BSc, 1982, Biology and Biochemistry, Hebrew University, Israel
Research Summary
The property of the brain that allows it to constantly adapt to change is termed plasticity, and is a prominent feature not only of learning and memory in the adult, but also of brain development. Connections between neurons (synapses) that are frequently used become stronger, while those that are unstimulated gradually dwindle away. The Nedivi lab works to identify the cellular mechanisms that underlie the addition and elimination of synaptic connections in response to activity using genetic and in vivo imaging approaches.
Awards
Elected Member at Large, AAAS, 2019-2023
Elected Member, Dana Alliance, 2019
BCS Award for Excellence in Undergraduate Teaching, 2018
American Association for the Advancement of Science (AAAS), Fellow, 2016
AFAR Julie Martin Mid-Career Award in Aging Research, 2007 – 2011
Edgerly Innovation Fund Award, 2006
Dean’s Education and Student Advising Award, 2003
NSF Powre Award, 1999
Alfred P . Sloan Research Fellowship, 1999 – 2001
Ellison Medical Foundation New Scholar Award, 1997 – 2002
Education
PhD, 2011, Ludwig-Maximilian University Munich/Helmholtz-Zentrum Munich
MSc, Biology, 2008, Ludwig-Maximilian University Munich/Helmholtz-Zentrum Munich
BSc, Biology, 2005, Ludwig-Maximilian University Munich/Helmholtz-Zentrum Munich
Research Summary
We examine the interaction between cancer and immune cells. Using tumor mouse models designed to mimic tumor progression in humans, we investigate the co-evolution of the anti-tumor immune response and cancer. Understanding the interplay between tumor cells and immune cells will help develop and improve effective cancer immunotherapies.
Awards
Forbeck Fellow, 2015
Education
PhD, 1990, Stanford University
BS, 1982, Biology, Wuhan University
Research Summary
We seek to understand the immune system and its application in cancer immunotherapy and vaccine development. We study the molecular and cellular mechanisms behind immunological and disease processes, leveraging the vast array of genomic data, humanized mice and clinical samples.
Awards
American Association for the Advancement of Science, Fellow, 2012
Education
PhD, 1966, Rockefeller University
BS, 1962, Chemistry and Mathematics, Kenyon College
Research Summary
Harvey Lodish has been a leader in molecular cell biology as well as a biotechnology entrepreneur for over five decades. Much of his early research focused on the regulation of messenger RNA translation and the biogenesis of plasma membrane glycoproteins. Beginning in the 1980s, his research focused on cloning and characterizing many proteins, microRNAs, and long noncoding RNAs important for red cell development and function. His laboratory was the first to clone and sequence mRNAs encoding many hormone receptors, mammalian glucose transport proteins, and proteins important for adipose cell formation and function. He went on to identify and characterize several genes and proteins involved in insulin resistance and stress responses in adipose cells. Over the years, he has mentored hundreds of undergraduates, PhD and MD/PhD students, and postdoctoral fellows, and continues to teach award-winning undergraduate and graduate classes on biotechnology.
Harvey Lodish closed his lab in 2020 and is no longer accepting students.
Awards
Wallace H. Coulter Award for Lifetime Achievement in Hematology, American Society of Hematology, 2021
Donald Metcalf Award, International Society for Experimental Hematology, 2020
American Society for Cell Biology WICB Sandra K. Masur Senior Leadership Award, 2017
Mentor Award in Basic Science, American Society of Hematology, 2010
President, American Society for Cell Biology, 2004
Associate Member, European Molecular Biology Organization (EMBO), 1996
National Academy of Sciences, Member, 1987
American Academy of Arts and Sciences, Fellow, 1986
John Simon Guggenheim Memorial Foundation, Guggenheim Fellowship, 1977
Education
PhD, 2002, University of California, Berkeley
BS, 1997, Biology, Duke University
Research Summary
Our lab is fascinated by the molecular machinery that directs core cellular processes, and in particular how these processes are modulated and rewired across different physiological contexts. Our work has focused on the proteins that direct chromosome segregation and cell division, including the macromolecular kinetochore structure that mediates chromosome-microtubule interactions. Although cell division is an essential cellular process, this machinery is remarkably flexible in its composition and properties, which can vary dramatically between species and are even modulated within the same organism — over the cell cycle, during development, and across diverse physiological situations. To define the basis by which the kinetochore and other core cellular structures are rewired to adapt to diverse situations and functional requirements, we are currently investigating diverse transcriptional, translational, and post-translational mechanisms that act to generate proteomic variability both within individual cells and across tissues, cell state, development, and disease.
