

Education

  • PhD, 2014, University of North Carolina at Chapel Hill
  • BA, 2008, Biology, Franklin and Marshall College

Research Summary

We study how cells regulate the spatial organization of signaling molecules at the plasma membrane to control downstream signaling. For example, receptor clustering and higher-order assembly with cytoplasmic proteins can create compartments with unique biochemical and biophysical properties. We use quantitative experimental approaches from biochemistry, molecular biophysics, and cell biology to study transmembrane signaling pathways and how they are misregulated in diseases like cancer.

Awards

  • NSF Career Award, 2025
  • Searle Scholar, 2022
  • NIH Director’s New Innovator Award, 2022
  • AFOSR Young Investigator Award, 2021
  • Brown-Goldstein Award, 2020
  • Damon Runyon-Dale F. Frey Breakthrough Scientist, 2020