Awards
Global Consortium for Reproductive Longevity and Equality (GCRLE) Scholar Award, 2020
MIT Undergraduate Research Opportunities Program (UROP) Outstanding Mentor – Faculty, 2019
American Society for Cell Biology (ASCB) Early Career Life Scientist Award, 2012
We focus on plant epigenetics — that is, the heritable information that influences cellular function but is not encoded in the DNA sequence itself. We use genetic, genomic and molecular biology approaches to study the fidelity of epigenetic inheritance and the dynamics of epigenomic reprogramming during reproduction, primarily in the model plant Arabidopsis thaliana. More specifically, we investigate the interplay among repetitive sequences, DNA methylation and chromatin structure in these dynamic processes.
Awards
Rosalind Franklin Young Investigator Award, 2013
Pew Scholar in the Biomedical Sciences, 2011
Education
MD, 1967, University of Munich
Research Summary
We aim to understand the epigenetic regulation of gene expression in mammalian development and disease. Embryonic stem cells are important because they have the potential to generate any cell type in the body and, therefore, have great potential for regenerative medicine. We study the way somatic cells reprogram to an embryonic pluripotent state, and use patient specific pluripotent cells to study complex human diseases.
Awards
German Society for Biochemistry and Molecular Biology, Otto Warburg Medal, 2014
New York Academy, Medicine Medal, 2013
Franklin Institute, Benjamin Franklin Medal, 2013
National Science Foundation, National Medal of Science, 2011
National Science Foundation, National Medal of Science, 2010
National Academy of Sciences, Member, 2003
Education
PhD, 1968, University of California, San Diego
BS, 1963, Chemistry, Kyoto University
Research Summary
We are interested in the molecular, cellular and neural circuit mechanisms underlying learning and memory in rodents. We generate genetically engineered mice, and analyze them through multiple methods including molecular and cellular biology, electrophysiology, microscopic imaging, optogenetic engineering, and behavioral studies. Ultimately, we aim to detect the effects of our manipulations at multiple levels in the brain — deducing which behaviors or cognitions are causally linked to specific processes and events taking place at the molecular, cellular, and neuronal circuit levels.
Awards
The Nobel Foundation, Nobel Prize in Physiology or Medicine, 1987
Albert and Mary Lasker Award in Basic Research, 1987
National Academy of Sciences, Member, 1986
Education
PhD, 1994, Baylor College of Medicine; MD, 1997, Baylor College of Medicine
BS, 1989, Biochemistry, Louisiana State University
Research Summary
Using Drosophila, we study how neurons form synaptic connections, as well as how synapses transmit information and change during learning and memory. We also investigate how alterations in neuronal signaling underlie several neurological diseases, including epilepsy, autism, and Huntington’s Disease. We hope to bridge the gap between the molecular components of the synapse and the physiological responses they mediate.
Whitehead researchers unravel fundamental molecular machinery that propels chromosome movement
November 16, 2017
Each day, billions of cells in the human body undergo a vital ritual, wherein one cell divides to form two. This process, known as cell division, is as beautiful as it is essential, undergirding the body’s growth in times of both health and disease. Despite the fact that cell division (or “mitosis”) has been a basic topic in high school biology classes for the past 70 years, the mechanisms by which cells conduct this critical event remain poorly understood. In particular, there are lingering uncertainties about how chromosomes — large units of DNA that include our genes — get properly allocated so that both daughter cells receive intact, complete copies of their genetic blueprint.
“People have been watching chromosomes move, align, and segregate for more than a century — it’s such a fundamental aspect of biology,” says Iain Cheeseman, a member of the Whitehead Institute for Biomedical Research and an associate professor of biology at Massachusetts Institute of Technology. “It’s also much more elegant and complicated than we ever anticipated.”
Cheeseman and members of his Whitehead laboratory have discovered many of the molecular movers and shakers that ensure chromosomes get to the right place at the right time. These components assemble together — like the parts of an engine — to establish robust connections with chromosomes and ultimately power their movement within cells. “The most important unanswered question in the field is how do these components work together? That is, how do you build a machine that is more than the sum of its parts?” he says.
Now, in two recent papers in the journals eLife and Current Biology, Cheeseman and his colleagues help shed light on this central question.
Back to the drawing board
As recently as 15 years ago, scientists assumed that in dividing cells, chromosomes move the way many other cellular objects move — transported by tiny molecular motors. These mini-motors are specifically designed to travel along roads made from rod-like structures called microtubules. Like a car cruising on a highway, they can carry cargo over long distances. Although such microtubule-based vehicles seemed a logical suspect, when scientists inactivate them in human cells, chromosomes can still move and segregate just fine. So something else must contribute the necessary molecular muscle.
“We basically had to throw out the major hypothesis that was out there and go back to the drawing board,” says Cheeseman.
Over the last several years, he and other scientists in the field have helped develop a clearer view of how this process works and who the key players are that enable a very different type of movement. Consider a car sitting motionless on a highway. Rather than revving its own engine to generate motion, the highway itself moves, shrinking or growing while the car hangs on. “It is a radically different way of imagining this movement process,” says Cheeseman. “An important part of my lab’s mission has been to figure out how do you build a motor like that? What are the factors required and how do they act?”
Of course, the highway — or more precisely, the microtubule — must grow and shrink as needed. But even more important, there must also be an apparatus that can enable chromosomes to hold on to such a dynamic structure. As Cheeseman and his colleagues have uncovered, this coupling requires a suite of highly sophisticated molecular players.
Building an unusual machine
Cheeseman and his laboratory have focused on three key groups or complexes of proteins that play essential roles in chromosome segregation in human cells. These components assemble together to form a kind of molecular tether point on chromosomes (called the kinetochore) where microtubules attach.
Diagram of the kinetochore/microtube interface Courtesy: David Kern/Whitehead Institute
Among this trio of parts, the most critical is the Ndc80 complex. “It is the major connection between the kinetochore and the microtubule,” says Cheeseman. As a postdoc, he discovered the biochemical properties that enable this Ndc80 complex to grab on to microtubules, research that sparked his lab’s quest to study the various pieces of the kinetochore machinery and how they work.
While Ndc80 forms a critical linkage, it lacks some key capabilities, like processivity — the ability to keep ahold of something while it moves. In a series of papers, one published in 2009, another in 2012, and a new one in Current Biology, Cheeseman’s team revealed that Ska1 can perform this crucial function. That is, it has the biochemical capacity to enable chromosomes to hang onto microtubules while they grow and as they shrink, an activity that it can impart to the Ndc80 complex. “These are pretty powerful properties,” says Cheeseman.
Diving even deeper into Ska1’s bag of tricks, Julie Monda and Ian Whitney, lead authors of the Current Biology paper, went on to decipher the precise molecular features that enable the complex’s dynamic capabilities, uncovering multiple surfaces that associate with microtubules and enable Ska1 to undergo something akin to molecular somersaults. These somersaults are what allow it to maintain its association with microtubules.
The third complex, Astrin-SKAP, also plays a unique role. As Cheeseman’s team described in their recent eLife paper, led by first author David Kern, it serves as a master stabilizer — like a final drop of superglue to secure everything in place. “It’s the last thing that comes in and helps lock down these interactions, so you can stabilize and maintain them,” says Cheeseman.
Uncovering its role was no easy feat. Astrin-SKAP proved to be rather temperamental biochemically, complicating Kern’s efforts to purify and manipulate it in the laboratory. Also, as he and his colleagues discovered, a tiny piece of the structure had previously gone undetected; it works alongside the rest of the complex and is required for its normal function. Perhaps the most important revelation was that Astrin-SKAP doesn’t just work alone — it also coordinates with Ndc80. “This is an important finding for how we think about these components as a whole,” saysCheeseman.
Although questions remain about how all of these parts work together and how other pieces may come into play, Cheeseman believes these studies provide an exciting start. “The first human kinetochore component wasn’t identified until 1987, when many of the other key processes in the cell had already been intensively studied,” he says. “There are so many exciting questions that are accessible now that we have these tools and knowledge.”
Now, he and his colleagues will continue to meld approaches in cell biology and biochemistry to decode the inner workings of the kinetochore. That includes understanding how the various components operate not only in individual cells, but also in multicellular organisms.
“We are currently thinking a lot about the physiological context— that is, what matters to cells and to an organism,” says Cheeseman. “The work that our lab and others have conducted over the past two decades has given us a molecular handle on this problem. I’m excited to be able to apply these finding to understanding the ways that cell division is altered in development and in disease states.”
Written by Nicole Davis
* * *
Iain Cheeseman’s primary affiliation is with Whitehead Institute for Biomedical Research, where his laboratory is located and all his research is conducted. He is also an associate professor of biology at Massachusetts Institute of Technology.
* * *
Full citations:
“Astrin-SKAP complex reconstitution reveals its kinetochore interaction with microtubule-bound Ndc80”
eLife 2017;6:e26866 August 25, 2017. DOI: 10.7554/eLife.26866
David M Kern (1,2), Julie K Monda (1,2), Kuan-Chung Su (1), Elizabeth M Wilson-Kubalek (3), and Iain M Cheeseman (1,2).
1. Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
2. Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
3. Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
“Microtubule tip tracking by the spindle and kinetochore protein Ska1 requires diverse tubulin-interacting surfaces”
Current Biology, online November 16, 2017. DOI: 10.1016/j.cub.2017.10.018
Julie K. Monda (1,2,6), Ian P. Whitney (1,6), Ekaterina V. Tarasovetc (3,4), Elizabeth Wilson-Kubalek (5), Ronald A. Milligan (5), Ekaterina L. Grishchuk (3), and Iain M. Cheeseman (1,2).
1. Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
2. Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
3. Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
4. Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
5. Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA